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Abstract—In real-world environments, human speech is usually
distorted by both reverberation and background noise, which have
negative effects on speech intelligibility and speech quality. They
also cause performance degradation in many speech technology
applications, such as automatic speech recognition. Therefore, the
dereverberation and denoising problems must be dealt with in
daily listening environments. In this paper, we propose to perform
speech dereverberation using supervised learning, and the super-
vised approach is then extended to address both dereverberation
and denoising. Deep neural networks are trained to directly
learn a spectral mapping from the magnitude spectrogram of
corrupted speech to that of clean speech. The proposed approach
substantially attenuates the distortion caused by reverberation, as
well as background noise, and is conceptually simple. Systematic
experiments show that the proposed approach leads to significant
improvements of predicted speech intelligibility and quality,
as well as automatic speech recognition in reverberant noisy
conditions. Comparisons show that our approach substantially
outperforms related methods.

Index Terms—Deep neural networks (DNNs), denoising, dere-
verberation, spectral mapping, supervised learning.

I. INTRODUCTION

N real-world environments, the sound reaching the ears
comprises the original source (direct sound) and its reflec-
tions from various surfaces. These attenuated, time-delayed
reflections of the original sound combine to form a reverberant
signal. In reverberant environments, speech intelligibility is
degraded substantially for hearing impaired listeners [19], and
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normal hearing listeners when reverberation is severe [32].
In addition, room reverberation when combined with back-
ground noise is particularly disruptive for speech perception.
Reverberation and noise also cause significant performance
degradation in automatic speech recognition (ASR) [17] and
speaker identification systems [33], [43]. Given the prevalence
of reverberation and noise, a solution to the dereverberation
and denoising problems will benefit many speech technology
applications.

Reverberation corresponds to a convolution of the direct
sound and the room impulse response (RIR), which distorts
the spectrum of speech in both time and frequency domains.
Thus, dereverberation may be treated as inverse filtering. The
magnitude relationship between an anechoic signal and its
reverberant version is relatively consistent in different rever-
berant conditions, especially within the same room. Even when
reverberant speech is mixed with background noise, it is still
possible to restore speech to some degree from the mixture,
because speech is highly structured. These properties motivate
us to utilize supervised learning to model the reverberation and
mixing process.

In this paper, we propose to learn the spectral mapping
from reverberant speech to its anechoic version. The mapper is
trained where the input is the spectral representation of rever-
berant speech and the desired output is that of anechoic speech.
We then extend the spectral mapping approach to perform both
dereverberation and denoising.

Deep neural networks (DNNs) have shown strong learning
capacity [8]. A stacked denoising autoencoder (SDA) [37] is
a deep learning method, and it can be trained to reconstruct
the raw clean data from the noisy data, where hidden layer
activations are used as learned features. Although SDAs were
proposed to improve generalization, the main idea behind
SDAs motivated us to utilize DNNs to learn the mapping from
the corrupted data to clean data. A recent study [39] used DNNs
to denoise acoustic features in each time-frequency unit for
speech separation. In addition, Xu et al. [42] proposed a regres-
sion based DNN method for speech enhancement. Unlike these
studies, our approach deals with reverberant and noisy speech,
which is a substantially more challenging task. We note that an
earlier version of our study dealing with just reverberation is
published in [6] (more on this in Section V).

The paper is organized as follows. In the next section, we dis-
cuss related speech dereverberation and denoising studies. We
then describe our approach in detail in Section III. The experi-
mental results are shown in Section IV. We discuss related is-
sues and conclude the paper in the last section.
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II. RELATION TO PRIOR WORK

Many previous approaches have been proposed to deal with
speech dereverberation [24], [26]. Inverse filtering is one of the
commonly used techniques [23]. Since the reverberation effect
can be described as a convolution of clean speech with the room
impulse response, the inverse filtering based approach first de-
termines an inverse filter that can reverse the effects of the room
response, and then estimates the anechoic signal by convolving
the reverberant signal with the inverse filter. However, in many
situations, the inverse filter cannot be determined directly and
must be estimated, which is a hard problem. Further, this ap-
proach assumes that the RIR function is minimum-phase that is
often not satisfied in practice [27]. Wu and Wang [41] utilized a
two-stage approach including inverse filtering and spectral sub-
traction to deal with early reverberation and late reverberation
separately, which relies on an accurate estimate of the inverse
filter in one microphone scenarios. Other studies dealt with dere-
verberation by exploiting the properties of speech such as mod-
ulation spectrum [2], power spectrum [21], and harmonic struc-
ture [40], [30].

