
LEARNING SPECTRAL MAPPING FOR SPEECH DEREVERBERATION

Kun Han, Yuxuan Wang, DeLiang Wang

Department of Computer Science and Engineering
& Center for Cognitive and Brain Sciences

The Ohio State University
Columbus, OH 43210-1277, USA

{hank,wangyuxu,dwang}@cse.ohio-state.edu

ABSTRACT
Reverberation distorts human speech and usually has nega-
tive effects on speech intelligibility, especially for hearing-
impaired listeners. It also causes performance degradation in
automatic speech recognition and speaker identification sys-
tems. Therefore, the dereverberation problem must be dealt
with in daily listening environments. We propose to use deep
neural networks (DNNs) to learn a spectral mapping from
the reverberant speech to the anechoic speech. The trained
DNN produces the estimated spectral representation of the
corresponding anechoic speech. We demonstrate that dis-
tortion caused by reverberation is substantially attenuated by
the DNN whose outputs can be resynthesized to the derever-
ebrated speech signal. The proposed approach is simple, and
our systematic evaluation shows promising dereverberation
results, which are significantly better than those of related
systems.

Index Terms— Speech Dereverberation, Deep Neural
Networks, Spectral Mapping

1. INTRODUCTION

In real-world environments, the sound reaching the ears com-
prises the original source (direct sound) and its reflections
from various surfaces. These attenuated, time-delayed re-
flections of the original sound combine to form a reverberant
signal. In reverberant environments, speech intelligibility is
degraded substantially for hearing impaired listeners [6], and
normal hearing listeners when reverberation is severe [13].
Reverberation also causes significant performance degrada-
tion in automatic speech recognition (ASR) [5] and speaker
identification (SID) systems [15]. Given the prevalence of
reverberation, a solution to the dereverberation problem will
benefit many speech technology applications.

Reverberation corresponds to a convolution of the direct
sound and the room impulse response (RIR), which distorts

This research was supported in part by an AFOSR grant (FA9550-12-
1-0130), an NIDCD grant (R01 DC012048), and the Ohio Supercomputer
Center.

the spectrum of speech in both time and frequency domains.
Thus, dereverberation may be treated as inverse filtering. The
magnitude relationship between an anechoic signal and its re-
verberant version is relatively consistent in different reverber-
ant conditions, especially within the same room. This rela-
tionship inspires us to utilize supervised learning to model the
characteristics of the reverberation process. In other words,
we propose to “learn” an inverse filter, or learn the mapping
from the reverberant speech to its anechoic version. The map-
per can be trained where the input is the spectral representa-
tion of the reverberant speech and the desired ouput is that of
the anechoic speech.

Deep neural networks (DNNs) have shown strong learn-
ing capacity [4]. Stacked denoising autoencoder (SDA) [16]
is a deep learning approach, and it is trained to reconstruct the
raw clean data using the noisy data, where hidden layer acti-
vations are used as learned features. Although the primary
goal of SDAs is to improve generalization, the idea motivated
us to utilize DNNs to learn the mapping from the corrupted
data to clean data. A recent study [18] used DNNs to denoise
acoustic features in each time-frequency unit for speech sepa-
ration. Our approach, on the other hand, deals with reverber-
ant speech and the mapping is directly based on frame-level
spectral features.

In the next section, we discussed related speech derever-
beration studies. We then describe our approach in detail in
Section 3. The experimental results are shown in Section 4.
We conclude our study in the last section.

2. RELATION TO PRIORWORK

Many previous approaches have been proposed to deal with
speech dereverberation [10]. Inverse filtering is one of the
commonly used techniques [9]. Since the reverberation ef-
fect can be described as a convolution of clean speech with
room impulse response, the inverse filtering based approach
first needs an inverse filter that reverses the effects of the room
response, and then estimates the anechoic signal by convolv-
ing the reverberant signal with the inverse filter. However,
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in many situations, the inverse filter cannot be determined
directly and must be estimated, which is not a trivial prob-
lem. Further, this approach assumes that the RIR function is a
minimum-phase function that is often not satisfied in practice
[11]. Wu andWang [20] utilized a two-stage approach includ-
ing inverse filtering and spectral subtraction to deal with early
reverberation and late reverberation separately, which relies
on accurate estimate of the inverse filter in one microphone
scenario. Some other studies dealt with dereverbration by ex-
ploiting the properties of speech such as modulation spectrum
[1], harmonic structure [19], etc.

Recent studies show that the ideal binary mask (IBM) can
be extended to suppress reverberation and have been proven
to improve speech intelligibility [6, 12, 13]. The IBM based
approaches treat the direct sound or direct sound plus the early
reflections as the target and the rest as the masker, and the
dreverberated signals are resynthesized from the binary mask.
Therefore, the IBM can be considered as a computational goal
for dereverberation. Hazrati et al. [3] proposed to estimate a
binary mask based on a single variance-based feature against
an adaptive threshold and yielded intelligibility improvements
for hearing impaired listeners.

