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ABSTRACT 

 
Detecting pitch values for singing voice in the presence of music 
accompaniment is challenging but useful for many applications.  
We propose a trend estimation algorithm to detect the pitch ranges 
of a singing voice in each time frame. The detected trend 
substantially reduces the difficulty of singing pitch detection by 
reducing a large number of wrong pitch candidates either produced 
by musical instruments or the overtones of the singing voice. The 
proposed algorithm can be applied to improve the performance of 
singing pitch detection. Quantitative evaluations show that 
proposed trend estimation improves an existing algorithm 
significantly. The results from the MIREX 2010 competition show 
that our system achieves the best overall raw-pitch accuracy for 
vocal songs. 
 

Index Terms— Singing pitch detection, pitch range 
estimation, music. 
 

1. INTRODUCTION 
 
Pitch determination for singing voice is a fundamental problem as 
the pitch contour of singing voice represents the melody of a song 
[1]. A robust singing pitch detection algorithm is useful for many 
applications, such as singing voice separation, music retrieval, 
singer identification, lyric recognition, and auto-tagging. 
Designing such an algorithm is challenging due to interfering pitch 
of music accompaniments. 

Numerous methods have been proposed to extract the melody 
of a song, as evidenced by many submissions to the audio melody 
extraction competition in MIREX 2005~2010 1 .  Most of the 
submissions have a similar framework. First, they identify pitch 
candidates by estimating pitch values of different sound sources 
for every time frame. After that, they select one of the pitch 
candidates as the target pitch. Finally the output pitch track is 
formed by connecting the target pitches with some post processing 
techniques (e.g., smoothing). 

Another approach is to perform pitch detection after 
separating/enhancing the singing voice of the input mixture (e.g., 
[2][3]). The performance of the separation-based methods heavily 

                                                 
1 The extended abstracts of the submissions can be found at 
http://www.music-ir.org/mirex/ 

relies on the result of voice separation. These methods detect 
singing pitches in some plausible pitch ranges which are chosen 
heuristically. The pitch ranges are usually large to cover most of 
the possible pitches of singing voice such as from 80 Hz to 800 Hz. 
However, it is unlikely that pitch changes in such a wide range in a 
short period of time. Furthermore, the upper pitch boundary of 
singing can be as high as 1400 Hz for soprano singers. It is 
difficult to give an appropriate pitch range if no prior knowledge is 
given for an input song. 

To address the above problems, we propose a trend estimation 
algorithm extended from our previous work [4]. The advantages of 
adopting trend estimation are: 1) Appropriate pitch ranges of 
singing voice are estimated from the input instead of using a fixed 
range; 2) the trend is estimated dynamically so that it is able to fit 
the pitch trajectory of the corresponding singing voice; 3) it can be 
easily applied to improving singing pitch detection of existing 
systems by using a tighter pitch range for a given time frame. 

The rest of this paper is organized as follows. Section 2 
describes the proposed system in detail. The experimental results 
are presented in section 3, and section 4 concludes this work. 

 
2. TREND ESTIMATION 

 
This section describes our trend estimation. Fig. 1 shows a 
schematic diagram of the proposed algorithm. First, singing voice 
is enhanced by considering temporal and spectral smoothness. A 
sinusoidal partial extraction algorithm is then applied to extract the 
frequency slopes of the harmonic sounds. After that, we extract 
features from each partial and use a classifier to detect and prune 
instrumental partials. Finally, we locate vocal fundamental 
frequencies (F0s) in a series of time-frequency (T-F) blocks 
according to the remaining partials after pruning. These T-F blocks 
give pitch ranges along time and are much narrower than that of 
the entire voice pitch range. Comparing to our previous algorithm 
in [4], we add the vocal component enhancement as pre-processing.  
We also improve sinusoidal partial extraction so that the extracted 
partials are more accurate. In addition, a classifier is trained to 
perform instrumental partial detection instead of choosing 
parameter values heuristically. Lastly, we now consider the 
neighbors of selected T-F blocks to improve pitch range estimation. 
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2.1. Vocal Component Enhancement 
 
Our trend estimation starts from a vocal enhancement algorithm 
proposed by Tachibana et al. [3]. They used harmonic/percussive 
sound separation (HPSS) to enhance singing voice in two stages. 
In the first stage, they attenuate the energy of harmonic 
instruments (e.g., guitar and flute). The energy of percussive 
instruments (e.g. drum and cymbal) is further attenuated in the 
second stage. 

In this study, we only apply the first stage of HPSS which 
attenuates the energy of harmonic instruments. The reason is that 
the sounds of percussive instruments are aperiodic and do not 
create much difficulty in estimating the pitch of singing voice. In 
addition, the second stage usually corrupts the singing voice in the 
spectrogram and degrades the performance of our partial extraction 
algorithm. 
 
2.2. Sinusoidal Partial Extraction 
 
This stage extracts sinusoidal partials from a mixture. First, we 
apply the multi-resolution fast Fourier transform (MR-FFT) 
proposed by Dressler [5]. It removes the unreliable peaks that do 
not originate from periodic sounds by considering the local 
characteristics of phase spectrum, or more precisely, the 
instantaneous frequencies of neighboring frequency bins. 