Recent studies show that the ideal binary mask (IBM) can
be extended to suppress reverberation and improve speech in-
telligibility [19], [31], [32]. The IBM based approaches treat
the direct sound or direct sound plus the early reflections as
the target and the rest as the masker, and the dereverberated
signal is resynthesized from the binary mask. Therefore, the
IBM can still be considered as an effective computational goal
for dereverberation. Hazrati et al. [ 7] proposed to estimate a bi-
nary mask based on a single variance-based feature against an
adaptive threshold and yielded intelligibility improvements for
cochlear implantees. In principle, the IBM based approach can
deal with both reverberation and noise simultaneously; how-
ever, few previous studies aim to estimate the IBM for both
dereverberation and denoising. Jin and Wang [14] use a multi-
layer perceptron to estimate the IBM for speech separation but
the target is the reverberant noise-free speech.

III. ALGORITHM DESCRIPTION

We describe the algorithm in this section, including
three subsections: feature extraction, model training, and
post-processing.

A. Spectral Features

We first extract features for spectral mapping. Given a time
domain input signal s(t), we use the short time Fourier trans-
form (STFT) to extract features. We first divide the input signal
into 20-ms time frames with 10-ms frame shift, and then apply
fast Fourier transform (FFT) to compute log spectral magni-
tudes in each time frame. For a 16 kHz signal, we use 320-point
FFT and therefore the number of frequency bins is 161. We de-
note the log magnitude in the kth frequency and the mth frame
as X (m, k). Therefore, in the spectrogram domain, each frame
can be represented as a vector x(m):

x(m) = [X(m, 1), X(m,2),..., X(m, 161)]" (1)
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Fig. 1. (Color online) Structure of the DNN based spectral mapping. The inputs
are the log spectra of the current frame and its neighboring frames, and the
outputs are the log spectra of the current frame.

In order to incorporate temporal dynamics, we include the spec-
tral features of neighboring frames into a feature vector. There-
fore, the input feature vector for the DNN feature mapping is:

£(m) = x(m —d),...,x(m),...,x(m+d)]" (@)

where d denotes the number of neighboring frames on each side
and is set to 5 in this study. So the dimensionality of the input
is 161 x 11 = 1771.

The desired output of the neural network is the spectrogram
of clean speech in the current frame m, denoted by a 161-di-
mensional feature vector y(m), whose elements correspond to
the log magnitude in each frequency bin at the mth frame.

B. DNN Based Spectral Mapping

We train a deep neural network to learn the spectral map-
ping from reverberant, or reverberant and noisy, signals to clean
signals.

The DNN in this study includes three hidden layers, as
shown in Fig. 1. The input for each training sample is the log
magnitude spectrogram in a window of frames X(im), and the
number of input units is the same as the dimensionality of the
feature vector. The output is the log magnitude spectrogram
in the current frame y(m), corresponding to 161 output units.
Each hidden layer includes 1600 hidden units. We use cross
validation on a development set to train neural networks to
choose the number of hidden layers and hidden units (see
Section IV-B for more details).

The objective function for optimization is based on mean
square error. Equation (3) is the cost for each training sample:

Ly, x0) =) (y.— fo(x))? 3)

c=1
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where C' = 161 corresponds to the index of the highest fre-
quency bin, y = (y1,...,yc)7T is the desired output vector,
and f.(-) is the actual output of the cth neuron in the output
layer. ® denotes the parameters we need to learn. To train the
neural network, the input is normalized to zero mean and unity
variance over all feature vectors in the training set, and the
output is normalized into the range of [0,1]. The activation func-
tion in the hidden layers is the rectified linear function and the
output layer uses the sigmoid function, shown in Egs. (4) and
(5) respectively:

4)
)

- l+e*

The weights of the DNN are randomly initialized without pre-
training. We use backpropagation with a mini-batch of 512 sam-
ples for stochastic gradient descent to train the DNN model, and
the cost function in each mini-batch is computed as the sum-
mation over multiple training samples using Eq. (3). The opti-
mization technique uses gradient descent along with adaptive
learning rates and a momentum term [3].

