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ABSTRACT:
Real-time operation is critical for noise reduction in hearing technology. The essential requirement of real-time oper-

ation is causality—that an algorithm does not use future time-frame information and, instead, completes its operation

by the end of the current time frame. This requirement is extended currently through the concept of “effectively

causal,” in which future time-frame information within the brief delay tolerance of the human speech-perception

mechanism is used. Effectively causal deep learning was used to separate speech from background noise and

improve intelligibility for hearing-impaired listeners. A single-microphone, gated convolutional recurrent network

was used to perform complex spectral mapping. By estimating both the real and imaginary parts of the noise-free

speech, both the magnitude and phase of the estimated noise-free speech were obtained. The deep neural network

was trained using a large set of noises and tested using complex noises not employed during training. Significant

algorithm benefit was observed in every condition, which was largest for those with the greatest hearing loss.

Allowable delays across different communication settings are reviewed and assessed. The current work demonstrates

that effectively causal deep learning can significantly improve intelligibility for one of the largest populations of

need in challenging conditions involving untrained background noises. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

Two primary challenges associated with implementing

deep learning-based noise reduction into hearing devices

involve (i) generalization to conditions not encountered dur-

ing training and (ii) real-time operation. The current study

provides a demonstration of deep learning-based intelligibil-

ity improvement for hearing-impaired (HI) listeners in the

context of these challenges.

Generalization refers to the ability of a deep learning

algorithm to operate effectively on conditions not encoun-

tered during training. This aspect has formed the focus of a

series of studies (see Healy et al., 2020). One of the greatest

challenges involves the generalization to noises not

employed during training (unseen noises). The challenge

originates from the fact that “noise” varies widely in its

acoustic characteristics, more widely than other sources of

acoustic variability, such as different talkers. But despite the

challenge, advances have been made with regard to improv-

ing intelligibility for HI listeners in these environments. The

progression involved the same noise segments used for both

training and testing (Healy et al., 2013; Healy et al., 2014),

to novel segments of the same noise type (Healy et al.,
2015; Monaghan et al., 2017; Zhao et al., 2018; Keshavarzi

et al., 2019), to entirely novel noise types for training and

testing (Chen et al., 2016).

With regard to real-time operation, the fundamental

requirement is causality—that the algorithm operates on

only past and current time frames and not future time

frames. The other primary aspect of real-time operation

involves the computational complexity of the algorithm

(i.e., the size of the neural network) and the demand that it

places on hardware. But this other aspect is directly related

to the computational power of the system on which it runs,

which is constantly advancing, and so this would represent

no fundamental barrier.

Some work exists to suggest that deep learning noise

reduction can improve intelligibility when implemented as a

causal system. This is particularly true for listeners who use

cochlear implants (CIs). Goehring et al. (2017) employed CI

listeners and a DNN (deep neural network) using no future

time frames and reduced computational complexity to sepa-

rate sentences from noise. Different segments of the same

noise were used for training and testing, and both talker-

dependent (same talker used for training and test) and

talker-independent (different talkers used for training and

test) models were tested. It was found that DNN processing

produced speech-reception threshold improvements for CI

listeners in all but one condition with mean improvements

in those conditions of 1.4–6.4 dB. Goehring et al. (2019)
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also employed DNN-based noise reduction. The challenge

associated with untrained noise was increased by requiring

generalization to a different noise of the same type used for

training (either babble or traffic). The model was also talker

independent. Speech-reception thresholds were significantly

improved in babble (group mean improvement of 3.4 dB)

but not in traffic noise.

The challenge is perhaps somewhat greater when the

largest population of need is considered—those with senso-

rineural hearing loss and who wear hearing aids (referred to

here as HI listeners). This is because HI listeners usually

display better performance in background noise than do CI

listeners. Accordingly, baseline (unprocessed) scores tend to

be higher, and so algorithm benefit can be more elusive.1

Despite this overall challenge, some success has been

observed. Monaghan et al. (2017) employed DNNs using no

future time frames and reduced computational complexity to

separate sentences from speech-shaped noise (SSN) and

babble. Different segments of the same noise were used for

training and testing, and the model was talker dependent.

Significant intelligibility increases for HI listeners were

observed in five of eight conditions. Keshavarzi et al. (2019)

also employed a DNN using no future frames and reduced

computational complexity to separate sentences from multi-

talker babble. Different segments of the same noise were

used for training and testing, and a large set of training talk-

ers was used to produce generalization to untrained talkers.

Although human intelligibility was not reported, HI listeners

expressed slight but statistically significant preferences for

DNN-processed sentences over unprocessed sentences in a

paired-comparison task. Bramsløw et al. (2018) demon-

strated increased intelligibility for HI listeners in a some-

what different task by using a causal and talker-dependent

DNN to separate concurrent talkers (speaker separation,

rather than speech enhancement).