Reliable peaks are then used to form sinusoidal partials. 
Because some peaks in the same time frame may correspond to the 
same sinusoidal component, we first check the instantaneous 
frequencies of the peaks in each time frame. If their instantaneous 
frequencies are close enough, the one with the largest magnitude is 
selected. 

A grouping algorithm is applied after peak selection. The goal 
of the algorithm is to group peaks so that each peak corresponds to 
a partial. It consists of three steps: initial grouping, re-grouping, 
and refining.  
1) Initial grouping: It starts by selecting any ungrouped peak in 

the spectrogram as the first peak in the group and recursively 
groups other peaks neighboring to the group until every peak 
belongs to a group. To choose a peak from the time-
overlapping peaks in a group, we apply a pitch dynamic 
prediction algorithm which finds a least-squares straight line 
fitting to the three most recent peaks and predicts the next 
peak value by extrapolation [6]. The closest peak is selected if 
the difference between it and the previous peak is not larger 
than a semitone. If no peak exists, the group is divided into 
two.  

2) Re-grouping: The objective of this step is to connect the 
partials that are likely to be originated from the same one. We 
first compute the Euclidean distance between each pair of 

groups. Two groups are merged into one if their distance is 
less than 4.5 grid points on the T-F plane and have a time 
overlap not longer than 2 frames. 

3) Refining: Because the re-grouping step introduces time-
overlapping peaks or gaps for a group, this step selects one 
peak from overlapping peaks and fills the gaps for each 
partial. For selecting time-overlapping peaks, the one with the 
largest magnitude is retained. For filling the gaps, values of 
frequency and magnitude are interpolated according to the 
adjacent peaks. 

 
2.3. Instrumental Partial Pruning 
 
This stage considers the natural differences between vocal partials 
and instrumental partials: vibrato and tremolo. Vibrato refers to the 
periodic variation of pitch (or frequency modulation), and tremolo 
refers to the periodic variation of intensity (or amplitude 
modulation). These two features were proposed by Regnier et al. 
[7] and were previously used to detect the presence of singing 
voice. The idea of using these two features comes from the fact 
that human voice naturally contains strong vibrato and tremolo at 
the same time while most of the musical instruments contain only 
one of them [8].  

Two attributes are computed to describe vibrato and tremolo: 
the rate and the extent of vibrato or tremolo. For human singing 
voice, the average rate is around 6Hz for both vibrato and tremolo. 
Hence we determine the relative extent around 6Hz by using the 
Fourier transform for both vibrato and tremolo. 

More specifically, to compute the relative extent of vibrato 
for a partial )(tpk  existing from time it  to jt  , the Fourier 

transform of its frequency values )(tf
kp is given by: 
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Lastly, the relative extent around 6Hz is computed as follows: 
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The relative extent for tremolo can be computed in the same way 
except that amplitude 

kpa  is used instead of 
kpf . 

Different from previous work, we consider partial detection as 
a classification problem. Given feature vectors 

kpkpXX )(  

where ),()(
kk ppk afpX , two Gaussian mixture models 

(GMMs) V  and I  are trained for vocal partials and 
instrumental partials. The vocal/instrumental decision for the 
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Fig. 1.  Schematic diagram of trend estimation. 
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partial kp  can be made by comparing the log-likelihood ratio with 
a threshold : 
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Fig. 2(a) and Fig. 2(b) show examples of partial extraction 

and instrumental partial pruning from a song mixture, respectively. 
As we can see, lots of the instrumental partials are pruned while 
most of the vocal F0 partials are retained. 

2.4. Pitch Range Estimation 
 
The last stage of the trend estimation is to find a sequence of 
relatively tight pitch ranges where the F0s of the singing voice are 
present. 

Harmonic partials are first deleted based on the observation 
that the vocal F0 partial can only be the lowest-frequency partial 
within a frame. This process is repeated until we have only several 
partials representing possible vocal F0 partials. Fig. 2(c) shows an 
example of deleting the harmonic partials from that of Fig. 2(b). 
The rest of the partials represent possible vocal F0 partials of the 
song mixture.  

We then downsample the magnitudes of the partials by 
summing the largest peak values in the frames within a T-F block, 
which is a rectangular area whose vertical side represents a 
frequency range and horizontal side represents a time duration. 
The entire plane is divided into a fixed set of T-F blocks with 50% 
overlap in time and in frequency. Finally, we find an optimal path 
consisting of a sequence of T-F blocks that contain the largest 
downsampled magnitudes by using dynamic programming (DP). 
The above procedure is similar to that in [4]. Fig. 2(d) shows an 
example of a magnitude-downsampled diagram. A color represents 
the energy strength of a T-F block. The solid line indicates the 
optimal path found by DP.  