3. ALGORITHM DESCRIPTION

3.1. Spectral features

An input signal s(t) is first passed through a 64-channel gam-
matone filterbank spanning from 80 Hz to 5000 Hz. The re-
sponse of each filter channel is then divided into 20-ms time
frames with 10-ms frame shift, forming a cochleagram [17].
We use X(m, c) to denote the energy in the time-frequency
(T-F) unit for frequency channel c and time framem. There-
fore, in the cochleagram domain, each frame can be repre-
sented as a vector x(m):

x(m) = [X(m, 1), X(m, 2), . . . , X(m, 64)]T (1)

Spectral feature mapping is based on the cochleagram in each
frame x(m). Since room reverberation leads to characteristic
temporal variations of the direct signal, we will include the
spectral features of neighboring frames into a feature vector
for training. Therefore, the input feature vector for the DNN
feature mapping is:

x̃(m) = [x(m− d), . . . ,x(m), . . . ,x(m+ d)]T (2)

where d denotes the number of neighboring frames in each
side and is set to 5 in this study. So the dimensionality of
the input is 64 × 11 = 704. Note that, although the rever-
berant distortion is primarily caused by previous signal in the
time domain, the signal after the current frame provides use-
ful information for the spectral mapping. We have conducted
preliminary experiments using only the previous neighboring
frames, but the performance is not as accurate as that of using
the frames in both sides.

The desired output of the neural network is the cochlea-
gram of clean speech in the current frame m, denoted by a
64-dimensional vector y(m), whose elements correspond to
the energies in T-F units.

3.2. DNN based spectral mapping

The DNN in this study includes three hidden layers, as shown
in Fig. 1. The input for each training sample is the cochlea-
gram in a window of 11 frames, corresponding to 704 input
units, and the output is the cochleagram in the current frame,
corresponding to 64 output units. Each hidden layer includes
1024 hidden units. The parameters of the number of hidden
layers and hidden units are chosen from a development set.

Hidden layer 1

Output layer

Input layer

Hidden layer 2

Reverberant
speech

Anechoic
speech

Hidden layer 3

Fig. 1: Structure of the DNN for dereverberation.

We first pre-train a DNN using a stack of restricted Boltz-
mann machines (RBM) in an unsupervised fashion [4]. The
RBM is a generative model and is trained to maximize the
likelihood of the input data distribution. The resulting weights
are then finetuned by the backpropagation algorithm. We
also tried to turn off the RBM pre-training and the results are
slightly worse than with pre-training.

The objective function for the backpropagation is based
on the mean square error. In addition, we found that we
achieve the best performance when using two regularization
terms into the objective function. The first regularization is
the sparsity of the units in the last hidden layer [7]. We regu-
larize the mean hidden activations to be a small positive num-
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ber using Kullback-Leibler (KL) divergence:

KL(ρ̂||ρ) =
∑

k

ρ log
ρ

ρ̂
+ (1− ρ) log

1− ρ

1− ρ̂
(3)

where k indexes hidden units, ρ and ρ̂ are the expected and
the actual mean hidden activation levels, respectively. ρ is set
to 0.1 in this study.

Another regularization term is the L2 norm of the weights
||w||2. Therefore, the final objective function is:

L(y,x;w) =
1

2
||y−f(x;w)||22+α||w||22+βKL(ρ̂||ρ) (4)

where y and x are the desired output and input of the DNN,
respectively. f(·) denotes the nonlinear mapping defined by
the weightsw of the neural network. α and β are the regular-
ization parameters chosen from a development set.

The output of the DNN is the estimated cochleagram of
the corresponding anechoic speech. With the capacity of
learning internal representations, DNN promises to be able
to encode the spectral transformation and help to restore the
cochleagram of anechoic speech.

Fig. 2 shows an example of the cochleagram mapping for
a female sentence “A man in a blue sweater sat at the desk”.
Figs. 2(a) and (b) show the cochleagram of the reverberant
speech with reberberation time T60 = 0.9 s and the corre-
sponding DNN outputs. As shown in Fig. 2 (b), the smearing
energy caused by reverberation is largely removed or attenu-
ated, and the boundaries between voiced and unvoiced frames
are restored. The DNN output is a very good estimate of the
cochleagram of the anechoic speech, which is shown in Fig.
2(c).

With the estimated cochleagram, it is straightforward to
compute a ratio mask for each T-F unit:

M(m, c) =
Eout(m, c)

Erev(m, c)
(5)

where, Eout and Erev are the DNN outputs and the energy
of T-F unit in the reverberant speech, respectively. The dere-
verberated time-domain signal is then resynthesized using the
mask in Eq. (5) and the original reverberant signal [17].

It is worth mentioning that we have attempted to train a
DNN on the spectrogram based on short-time Fourier trans-
formation. The DNN also outputs accurate spectrogram esti-
mates. However, the speech quality of the resynthesized time-
domain signal is not as good as using the cochleagram map-
ping, partly due to the low resolution in the low frequency
range in the spectrogram. We will compare the evaluation re-
sults for the spectrogram and the cochleagram mappings in
the next section.