Here, we extend the concept of causality to “effectively

causal.” If the target user is human, then future time-frame

information that is below the threshold for delay detection

or disturbance can be employed with no detriment to the

user but with a possible computational advantage. The

human delay tolerances that define the limits of effectively

causal vary quite widely depending on the communication

setting. Non face-to-face communication allows for rela-

tively large delays. For example, the maximum recom-

mended delay across individuals engaged in voice or video

calls is 150 ms (ITU, 2003).

The delay tolerances for face-to-face communication by

individuals who use hearing technology also vary quite

widely. For those who use a CI, auditory-visual synchrony

is typically assumed to dictate tolerable delay. There exists

a window over which humans perceive auditory and visual

information to be synchronous, despite physical delays in

one modality relative to the other. These audiovisual syn-

chrony detection thresholds for speech by normal-hearing

(NH) individuals are typically in the range of 200 ms (for

auditory delayed relative to visual). Thresholds are approxi-

mately the same for CI users, causing the tolerable delay for

typical CI users to be on the order of 200–250 ms (Hay-

McCutcheon et al., 2009).

The delay tolerance is lower for individuals who use

hearing aids. This is because in addition to auditory-visual

synchrony, both speech perception and speech production

need to be considered, and the auditory transmission route

during these activities can include both air conduction and

bone conduction. When these various factors are all consid-

ered, delay tolerances of only 20–30 ms are obtained (Stone

and Moore, 1999; 2005; Goehring et al., 2018). This value

of 20 ms represents one of the smallest tolerable human

communication delays and is used currently to define effec-

tively causal. The various issues surrounding human delay

tolerances are further discussed in Sec. IV.

In the current study, deep learning was used to segre-

gate sentences from noise. The primary contributions

involve the observation of improved intelligibility for HI lis-

teners in all conditions in the context of an effectively causal

system, which operates on entirely untrained noises. A new

neural network—a gated convolutional recurrent network

(GCRN) was employed. The GCRN was trained using sen-

tences from the Institute of Electrical and Electronics

Engineers (IEEE) corpus mixed with 10 000 different

noises. The training signal-to-noise ratios (SNRs) did not

fully encompass the test SNRs. The model was talker depen-

dent to restrict the generalization challenge to untrained

noises. The test noises were both spectro-temporally com-

plex and consisted of a variety of sound sources (multitalker

babble and cafeteria noise). Complex mapping was also

employed in which the GCRN was used to estimate both the

real and imaginary components of the noise-free speech

from those of the noisy speech. Using this complex-domain

representation, both the magnitude and phase of the noise-

free speech signal were estimated. This approach contrasts

with that of most other deep learning speech enhancement

studies in which only the magnitude of the noise-free speech

is estimated and then combined with the phase from the

original noisy signal (“noisy phase”) to construct the

enhanced/noise-reduced speech signal. Typical HI listeners

were tested, and significant intelligibility improvements

were observed in all conditions. In addition, effectively

causal limits for various communication settings were

reviewed, and the impact of various amounts of future frame

information on performance of the current network was

examined.

II. METHOD

A. Subjects

Twelve HI listeners received a monetary incentive for

participation. They were recruited from The Ohio State

University Speech-Language-Hearing Clinic to represent a

diverse sample of typical hearing aid patients. Ages ranged

from 62 to 88 years (mean ¼ 72 years), half were female,

and all were native speakers of American English. None had

previous exposure to the sentence materials used currently.
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Otoscopy, tympanometry (ANSI, 1987), and pure-tone

audiometry (ANSI, 2004, 2010) were performed for all lis-

teners. Otoscopy was unremarkable for all listeners. Middle-

ear peak pressures and compliances were within normal

limits for all listeners except HI10, who presented with flat

tympanograms. However, the lack of significant air-bone

gaps indicated a likely cochlear site of lesion. Listeners gen-

erally had bilateral sloping hearing losses of likely cochlear

origin that ranged in degree from mild to profound. Pure-

tone average audiometric thresholds (PTAs; means across

500, 1000, and 2000 Hz and ears) ranged from 27 to 58 dB

hearing level (HL) with a mean of 45 dB HL.

All listeners were binaural hearing aid users with the

exceptions of HI1 and HI6. Rather than binaural hearing

aids, HI1 uses an amplification system with bilateral micro-

phones and contralateral routing of one of the signals

(BiCROS; Harford, 1966). HI6 uses a single, monaural hear-

ing aid in the left ear. Only the better ears of HI1 (right ear)

and HI6 (left ear) were tested currently in accord with the

hearing aid input they receive. For these two listeners, PTA

was also based only on the ear receiving input. Figure 1

displays audiometric thresholds for all listeners, who are

numbered in ascending order of degree of hearing loss as

reflected by the PTAs.