The output of DNN is the estimated log magnitude spectro-
gram of clean speech. With the capacity of learning internal rep-
resentations, DNN promises to be able to encode the spectral
transformation from corrupted speech to clean speech and help
to restore the magnitude spectrogram of clean speech.

C. Post-Processing

After the DNN generates magnitude spectrogram estimates,
we need to resynthesize time-domain signals using the inverse
FFT process.

A straightforward method to reconstruct time-domain sig-
nals is to directly apply inverse the short-time Fourier transform
(iSTFT) using the DNN-generated magnitude and the phase
from unprocessed time-domain signals. However, the original
phase of noise-free speech is corrupted, and the corruption usu-
ally introduces perceptual disturbances and leads to negative ef-
fects on sound quality. In addition, the STFT is computed by
concatenating Fourier transforms of overlapping frames of a
signal, and thus is a redundant representation of the time-domain
signal. For a spectrogram-like matrix in the time-frequency do-
main, it is not guaranteed there exists a time-domain signal
whose STFT is equal to that matrix [4], [20]. In other words,
the magnitude spectrograms of the resynthesized time-domain
signal could be different from the one we intended to resyn-
thesize a signal from. This inconsistency should be taken into
account for synthetic or modified spectrograms, like our DNN-
generated magnitudes.

In order to minimize the incoherence between the phase and
the magnitude from which we want to reconstruct a signal, we
use an iterative procedure to reconstruct a time-domain signal
as given in Algorithm 1 [4]:

Here, N = 20 in our study. The algorithm iteratively up-
dates the phase ¢ at each step by replacing it with the phase of
the STFT of its inverse STFT, while the target magnitude Y is
the DNN-generated output, which is always fixed. The iteration
aims to find the closest realizable magnitude spectrogram con-
sistent with the given magnitude spectrogram.

Algorithm 1 Iterative signal reconstruction

Input: Target magnitude YV, noisy phase ¢° and iteration
number N

Output: Time-domain signal s
Y« V99— % ne1
while n < N do
s™ « iISTFT(Y, ¢)
(Y™ ¢") « STFT(s")
Y « Y9
$ 9"
n<n+l

end while

A B A A el s

s « sV

We use the above post-processing to reconstruct a time-do-
main signal as a waveform output of our system.

Fig. 2 shows an example of the spectral mapping for a
female sentence “A man in a blue sweater sat at the desk”.
Figs. 2(a) and (b) show the log magnitude spectrogram of the
clean speech and the reverberant speech with Ty = 0.6 s. The
corresponding DNN output is shown in Fig. 2(c). As shown
in Fig. 2(c), the smearing energy caused by reverberation is
largely removed or attenuated, and the boundaries between
voiced and unvoiced frames are considerably restored, showing
that the DNN output is a very good estimate of the spectrogram
of the clean speech. Fig. 2(d) is the magnitude spectrogram
of the time-domain signal resynthesized from the magnitude
in Fig. 2(c) and reverberant phase. Comparing Figs. 2(c) with
(d), the spectrogram in Fig. 2(d) is not as clean as the DNN
output in Fig. 2(c) because of the use of reverberant phase
and inconsistency of STFT. Fig. 2(e) is the spectrogram of the
time-domain signal using post-processing, where the spectro-
gram is improved by iterative signal reconstruction.