4. EXPERIMENTS

We evaluate our approach in this section. To simulate room
acoustics, we generate a simulated room corresponding to
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(a) Cochleagram of the reverberant speech
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(b) DNN outputs

Time (s)

 

 

Fr
eq

ue
nc

y 
(H

z)

0.5 1 1.5 2 2.5 3
50

363

1246

3255

8000

(c) Cochleagram of the anechoic speech

Fig. 2: DNN dereverberation results. (a) Cochleagram of a
reverberant speech. (b) DNN outputs. (c) Cochleagram of the
corresponding anechoic speech.

a specific T60 [2] and randomly create a set of room im-
pulse responses (RIRs) under this T60 condition. To train the
system, we generate three reverberation times ranging from
0.3, 0.6, and 0.9 s, and for each T60 we generate 2 differ-
ent RIRs. We use 200 anechoic utterances from the IEEE
corpus [14] to generate the training set. Therefore, there are
200× 3× 2 = 1200 reverberant sentences in the training set.
The test set includes 60 reverberant sentences, corresponding
to 20 speech utterances, three T60s, and one RIR. Neither of
the utterances nor RIRs are used in the training set.

We quantitatively evaluate the dereverberation results by
an objective measurements: frequency-weighted segmental
speech-to-reverberation ratio (SRRfw), which is a speech in-
telligibility indicator [8], computing signal-to-reverberation
estimations for each critical band:

SRRfw =
10

M

M∑

m=1

∑K
k=1 W (k) log10

|S(m,k)|2

|S(m,k)−Ŝ(m,k)|∑K
k=1 W (k)

(6)
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whereW (k) is the weight placed on the kth frequency band,
K is the number of bands, M is the total number of frames
in the signal, S(m, k) is the critical-band magnitude of the
clean signal in the kth frequency band at the mth frame, and
Ŝ(m, k) is the corresponding spectral magnitude of the en-
hanced signal in the same band.

We compare the proposed approach with three baselines.
Hazrati et al.[3] proposed a state-of-the-art dereverberation
approach, utilizing a single variance-based feature from the
reverberant signal and comparing its value against an adaptive
threshold to compute a binary mask for dereverberation. Wu
and Wang[20] used estimated inverse filters and speech sub-
traction to attenuate early reverberation and late reverberation
separately. We also perform dereverberation using the IBM
with the relative criterion −5 dB suggested by [13]. Since
the IBM is generated from the anechoic speech against the
reverberant speech, the results can be considered as a ceiling
performance of the binary mask based systems. In Fig. 3, we
show the results for both the spectrogram mapping and the
cochleagram mapping. Both methods improve SRRfw rel-
ative to the unprocessed reverberant speech by more than 2
dB. The cochleagram based mapping achieves higher SRRfw

than the spectrogrammapping under all T60 conditions. Com-
pared with other approaches, our spectral mapping based ap-
proaches achieve the best performances in all reverberant con-
ditions.
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Fig. 3: SRRfw comparisons. “Unprocess” denotes
the SRRfw results for unprocessed reverberant speech.
“SpecMap” and “CochMap” denote the proposed spec-
tral mapping approach using spectrogram and cochleagram,
repectively. “Hazrati et al.”, “Wu-Wang”, and “IBM” denote
three baselines as described.

Since our approach is a supervised learning method, it
is important to explore its generalizability. We generate an-

other set of RIRs with T60 from 0.2 to 1.0 s, with a step of
0.1 s. Note that, none of RIRs in this experiment are seen
in the training set because they are created from different
rooms. Fig. 4 shows the generalization results for different
T60s. Compared with the unprocessed reverberant speech, the
proposed approach substantially boosts SRRfw in each T60s
and the advantage is increasingly larger as the T60 increases,
demonstrating that our approach generalizes well to new re-
verberant environments in a certain range. We also show the
DNN processed results for the anechoic speech, correspond-
ing to T60 = 0 s in the figure.

In addition, we point out that we have trained speaker-
independent models use the TIMIT database [21] and tested
on new speakers. Although limited space does not permit
detail results, our approach achieves similar performances to
the IEEE database, suggesting that the spectral mapping ap-
proach is robust to new speakers.
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Fig. 4: Generalization results in different T60 . “Proposed”
denotes the cochleagram mapping approach, and “Unpro-
cessed” the results for original reverberant speech.

5. CONCLUSION

In this paper, we have proposed to use DNNs to learn the
spectral mapping from the reverberant speech to the anechoic
speech for dereverberation. This novel approach is simple and
yet effective. Our supervised learning approach significantly
boosts dereverberation performance in a range of reverberant
conditions.

Although this paper focuses on the dereverberation prob-
lem, the proposed spectral mapping approach can be extended
to handle combined dereverberation and denoising. This will
be discussed elsewhere in the future.
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