The decision was made to focus the current study on HI

listeners and not test listeners with NH because the latter are

remarkably robust to background noise and have perhaps

less need for speech-processing technology like that exam-

ined here. Further, their robustness to noise causes baseline

performance in unprocessed conditions to be quite high, lim-

iting the opportunity to observe benefit.

B. Stimuli

The speech stimuli consisted of IEEE sentences (IEEE,

1969) produced by a male talker having a general

Midwestern-American dialect. The corpus of 720 IEEE sen-

tences was split into 3 sets, which included 500, 60, and 160

sentences for training, validation, and testing, respectively.

The noises used for algorithm training consisted of

10 000 nonspeech sounds from a sound-effect library

(Richmond Hill, ON, Canada2). A large training set of

320 000 mixtures was created by mixing each of the 500

training sentences with a random segment from the set of

FIG. 1. Pure-tone air conduction audiometric thresholds for each of the 12 listeners, who are numbered in order of increasing pure-tone average audiometric

threshold (PTA, means across 500, 1000, and 2000 Hz and ears). Ages and genders are also displayed. Right ears are represented by circles and left ears are

represented by X’s. The horizontal dotted line in each panel represents the NH limit of 20 dB HL.
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nonspeech sounds at an SNR that was randomly sampled

from {�5,�4,�3,�2,�1,0} dB. The noises used for algo-

rithm validation included a factory noise and destroyer

engine-room noise (from the NOISEX-92 dataset, Varga

and Steeneken, 1993) and a SSN generated using

VOICEBOX (Brookes, 2005). A set of 60 validation mix-

tures was created by mixing the 60 validation sentences

with a randomly selected portion of 1 of the 3 noises at

�5 dB SNR. The noises used for testing included a 20-talker

babble and cafeteria noise, each approximately 10 min in

duration and both from an Auditec compact disc (St. Louis,

MO3). The cafeteria noise consisted of three overdubbed

recordings from a busy hospital cafeteria and, consequently,

involved a variety of sound sources, including multiple

voices, impact noises from dishes, etc. The SNRs used for

testing were �1 and þ3 dB. The testing set, therefore,

consisted of 160 sentences � 2 noises � 2 SNRs ¼ 640

mixtures.

C. Algorithm description

As mentioned in Sec. I, conventional speech enhance-

ment involves estimation of only the magnitude of noise-

free speech and the use of noisy phase to construct the

enhanced/noise-reduced signal. This approach stems, in

part, from the fact that the phase spectrogram of speech

exhibits no clear structure, rendering its direct estimation

unfeasible. However, both the real and imaginary spectro-

grams of speech do exhibit clear spectro-temporal structure

(Williamson et al., 2016). Accordingly, they can both be

estimated using deep learning from which both the magni-

tude and phase of the target noise-free speech can be esti-

mated. Such a complex mapping approach (Fu et al., 2017;

Tan and Wang, 2020) is employed currently.

In the current study, a GCRN was employed, which

operated in the complex domain (was used to estimate both

the real and imaginary parts). The network accepted speech-

plus-noise input from a single microphone and so was a

monaural system. The model was based on the convolu-

tional recurrent network (CRN) proposed by Tan and Wang

(2018), and then extended to the complex domain by Tan

and Wang (2020). The algorithm is extended currently to be

effectively causal by allowing the use of a small amount of

future time-frame information within the delay tolerance of

the human auditory system.

Figure 2 depicts a simple system diagram for the pro-

posed algorithm. All speech and noise were sampled at

16 kHz for processing. A 20-ms Hamming window was

employed to segment the signals into a series of time frames

with a 10-ms window shift. To derive the time-frequency

(T-F) representations of the signals, a 320-point fast Fourier

transform was applied to each time frame, yielding 161-

dimensional complex spectra.

The original CRN (Tan and Wang, 2018) was essen-

tially an encoder-decoder architecture with long short-term

memory (LSTM) between the encoder and decoder.

Specifically, the encoder was composed of five

convolutional layers, and the decoder was composed of five

deconvolutional layers. Between the encoder and decoder,

two LSTM layers were employed to model temporal depen-

dencies. The encoder-decoder architecture has a symmetric

structure, where the number of kernels progressively

increases in the encoder and decreases in the decoder. A

stride of two was adopted along the frequency dimension in

all convolutional and deconvolutional layers to aggregate

context along the frequency dimension. Hence, the fre-

quency dimensionality of feature maps was halved layer by

layer in the encoder and doubled layer by layer in the

decoder. Such a design ensures that the output spectrogram

has the same resolution as the input spectrogram. Moreover,

skip connections were used to concatenate the output of

each encoder layer to the input of the corresponding decoder

layer. Note that all convolutions and deconvolutions were

causal so that this CRN did not use any future time-frame

information for estimation.