IV. EXPERIMENTS

A. Metrics and Parameters

We quantitatively evaluate our approach by two objective
measurements of speech intelligibility: frequency-weighted
segmental speech-to-noise ratio (SNRy,,) [22] and short-time
objective intelligibility measure (STOI) [34]. Specifically,
SNR¢,, is a speech intelligibility indicator, computing a
signal-to-noise estimate for each critical band:

K 2
7 ISk
w k;w (k) log,q BT
SNRy,, = 10M )
m Yoy W (k)
(6)

where W (k) is the weight placed on the kth frequency band
which is taken from the articulation index [13], K is the number
of bands, A is the total number of frames in the signal, S(m, k)
is the critical-band magnitude of the clean signal in the kth fre-
quency band at the mth frame, and S (m, k) is the corresponding
spectral magnitude of the processed signal in the same band.
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Fig. 2. (Color online) DNN dereverberation results. (a) Log magnitude spectrogram of clean speech. (b) Log magnitude spectrogram of reverberant speech with
Tso = 0.6s. (c) DNN outputs. (d) Log magnitude spectrogram of resynthesized signal. (¢) Log magnitude spectrogram of resynthesized signal with post-pro-

cessing.

The STOLl is recently proposed as an index of speech intelligi-
bility. It computes the correlation between temporal envelopes
of the clean and processed speech in short-time segments as
an intelligibility indicator, ranging from 0 to 1. STOI has been
shown to have high correlation with speech intelligibility of
human listeners [34].

In addition, we evaluate speech quality using Perceptual
Evaluation of Speech Quality (PESQ) [29], which computes
disturbance between clean speech and processed speech using
cognitive modeling as a speech quality score. The range of
PESQ score is from —0.5 to 4.5.

As we mentioned in Section III-A, we utilize context infor-
mation using a concatenation of features from 5 frames on each
side of the current frame. Temporal information is an impor-
tant property for speech signals, and thus adding these neigh-
boring frames should be helpful to learn a spectral mapping.
We have conducted experiments using different window sizes.
Comparing with the 11-frame window, the SNR y,, results of a
7-frame window and a 3-frame window are worse by around
0.5 dB and 2.5 dB, respectively.

The architecture of the DNN influences its learning perfor-
mance. We have conducted experiments using different num-
bers of hidden layers. A DNN with three hidden layers per-
forms slightly better than that with two hidden layers in terms
of SNR ,, (by 0.2 dB), and better than that with a single hidden
layer (by 1.1 dB).

B. Dereverberation

We first evaluate dereverberation performance in this section.
To mimic room acoustics, we generate a simulated room with
a size of 10 m x 7 m x 3 m (length, width, height) and vary
reflection coefficients to yield a specific Ty [5]. For each Tgy

condition, we simulate a set of RIRs by uniformly and randomly
positioning a sound source and a receiver in the room, the dis-
tance between which is controlled to be greater than 0.5 m to
avoid close-talking scenarios. To train the system, we use three
reverberation times of 0.3, 0.6, and 0.9 s, and for each Ty we
generate 2 different RIRs. We use 200 anechoic female utter-
ances from the IEEE corpus [12] to form the training set. There-
fore, there are 200 x 3 x 2 = 1200 reverberant sentences in the
training set. The test set includes 60 reverberant sentences, cor-
responding to 20 speech utterances, three Tyys, and one RIR. We
also construct a development set including 10 utterances mixed
with three RIRs with the three Tggs for cross validation in order
to choose the parameters of the neural network. All the utter-
ances in the IEEE corpus are from one female speaker. There is
no overlap in the utterances and RIRs used in the training, de-
velopment, and test sets.

We compare the proposed approach with two dereverbera-
tion algorithms. Hazrati et al.[7] recently proposed a derever-
beration approach, utilizing a variance-based feature from the
reverberant signal and comparing its value against an adaptive
threshold to compute a binary mask for dereverberation. Wu and
Wang [41] used estimated inverse filters and spectral subtraction
to attenuate early reverberation and late reverberation, respec-
tively. We also perform dereverberation using the IBM with the
relative criterion —5 dB suggested in [32]. Since the IBM is gen-
erated from the anechoic speech against the reverberant speech,
the results can be considered as a ceiling performance of binary
masking systems.