In this study, we also consider the neighboring T-F blocks 
along the optimal path because they partly overlap in frequency. If 
the strength of the higher frequency neighbor of a T-F block is 
much larger than that of its lower frequency neighbor, the upper 
boundary is extended since most energy is concentrated in the 
higher frequency part, and vice versa. By using this technique, we 
can employ smaller bandwidth T-F blocks to find the optimal path 
and then extend it. This makes the trend estimation algorithm 
capable of locating dominant partials in the first step and then 
extending its boundary to tolerate the possible pitch changes of the 
singing voice. Fig. 2(e) shows the spectrogram of the song mixture 
along with extended boundaries of the estimated trend (dashed 
lines) and ground truth pitch (solid line). As can be seen, the 
estimated trend locates the singing F0s successfully. 

 
3. EVALUATION 

 
We use MIR-1K, a publicly available dataset proposed in our 
previous work [9], to evaluate our trend estimation algorithm. It 
contains 1000 song clips. The duration of each clip ranges from 4 
to 13 seconds, and the total length of the dataset is 133 minutes. 
Music accompaniment and singing voice were recorded at left and 
right channels respectively. The ground truth of the pitch values of 
a singing voice was first estimated from the pure singing voice and 
then manually adjusted. All songs are mixed at -5 dB, 0 dB, and 5 
dB signal to noise ratio (SNR) for evaluation. Note that the signal 
and noise here refer to the singing voice and music accompaniment 
respectively. 
 
3.1. Evaluation of Instrumental Partial Pruning 
 
Two 16-components GMMs are trained for vocal partials and 
instrumental partials, respectively. All GMMs have diagonal 
covariance matrices. Parameters of the GMMs are initialized via a 
K-means clustering algorithm and are iteratively adjusted via an 
expectation-maximization algorithm with 20 iterations. 

 

 

 

 

 
 
Fig. 2. An example of trend estimation. (a) Extracted partials. (b) 
The result of instrumental partial pruning. (c) The result after 
deleting the harmonic partials. (d) Magnitude-downsampled 
diagram. A color indicates the energy strength of a T-F block. The 
solid line indicates the optimal path found by DP. (e) The 
spectrogram of the song mixture. Dashed lines show the extended 
boundaries of the estimated trend and solid lines show the ground 
truth pitch. 
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Fig. 3 shows the DET curves of instrumental partial detection 
by controlling the threshold  in Eq. (4). The goal of this stage is 
to prune as many instrumental partials as possible without deleting 
too many vocal partials so that the trend of singing pitch can be 
estimated robustly. We pick  when the false alarm rate in 
training set is 15%. In this case, at least 57% of instrumental 
partials are pruned at different SNRs while 15% of vocal partials 
are pruned erroneously. As can be seen from the figure, the three 
curves are close to each other. This shows that instrumental 
partials detection and pruning is robust to different amounts of 
background interference. 
 
3.2. Evaluation of Trend Estimation and Singing Pitch 
Detection 
 
The parameters for this experiment are set as follows. The sizes 
along time and frequency axes for each T-F block are 3 seconds 
and 8 semitones, respectively, with 50% overlap. The bandwidth 
of a trend after boundary extension is one octave (12 semitones). 

Table 1 shows the results of trend estimation and singing 
pitch detection where the second and third rows show the 
performance of trend estimation in [4] and our proposed algorithm 
at different SNR levels respectively. A pitch range is considered as 
correct if the ground truth of that frame is within the trend. It can 
be seen that our trend estimation outperforms the previous method, 
especially at low SNR.  

We perform pitch detection by using the dynamic 
programming algorithm proposed in [4]. The fourth and fifth rows 
of Table 1 show the performance of pitch detection with and 
without the proposed trend estimation, respectively. An estimated 
pitch is considered correct if its difference to the ground truth is 
less than 0.5 semitone. As we can see, the performance of pitch 
detection is improved significantly at all three SNR levels. 

We also submitted this algorithm to the MIREX 2010 audio 
melody extraction competition. Fig. 4 shows the results of the last 
two years. Each submission has been tested on six datasets.  The 
first bar shows the result of our system and it achieves the best 
raw-pitch accuracy for vocal songs.  
 

4. CONCLUSIONS 
 
This paper proposes a trend estimation algorithm for singing pitch 
detection in musical recordings, which has been little investigated 
in previous research. Our algorithm decides the pitch range 
without the prior knowledge of input songs and substantially 
improves the performance of pitch detection. This algorithm can 
be adopted by existing singing pitch detection algorithms to 
improve their results. The evaluation results show the proposed 

trend estimation algorithm is robust at different SNRs and perform 
well on different datasets. 
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Fig. 4. The combined results of MIREX 2009 and 2010 for vocal 
songs. The first bar indicates the performance of the proposed 
algorithm. 
 

Table 1. Results of trend estimation and singing pitch detection 
 

 -5 dB 0 dB 5dB 

Trend Estimation in [4] 77.01% 88.91% 93.94% 

Proposed Trend Estimation 88.78% 93.44% 94.42% 

Raw-pitch Accuracy 
(without trend estimation) 53.68% 70.30% 76.94% 

Raw-pitch Accuracy  
(with trend estimation) 69.65% 81.15% 86.79% 

 

Fig. 3. Detection tradeoff curves for instrumental partial detection. 
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