To extend this model to perform complex spectral map-

ping, Tan and Wang (2020) added gated linear units (GLUs;

Dauphin et al., 2017). The resulting network is referred to as

a GCRN. Gating mechanisms control the flow of information

through the network, potentially allowing it to model more

complex interactions. A convolutional gated linear unit block

(ConvGLU) is illustrated on the left side of Fig. 3. A decon-

volutional gated linear unit block (DeconvGLU) is analogous

except that the convolutional layers are replaced by deconvo-

lutional layers as shown on the right side of Fig. 3.

FIG. 2. A system diagram of the proposed GCRN-based speech-segregation

algorithm.
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Figure 4 depicts the GCRN architecture. Note that the

real and imaginary spectrograms of noisy speech are treated

as two different input channels. As shown in Fig. 4, the

encoder and LSTMs were shared across the estimates of real

and imaginary components, whereas two decoders were

used to estimate the real and imaginary spectrograms of

clean speech, respectively. Each ConvGLU or DeconvGLU

block was coupled with a batch normalization operation

(Ioffe and Szegedy, 2015) and an exponential linear unit

(ELU; Clevert et al., 2016) activation function. The GLU

blocks in the encoder had 16, 32, 64, 128, and 256 output

channels successively, and those in the decoders had 128,

64, 32, 16, and 1 output channels successively. For all con-

volutional and deconvolutional layers, the kernel size was

set to 1� 3. Moreover, a linear layer was stacked on top of

each decoder to project the learned features to the real or

imaginary spectrograms.

The grouping strategy of Gao et al. (2018) was

employed to reduce model complexity and increase effi-

ciency. In this strategy, the input and hidden layers are split

into groups, and features are learned separately within each

group, substantially reducing the number of connections

between layers and, thus, model complexity as illustrated in

Fig. 5. Then, to recover the important dependencies across

groups, a representation-rearrangement layer is employed

between the recurrent layers. This grouping strategy was

employed for the LSTM layers, given that most trainable

parameters in the GCRN reside in the LSTM layers.

The model was trained using the AMSGrad optimizer

(Reddi et al., 2018) with a learning rate of 0.001. The mean

squared error (MSE) was used as the objective function. The

minibatch size was set to 16 at the utterance level. Within a

minibatch, all training examples were padded with zeros to

have the same number of time steps as the longest example.

The best model was selected by cross-validation. During

inference, the real and imaginary spectrograms of the esti-

mated noise-free speech were used to resynthesize the wave-

form via an inverse short-time Fourier transform (iSTFT).

The fully causal GCRN was slightly modified for the

current study to use two future time frames. Specifically, the

kernel sizes of the convGLU and deconvGLU layers preced-

ing and following the LSTM module were set to 3� 3 rather

than 1� 3. The incorporation of two future frames, each

20 ms in duration with 10-ms frameshift, added 20 ms of

processing delay. This delay adds to the inherent system

delay of 10 ms, corresponding to the size of the current time

frame.

FIG. 4. The network architecture of the GCRN for complex spectral

mapping, where YðrÞ and YðiÞ denote the real and imaginary spectrograms,

respectively, of noisy speech, and Ŝ
ðrÞ

and Ŝ
ðiÞ

denote the real and

imaginary spectrograms, respectively, of enhanced (noise-reduced)

speech.

FIG. 5. Illustration of the grouping strategy for LSTMs in which the input

features and units in each LSTM layer were split into two groups.

Displayed between layers 1 and 2 is a representation-rearrangement layer

employed between the recurrent layers.

FIG. 3. Diagrams of a ConvGLU and DeconvGLU, where r denotes a sig-

moid function.
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D. Procedure

The two noise types, two SNRs, and two processing

conditions (unprocessed and algorithm processed) yielded

eight conditions. Each listener heard 20 sentences in each

condition for a total of 160 sentences.4 The comparison of

greatest interest was that between the unprocessed and cor-

responding processed conditions, and so those conditions

were presented in juxtaposed and random order for each

noise type and SNR. The correspondence between the sen-

tence list and condition was random, and no sentence was

used more than once for any listener.

The signals were presented using a Windows personal

computer (Microsoft, Redmond, WA), Echo Digital Audio

Gina 3G digital-to-analog converter (Santa Barbara, CA),

Mackie 1202-VLZ mixer (Woodinville, WA), and Sennheiser

HD 280 Pro headphones (Wedemark, Germany). The stimuli

were each scaled to the same total root mean square level and

presented at 65 dBA plus individualized frequency-specific

gains as prescribed by the NAL-RP hearing aid fitting formula

(Byrne et al., 1990). Because the NAL-RP formula does not

prescribe gains for 125 or 8000 Hz, gains for 250 and

6000 Hz, respectively, were applied to these two frequencies.

This listener-specific amplification was applied using a RANE

DEQ 60L digital equalizer (Mukilteo, WA). Listeners were

tested diotically using gains based on audiometric thresholds

averaged across the two ears. The exceptions were HI1 and

HI6, who were tested monaurally in accord with their hearing

aid input. NAL-RP gains for these two listeners were calcu-

lated using the audiometric thresholds for the test ear. Because

hearing aid gains were applied using the experimental appara-

tus, listeners were tested with their hearing aids removed.