In Fig. 3, we show the evaluation results in terms of fre-
quency-weighted SNR, STOI, and PESQ, as well as those of
the comparison systems. For SNR ,, results shown in Fig. 3(a),
without iterative reconstruction post-processing, the DNN
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Fig. 3. DNN based dereverberation results: (a) SNR .., (b) STOL (c) PESQ. “Unproc” denotes the results for unprocessed reverberant speech. ‘Hazrati et al.”
and “Wu-Wang” denote two baselines as described. “IBM” denotes the dereverberation results using the IBM. “DNN” denotes the proposed spectral mapping
approach using reverberant phase without post-processing. “DNN-post” denotes the proposed spectral mapping approach with iterative signal reconstruction.

based approach improves SNR,, relative to the unprocessed
reverberant speech by 4 dB on average. The post-processing
further boosts SNR 7., by around 1 dB. Comparing with Hazrati
et al. and Wu and Wang, our DNN based methods achieve
the highest SNR,, scores. In addition, the proposed approach
even generates better results than the IBM based approach.
Consistent with SNRy,,, Fig. 3(b) shows that the proposed
methods yield high STOI scores under each reverberation time,
higher than the unprocessed and the other two approaches by
more than 0.25. As shown in Fig. 3(c), the proposed approach
does not boost PESQ scores for the conditions of Ty < 0.6 s,
partly because mild reverberation does not lead to significant
sound quality degradation. When the reverberation time is long,
the PESQ score is boosted by our approach as shown in the
condition of Tgg = 0.9 s.

Since our approach is a supervised learning method, it is
important to evaluate its generalizability. We generate another
set of RIRs with Ty from 0.2 to 1.0 s, with the increment of
0.1 s. Note that, none of RIRs in this experiment are seen in
the training set as they are created from different rooms. We
compare unprocessed signals with our DNN based approach
without post-processing. Fig. 4 shows the generalization results
of SNRy,, for different T59s. Compared with the unpro-
cessed reverberant speech, the proposed approach substantially
improves SNRf,, in each Tgy and the advantage becomes
increasingly larger as Tgy increases, demonstrating that our
approach generalizes well to new reverberant environments in
a wide range. Fig. 4 also shows the DNN processed results for
anechoic speech, corresponding to Ty = 0 s in the figure.

To further evaluate generalization of our approach, we con-
duct a cross-corpora experiment, i.e., we directly evaluate the
system on the TIMIT corpus [44] without retraining. We ran-
domly choose ten utterances from ten different female speakers
(one utterance from one speaker) from the TIMIT corpus and
generate reverberant signals using the same three RIRs used as
in the above experiments. Fig. 5 shows the comparison results.
As shown in the figure, although the DNN model is trained on
the IEEE corpus with only one speaker, it generalizes well to an-
other corpus with multiple speakers. The relative improvements
are smaller, but our supervised learning based approach with
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Z
xc 6
Z
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4
3
2

0 020304050607 080910

Fig. 4. Generalization results in different T5q s. “DNN” denotes the DNN
based spectral mapping approach without post-processing, and “Unprocessed”
the results for original reverberant speech.

no retraining outperforms other approaches in terms of PESQ,
SNR ., and STOI.

Although mild to moderate reverberation does not signifi-
cantly impact speech perception for normal hearing listeners,
an adverse effect occurs when reverberation is severe [32]. We
have also conducted dereverberation experiments for strong
reverberation conditions, when T is greater than 1.0s. Similar
to the above experiment, we use the same utterances to generate
reverberant sentences with T setto 1.2's, 1.5s, and 1.8 s. The
training and test sets use different utterances and different RIRs.
Experimental results are shown in Fig. 6. Comparing with un-
processed sentences, the DNN based methods improve SNR ¢,
and STOI scores. Note that, unlike moderate reverberation
conditions as shown in Fig. 3, PESQ scores are boosted in each
reverberation time as shown in Fig. 6(c). In these conditions,
the post-processing achieves consistently better performance
for each metric.