Presentation levels were calibrated at the beginning of each

test session using a sound-level meter and flat-plate headphone

coupler (Larson Davis 824 and AEC 101, Depew, NY).

Testing began with a brief familiarization. Listeners

heard 25 practice sentences equally divided into 5 blocks.

The order of the practice conditions were (1) clean speech,

(2) algorithm-processed 3 dB SNR babble, (3) algorithm-

processed -1 dB SNR cafeteria noise, (4) unprocessed 3 dB

SNR babble, and (5) unprocessed -1 dB SNR cafeteria noise.

These practice sentences were drawn from the IEEE set

used for algorithm training, and so they were distinct from

those used for formal testing.

During familiarization, listeners were asked if the sig-

nals were clearly audible and comfortable in level. Five lis-

teners (HI4, HI7, HI8, HI10, and HI12) reported that the

stimuli sounded loud. After reducing presentation level by

5 dB, three of these listeners reported that the signals were

clear and comfortable. HI4 reported that the signals were

clear and comfortable following an additional 1-dB reduc-

tion. HI8 reported that the signals were not loud enough fol-

lowing the 5-dB reduction, but that they were clear and

comfortable following a subsequent 3 dB gain increase. The

overall presentation level after the application of NAL-RP

gains and comfort adjustment ranged across listeners from

73.6 to 87.3 dBA (mean ¼ 81.3 dBA).

Following familiarization, the listeners heard the eight

blocks of experimental conditions. They were instructed to

repeat back each sentence as accurately as possible and

guess if unsure. The listeners were blind to the condition

under test, but the experimenter was not. Listeners were

seated in a double-walled audiometric booth with the experi-

menter who controlled the presentation of each stimulus and

scored keywords correctly reported. Each sentence was

played only once during testing. The total duration of testing

was approximately 45 min for each listener.

III. RESULTS AND DISCUSSION

Each sentence contained 5 keywords for a total of 100

keywords in each condition. Intelligibility for each condition

was based on the proportion of these keywords that were

correctly reported. Figures 6 and 7 display the intelligibility

for each individual HI listener in each condition: Fig. 6 for

the multitalker babble conditions and Fig. 7 for the

cafeteria-noise conditions. The two SNRs employed for

FIG. 6. The sentence intelligibility for each HI listener in multitalker bab-

ble. The two SNRs employed are displayed in separate panels. The unpro-

cessed speech-in-babble scores are represented by solid columns and

algorithm-processed scores are represented by hatched columns. Algorithm

benefit for each listener is thus represented by the difference between these

corresponding columns.
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each noise type are plotted in separate panels in Figs. 6

and 7. Note that HI3 was unavailable to participate in cafete-

ria noise, and so her data are not plotted in Fig. 7. In each

panel, the unprocessed and processed conditions are repre-

sented by different columns. The algorithm benefit for each

listener thus corresponds to the difference between each

solid column (unprocessed) and corresponding hatched col-

umn (processed).

As Fig. 6 shows, every HI listener received algorithm

benefit at the less favorable babble SNR and all but one

received benefit at the more favorable babble SNR. As Fig.

7 shows, all but two listeners received algorithm benefit at

the less favorable cafeteria-noise SNR, and all but one

received benefit at the more favorable cafeteria-noise SNR.

Considering all listeners and conditions (46 cases), benefit

was 10 percentage points or greater in 67% of cases, 20 per-

centage points or greater in 37% of cases, and 30 percentage

points or greater in 22% of cases.

As expected, unprocessed scores in Figs. 6 and 7 show

a general trend toward decreasing from left to right as the

degree of hearing loss (PTA) increased. Because algorithm

benefit is a function of unprocessed scores, these values are

necessarily related with lower unprocessed scores tending to

be associated with greater benefit. A correlation between

listener PTA and mean benefit score, averaged across condi-

tions and based on rationalized arcsine units (RAUs;

Studebaker, 1985), revealed that PTA was significantly

related to benefit [r(10)¼ 0.65, p¼ 0.02] with those having

greater degrees of hearing loss displaying a greater benefit.

However, similar correlations performed for each condition

separately suggested that the overall effect was largely

driven by the pattern of scores in cafeteria noise at an SNR

of 3 dB as this was the only significant correlation of these

four.

Figure 8 displays the group-mean scores and standard

errors for each condition. The top panel of Fig. 8 represents

the two babble SNRs. The less favorable babble SNR (top

panel of Fig. 8, left) produced the lowest group-mean

FIG. 7. As Fig. 6 but for the cafeteria-noise conditions. DNT, did not test.