The above experiments use simulated RIRs to generate rever-
berant signals. We now evaluate using recorded RIRs [11]. The
RIRs were captured in real rooms with sound sources placed on
the frontal azimuthal plane at different angles. Since the record-
ings consist of binaural RIRs, we choose (arbitrarily) the RIRs
from the left ear to generate reverberant signals. We choose the
RIRs in a medium-large sized seminar and presentation room
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Fig. 5. Cross-corpora dereverberation results. The DNN model is trained on the IEEE corpus, but tested on the TIMIT corpus: (a) SNR ., (b) STOI, (c) PESQ.

See Fig. 3 caption for notations.
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Fig. 7. DNN based dereverberation results using recorded RIRs: (a) SNR .., (b) STOI, (c) PESQ. RIR 1 corresponds to the azimuth angle of —10°, and RIR 2

the azimuth angle of 30°.

with 759 = 0.89 s. We train the system using five RIRs with az-
imuth angles of —40°, —20°,0°, 20°, and 40° and test using two
RIRs with azimuth angles of —10° and 30°. As shown in Fig. 7,
the DNN based approach boosts SNR ¢, by more than 5 dB,
STOI by around 0.3, and PESQ by 0.2. The post-processing step
produces further improvements.

C. Dereverberation and Denoising

Our approach can deal with not only reverberation but also
background noise. We can use the same supervised approach to
perform dereverberation and denoising simultaneously. In this
situation, the input to the neural network is the log magnitude

spectrogram of reverberant and noisy speech, and the output is
the log magnitude spectrogram of anechoic clean speech.

We conduct experiments for dereverberation and denoising.
We generate a simulated room corresponding to a specific Ty
and randomly create a set, {rr, r7, ras}, representing the loca-
tions of the target, the interference and the microphone inside
the room, respectively [14]. From these locations, a reverberant
mixture (t) is constructed by

r(t) = hr(t) * s(t) + ahr(t) * n(t) ™

where, hp(¢t) and hy(t) are the RIR of the target and the inter-
ference at the microphone location, respectively. “*” denotes
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signal reconstruction processing. “IBM” denotes the results using the IBM.
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Fig. 9. SNRy,,s for new noises:: (a) white noise, (b) cocktail-party noise, (c) crowd noise in playground.

convolution. We use « as a coefficient to control the SNR of the
mixture.

We simulate three acoustic rooms and their Tgs are 0.3, 0.6,
and 0.9 s, respectively. The training set contains reverberant
mixtures including 200 utterances convolved with 3 RIRs and
mixed with 3 noise types: speech-shaped noise, factory noise
and babble noise [16] at 0 dB SNR. Here, the SNR is computed
as the ratio of the energy of the reverberant noise-free signal
to that of the reverberant noise-only signal. To test the system,
60 new reverberant utterances are mixed with the three training
noises and three new noises, white noise, cocktail party noise,
and crowd noise in playground [10], under each Ty but using
different RIRs.

Fig. 8 and Fig. 9 show SNR,, results for seen noises and new
noises, respectively. The DNN based method increases SNR y,,
by 4.5 dB for seen noises and post-processing further yields
0.5 dB improvement. The proposed methods also achieve sig-
nificant improvement for new noises, and the average advan-
tage is around 3 dB, showing good generalization of the pro-
posed approach. As a benchmark, we also apply the IBM for
dereveberationa and denoising for seen noises, where the target
in the IBM is the anechoic clean speech and the masker is the
remaining signal. As shown in Fig. 8, the DNN based results are
lower than the IBM results by around 0.5 dB on average, as the
IBM utilizes ideal information.

STOI scores are shown in Fig. 10 and Fig. 11, and DNN and
DNN with post-processing have similar performances. On av-

erage, both increase STOI scores by around 0.15 for seen noises
and 0.13 for new noises. As expected, the IBM scores are the
highest.

As shown in Fig. 12 and Fig. 13, PESQ results are improved
by the proposed approach for both seen noises and new noises.
For seen noises, the average PESQ scores for unprocessed,
DNN, and DNN with post-processing sentences are 1.06, 1.31,
1.45, respectively. IBM processing leads to lower PESQ scores.
For unseen noises, they are 1.13, 1.14, 1.21, respectively.
These results demonstrate that the proposed approach improves
speech quality when speech is corrupted by both noise and
reverberation.

D. Robust Speech Recognition

The above evaluations show that our DNN based spectral
mapping significantly attenuates reverberation and noise and
produces good estimates of magnitude spectrogram of clean
speech. As ASR algorithms only utilize magnitude spectrogram,
one would expect our approach to improve ASR performance in
reverberant and noisy conditions.

In this evaluation, we use the second CHiME challenge
corpus (track 2) to evaluate ASR performance [36]. In the
CHiME-2 corpus, the utterances are taken from the speaker-in-
dependent 5k vocabulary subset of the Wall Street Journal
(WSJO0) corpus. Each utterance is convolved with one recorded
binaural room impulse response corresponding to a front
position at a distance of 2 m, and then mixed with binaural



HAN et al.: LEARNING SPECTRAL MAPPING FOR SPEECH DEREVERBERATION AND DENOISING

0.8}

0.6

STOI

041

0.2F

0.8

0.6

STOI

0.4

0.2

PESQ

0.5}

PESQ

0.5

recordings of real room noise over a period of days in the same
family living room at 6 SNRs of —6, —3, 0, 3, 6, 9 dB. Since

989

' -U;1 roc -Ur'1 roc : -Url1 roc
[ DNN I DNN [ DNN
[=IDNN-post [=IDNN-post [=ZIDNN-post
CJIBM 1 08} CJIBM 1 08f - CIBM 1
_ 06} _ 06}
(@] O
o o
0.4+ 0.4}
0.2} 02}
f f u 0 f f f 0 f f f
0.3 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9
T60 T60 TGO
(@ (b) ©
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Fig. 13. PESQ scores for new noises:: (a) white noise, (b) cocktail-party noise, (c) crowd noise in playground.

our study focuses on monaural speech processing, only single
channel signals (left ear) are used.
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Fig. 14. Diagram of an ASR system with a DNN based front-end for dereverberation and denoising.

To perform ASR, the proposed approach is treated as a
front-end to enhance all sentences in both training and test
datasets as shown in Fig. 14. We first randomly choose 3000
out of 7138 sentences from the CHIME-2 training set to train
our DNN based dereverberation and denoising model. With
the trained DNN model, we perform dereverberation and
denoising for all 7138 sentences in the CHIME-2 training set,
409 sentences in the development set and 330 sentences in the
test datasets, and resynthesize time-domain signals to construct
new training and test datasets. No post-processing is used in
this experiment. We then train ASR models using the new
training set, and test the ASR models using the new test set.
The baselines are ASR models trained and tested using original
sentences including both clean and reverberant noisy sentences
in the CHiME-2 corpus.

We use the Kaldi toolkit [28] to train two ASR systems, using
original sentences and processed sentences, respectively. The
first ASR system is a standard GMM-HMM based system using
MFCC features with triphone three-state models. Speaker adap-
tive training [1] is performed during the training stage. The
second is a hybrid ASR system, which uses alignments achieved
from the GMM-HMM system and then trains DNNs with Mel-
frequency filter bank features. This training scheme is motivated
by [35], which achieves excellent performance on the CHiME-2
corpus. Sequence training [18] is also incorporated into this
system. All the baseline systems are trained on multiple rever-
berant and noisy conditions.

We evaluate ASR performance in terms of word error rates
(WERs). As shown in Fig. 15, for both GMM and hybrid ASR
systems, the systems trained on processed sentences achieve
lower WERs than those trained on original sentences across
all SNR conditions. DNN based dereverberation and denoising
considerably boost ASR performance in low SNRs, where the
improvements are 11.7% (absolute) for the GMM system and
3.3% for the hybrid system in —6 dB SNR. The advantage grad-
ually decreases as the SNR increases, partly because the perfor-
mance decrement caused by reverberation and noise becomes
smaller. On average, the improvements from original sentences
are 9.5% for the GMM system and 2.0% for the hybrid system,
demonstrating that our approach can be used as a front-end to
improve ASR performance. We mention that these ASR exper-
iments aim to show the promise of DNN based dereverberation
and denoising rather than reach the state-of-the-art results (see

[25]).