FIG. 8. The group-mean intelligibility scores and standard errors for the HI

listeners. The two noise types are displayed in separate panels, and the two

SNRs employed are displayed in each panel. Unprocessed and processed

scores are again represented by separate columns, and the algorithm benefit

is reflected by the difference between corresponding columns as in Fig. 6.
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unprocessed score (20%), which rose (to 46%) to produce

the largest mean benefit of 26 percentage points. The more

favorable babble SNR produced an unprocessed score of

44% and a benefit of 19 percentage points. The bottom panel

of Fig. 8 represents the two cafeteria-noise SNRs. The less

favorable cafeteria-noise SNR produced an unprocessed

score of 24% and a benefit of 14 percentage points. The

more favorable SNR produced the highest group-mean

unprocessed score (51%) and the correspondingly smallest

algorithm benefit of 8 percentage points.

Planned comparisons consisting of uncorrected two-

tailed paired t-tests on RAUs were performed to examine

algorithm benefit in each condition. Scores for algorithm-

processed conditions were significantly higher than the

corresponding unprocessed scores in every condition (two

babble SNRs [t(11)� 5.4, p< 0.001], two cafeteria-noise

SNRs [t(10)� 3.3, p< 0.01]). These results all survive

Bonferroni correction for multiple comparisons.

A supplementary statistical analysis was performed

using a linear mixed-effects model. The outcome variable

was the RAU-transformed percent-correct scores for each

listener in each condition. The fixed effects for this model

were processing condition, SNR, and noise type, plus each

of the two-way interactions between the first-order effects.

The model also included random intercepts for listener.

Deviation coding was used to represent the variables of

processing condition, SNR, and noise type. Deviation cod-

ing specifies contrasts that are analogous to factors in tradi-

tional analyses of variance and thus facilitates model

interpretation. The unprocessed condition was coded as

�0.5 (baseline), and the algorithm-processed condition was

coded as 0.5 (comparison). The lower SNR of –1 dB was

coded as �0.5 (baseline) and the higher SNR of 3 dB was

coded as 0.5 (comparison). Cafeteria noise was arbitrarily

assigned as the baseline condition and coded as �0.5,

whereas babble was designated as the comparison and coded

as 0.5. Visual inspection of residual plots did not reveal any

clear violations of homoscedasticity or normality. The

degrees of freedom were based on Satterthwaite’s approxi-

mation. The analysis was performed using R 3.5.1 (R Core

Team, 2019) with the lme4 (Bates et al., 2015) and lmerTest

(Kuznetsova et al., 2020) packages.

Most importantly, the fixed effect of algorithm process-

ing was highly significant, reflecting that the algorithm was

successful in increasing the listeners’ overall intelligibility

[b ¼ 16.6 RAU, t(73.9)¼ 8.9, p < 0.0001]. The fixed effect

of SNR was also large and significant, simply reflecting the

overall higher intelligibility in the more favorable SNR con-

ditions [b ¼ 21.7 RAU, t(73.9)¼ 11.7, p < 0.0001]. Finally,

the fixed effect of noise type was nonsignificant, indicating

no overall difference in intelligibility between the babble

and cafeteria-noise conditions [b ¼ �0.09 RAU, t(74.5)

¼ �0.05, p ¼ 0.96]. The interaction between SNR and proc-

essing condition was significant, reflecting a greater algo-

rithm benefit for the lower SNR conditions [b ¼ –11.2

RAU, t(73.9) ¼ –3.0, p < 0.005]. The interaction between

noise type and processing condition was also significant,

reflecting a greater algorithm benefit in the babble condi-

tions [b ¼ 8.24 RAU, t(73.9)¼ 2.2, p< 0.05]. Finally, the

interaction between the noise type and SNR was non-

significant, indicating no significant differential effect of

SNR between noise types [b ¼ 4.46 RAU, t(73.9) ¼ �1.2,

p ¼ 0.23].

IV. GENERAL DISCUSSION

The current study demonstrates that effectively causal

deep learning noise reduction can lead to consistent intelligi-

bility improvements for HI listeners. Benefit was significant

in every condition and largest in the babble background at

the less favorable SNR and for those with the greatest

degree of hearing loss. As described in Sec. I, the current

model was talker dependent to restrict the generalization

challenge to untrained noises. The use of a talker-dependent

model is in accord with the work of Goehring et al. (2017),

Monaghan et al. (2017), Bentsen et al. (2018), and

Bramsløw et al. (2018). However, it is unlike the talker-

independent models of Goehring et al. (2017), Goehring

et al. (2019), and Keshavarzi et al. (2019). The current use

of entirely novel noise types for testing makes the current

study unlike previous works, which employed different seg-

ments of the same noise (Goehring et al., 2017; Monaghan

et al., 2017; Bensten et al., 2018; Keshavarzi et al., 2019) or

different noises of the same type (Goehring et al., 2019) for

training and testing. The algorithmic advances over prior

studies include the use of a GCRN and complex mapping to

estimate both the magnitude and phase of the target speech

and the introduction of an effectively causal model.

As described in Sec. I, it is important to note that the

tolerable delay for human listeners is not fixed across com-

munication settings and, instead, is multifaceted. At one end

of the continuum is non-face-to-face communication, such

as voice calls or radio communication. These delay toleran-

ces can be quite large, at least the 150 ms specified by ITU

(2003), and perhaps considerably longer.

The tolerable delay is also large for CI users because lit-

tle if any auditory information is obtained through air- or

bone-conducted sound, and essentially all of the auditory

input is through the implant. Accordingly, speech produc-

tion is typically not considered when assessing the impact of

CI processing delay because delayed auditory feedback

from non-device air conduction or bone conduction of the

talkers own voice is absent. Similarly, speech perception

does not occur mixed with non-device air-conducted sound

(which can occur, for example, in an open hearing aid fitting

as described below). Thus, audiovisual synchrony is typi-

cally assumed to define CI delay tolerance. The tolerable

delay is considerably larger when the auditory signal is

delayed relative to the visual signal, relative to the reverse,

which is convenient for audio-processing technology. The

delay detection thresholds for CI users obtained by Hay-

McCutcheon et al. (2009; for delayed audio) averaged

261 ms for middle-aged CI users and 294 ms for elderly CI

users. Almost exactly the same values were observed for
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age-matched NH comparison subjects. See Conrey and

Pisoni (2006) for a review of human auditory-visual syn-

chrony detection.

Within a hearing aid, the situation is more multifaceted

and the delay value judged to be disruptive can vary depend-

ing on the fitting, communication direction (speech produc-

tion versus perception), and other factors. Stone and Moore

conducted a series of studies to examine tolerable group

delays associated with speaking while wearing a hearing

aid. The issue arises because one’s own voice is heard with-

out delay through bone conduction (and air conduction in an

open fitting) but also through the hearing aid following any

processing delay, potentially producing delayed auditory

feedback. It was found that delays needed to be 20–30 ms to

be judged “disturbing” in simulated mild or moderate hear-

ing losses and 40 ms for moderately severe losses (Stone

and Moore, 1999). Using HI listeners, delays of 20 ms pro-

duced judgments below disturbing for all subject groups

(Stone and Moore, 2005).

The perception of others’ voices is also an important

concern for hearing aid wearers, especially when an open

fitting is employed. This fitting provides no seal in the ear

canal, and so the communication partner’s voice will be

received through the air without delay if the hearing loss is

mild enough but also amplified through the hearing aid fol-

lowing any processing delay. Stone et al. (2008) examined

the impact of processing delay in this context using NH lis-

teners and simulated mild to moderate hearing losses. Far

smaller delay tolerances of only several ms were observed,

but the authors suggested that the use of wide dynamic range

compression plus simulated loudness recruitment could

have interacted with the effects of delay, complicating inter-

pretation. Goehring et al. (2018) examined the effect of

hearing aid delays without any nonlinear processing such as

compression. Group-mean ratings by HI listeners below the

midpoint on a seven-point “annoyance” scale (toward a “not

annoying at all” end point) were obtained at 30–40 ms for

both self-produced and external voices. These authors also

found that the delay tolerance was greater for HI than for

NH listeners and greater for HI listeners having larger

degrees of hearing loss.

Together, this body of work suggests that a multitude of

factors must be considered when determining an allowable

processing delay. But this complexity also provides opportu-

nity. Algorithms designed for telecommunications or CIs

might take advantage of the relatively high tolerance and

consider substantial future time-frame information as a way

to improve performance. Turning to hearing aids, advances

in technology can potentially cause the acceptable delay val-

ues to shift. For example, modern devices can detect when

the wearer is speaking and decrease amplification, thus

reducing the importance of own-voice considerations. As a

caveat, we note that future-frame delays add to other delays

inherent in system processing to produce overall delays.

It is important to recognize that the impact of incorpo-

rating future time frames likely depends on the particular

network architecture and training employed. That said, an

analysis was conducted to assess the impact of various

amounts of future-frame information in the current model.

Algorithms were constructed that were identical to that

employed currently, except that future frames totaling 0, 20,

80, 150, 200, and 500 ms were employed. A noncausal,

utterance-based model was also constructed. Training was

identical for each model as described in Sec. II.