V. DISCUSSION AND CONCLUSION

We have proposed a supervised learning approach to per-
form dereverberation and denoising. A DNN is trained to
learn a spectral mapping between corrupted speech and clean
speech. Our approach extends that in [6], where pretraining

Feature extraction ASR system Word
(GMM-DNN) sequences
0.7 : : ;
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[ Original / Hybrid
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Fig. 15. ASR results. “Original / GMM” and “Processed / GMM” denote the
results for the GMM-HMM systems using original sentences and processed sen-
tences, respectively. “Original / Hybrid” and “Processed / Hybrid” denote the
results for the hybrid systems using original sentences and processed sentences,
respectively.

is performed using a stack of restricted Boltzmann machines
(RBMs) and a DNN is used to learn the spectral mapping in
the cochleagram domain for dereverberation only. This study
trains a DNN without RBM pretraining. Furthermore, the DNN
here is trained to learn the spectrogram mapping to address
dereverberation and denoising together. Although the cochle-
gram mapping slightly outperforms the spectrogram mapping
for dereverberation in [6], it does not yield better results under
reverberant and noisy conditions. To our knowledge, aside
from pitch-based studies for separating reverberant voiced
speech [30], [15], no study addresses both dereverebration and
denoising through supervised learning. In addition, the present
study employs iterative reconstruction to improve the DNN
outputs and produces better resynthesized speech.

In this study, the feature is a concatenation of spectral fea-
tures in a window, because temporal dynamics provides rich
information for speech. A more fundamental approach to uti-
lize temporal information would use a recurrent neural network
(RNN), which is a natural extension of a feedforward network.
An RNN aims to capture long-term temporal dynamics using
time-delayed self-connections and is trained sequentially. We
have trained RNN models for spectral mapping, and yielded
around 0.2 dB improvement in terms of SNR ;,,. Although this
improvement is not significant, it is worth exploring RNNs in
future work, for example, long short-term memory (LSTM) [9].

In our experiments, we train the DNN model using the [EEE
corpus, which includes only one female speaker. In order to
test generalizability, we have also conducted a cross-corpus ex-
periment using the TIMIT corpus, where multiple speakers are
contained in the test dataset. Our approach achieved similar
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performance as that with the IEEE corpus. We have also con-
ducted experiments where both training and test utterances are
from TIMIT male speakers, and achieved the similar perfor-
mance as female speakers. In addition, in our ASR experiments
in Section IV-D using the CHiME-2 corpus training and testing
were conducted in a speaker-independent manner, showing that
our approach is robust to different speakers.

It is worth mentioning that we have trained a DNN based
mapping on the cochleagram using the gammatone filterbank
[38]. In this case, an element of an input vector corresponds
to the log energy of each T-F unit of corrupted speech, while
that of an output vector corresponds to the log energy of each
T-F unit of clean speech. The DNN based cochleagram mapping
also produces accurate cochleagram estimates, and the results
are comparable with the spectrogram mapping.

In our ASR experiments, we resynthesize time-domain sig-
nals from DNN outputs and then perform speech recognition
based on processed signals. According to our experiments,
although the iterative signal reconstruction improves predicted
speech intelligibility and quality scores, it does not lead to
significant improvement for ASR performance. Comparing
Fig. 2(c) with Fig. 2(e), the DNN output is still better than the
spectrogram of the reconstructed signal, suggesting that we
may extract MFCC or Mel filterbank features directly from the
DNN output without resynthesis. As the DNN output is a better
spectral representation than the spectrogram of resynthesized
signals, it can be expected to yield better ASR performance.
This should be explored in future work.

In summary, we have proposed to use DNNSs to learn a spec-
tral mapping from corrupted speech to clean speech for dere-
verberation, and dereverberation plus denoising. To our knowl-
edge, this is the first study employing supervised learning to
address the problem of speech dereverberation. Conceptually
simple, our supervised learning approach significantly improves
dereverberation, as well as denoising, performance in terms of
predicted speech intelligibility and quality scores, and boosts
ASR results in a range of reverberant and noisy conditions.
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