Specifically, the kernel size in the first encoder GLU

block was changed to 13� 3, 27� 3, 37� 3, and 97� 3,

respectively, corresponding to 80, 150, 200, and 500 ms

future-frame delays. The GCRN with an utterance-length

delay was derived by replacing unidirectional LSTMs in the

fully causal GCRN with bidirectional LSTMs. These models

were evaluated using four objective metrics, including (1)

short-time objective intelligibility (STOI; Taal et al., 2011),

(2) extended short-time objective intelligibility (ESTOI;

Jensen and Taal, 2016), (3) perceptual evaluation of speech

quality (PESQ; Rix et al., 2001), and (4) signal-to-noise

ratio improvement (DSNR). Scores were averaged over the

two test noises for this analysis.

Table I displays the objective measures of intelligibility

and sound quality for these models. Apparent in these values

is one clear increment in scores from 0 to 20 ms of future-

frame information, then another clear increment from

500 ms to the utterance-length model. Although these steps

represent the most substantial score increases, the increases

resulting from the remaining steps were positive in 26 of 32

instances. These objective results clearly indicate that the

use of an effectively causal model can result in a processed

TABLE I. Average STOI, ESTOI, PESQ, and DSNR values produced by systems with different future time-frame delays.

SNR
�1 dB 3 dB

STOI (%) ESTOI (%) PESQ DSNR (dB) STOI (%) ESTOI (%) PESQ DSNR (dB)

Unprocessed 62.89 30.33 1.63 0.00 72.70 42.41 1.89 0.00

0 ms 81.70 60.19 2.35 9.50 87.44 69.90 2.62 7.61

20 ms 83.43 63.26 2.42 10.05 88.55 72.24 2.68 8.04

80 ms 83.51 63.46 2.44 9.99 88.44 72.21 2.70 7.85

150 ms 83.88 63.73 2.45 10.11 88.60 72.30 2.72 8.01

200 ms 84.01 64.00 2.45 10.16 88.82 72.66 2.70 8.15

500 ms 84.04 64.27 2.46 10.22 88.95 73.00 2.71 8.20

Utterance 85.48 67.14 2.54 10.57 90.07 75.34 2.80 8.54
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signal that is more acoustically similar to the original clean

speech than that produced by a fully causal model.

The decision was made currently to employ an effec-

tively causal system (20-ms future frame delay) rather than

a fully causal system because this delay does not hinder

human listeners and so its use likely came with no cost to

human performance. This also maximized the opportunity to

observe benefit as objective scores suggest that a perfor-

mance advantage may exist. To assess the actual impact of

this decision, a fully causal network, identical to that of the

main experiment except that no future frames were

employed, was used to test listeners. Those with NH were

employed because they should be best able to reveal slight

differences between the processed speech signals containing

little background noise. Ten young-adult NH listeners (pure-

tone audiometric thresholds of 20 dB HL or below from 250

to 8000 Hz) heard 15 IEEE sentences at 65 dBA over head-

phones in each of the following 8 conditions: [2 SNRs (-1

and 3 dB)� 2 noise types (babble and cafeteria)� 2 proc-

essed conditions (2 versus 0 future frames)]. Thus, all condi-

tions were algorithm processed. No significant difference in

scores was observed between two future frames and zero

future frames in any of the four conditions (two-tailed

paired-comparison t-tests on RAUs, all p > 0.05), and the

grand-mean average difference between scores in these two

processing conditions was less than 1 percentage point. All

condition means were free of floor and ceiling effects that

could obscure differences. Thus, despite the improvements

in objective measures observed with the addition of 20 ms

of future-frame information (Table I), the use of 2 versus 0

future time frames had no effect on actual human intelligi-

bility using the current network and conditions.

These results highlight the lack of direct correspon-

dence between acoustic signal similarity as reflected by

objective scores and actual human intelligibility. This lack

of direct correspondence likely originates, in part, from the

fact that Table I documents raw STOI (or ESTOI) scores,

which need to be mapped to predicted intelligibility scores

with a sigmoidal function whose parameters depend on the

speech material used (Taal et al., 2011) and that sigmoidal

functions are subject to plateau effects. But clearly,

improvements in acoustic similarity were observed for the

various effectively causal models corresponding to the dif-

ferent delay tolerances. Further, different network architec-

tures may benefit differently from future-frame information.

These together suggest that the concept of effectively

causal, tailored to the particular communication setting,

remains a potentially useful design option.

It is concluded that effectively causal deep learning can

be used to improve intelligibility for HI listeners in the con-

text of entirely untrained complex noises. The current

GCRN used complex mapping to obtain estimates of both

the magnitude and phase of the noise-free target speech, and

intelligibility improvements were observed in all conditions.

Future work will be required to add talker independence to

the current effectively real-time capable operation. Also,

algorithm performance was targeted currently with little

concern for model complexity in accord with our overall

design and implementation philosophy (described in Healy

et al., 2020). Future work will explore techniques to reduce

model complexity while maintaining performance. Finally,

it is concluded that the concept of effectively causal repre-

sents an addition to the array of tools available for the devel-

opment of deep learning algorithms capable of removing

background noise from speech and increasing intelligibility.
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