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A B S T R A C T

Deep learning has led to dramatic performance improvements for the task of speech en-
hancement, where deep neural networks (DNNs) are trained to recover clean speech from
noisy and reverberant mixtures. Most of the existing DNN-based algorithms operate in the
frequency domain, as time-domain approaches are believed to be less effective for speech
dereverberation. In this study, we employ two DNNs: ARN (attentive recurrent network) and
DC-CRN (densely-connected convolutional recurrent network), and systematically investigate
the effects of different components on enhancement performance, such as window sizes,
loss functions, and feature representations. We conduct evaluation experiments in two main
conditions: reverberant-only and reverberant-noisy. Our findings suggest that incorporating
larger window sizes is helpful for dereverberation, and adding transform operations (either
convolutional or linear) to encode and decode waveform features improves the sparsity of
the learned representations, and boosts the performance of time-domain models. Experimen-
tal results demonstrate that ARN and DC-CRN with proposed techniques achieve superior
performance compared with other strong enhancement baselines.

. Introduction

In real-world environments, speech is corrupted by both background noise and room reverberation, which degrades speech
uality and intelligibility. Speech enhancement aims to remove background noise and recover clean anechoic speech from
everberant-noisy mixtures. Reverberation is generated by sound reflections by surfaces including walls, floors and ceilings, and
ther objects. The speech signal received by a speaker or a far-field microphone is a summation of the direct sound and an infinite
umber of delayed and decayed copies of the original speech signal. Noisy signals refer to the addition of clean speech signals and
oises, and are challenging for speech enhancement when the signal-to-noise (SNR) ratio is low. The task of speech dereverberation
ims to recover the clean signal from reverberant speech. The distortion caused by both noise and reverberation creates difficulties
or many speech-related tasks (Wang and Chen, 2018), including speaker separation (Aralikatti et al., 2021), automatic speech
ecognition (Al-Karawi et al., 2015; Heymann et al., 2019) and speaker identification (Zhao et al., 2014; Bai and Zhang, 2021).

Many studies have been published to tackle the speech dereverberation problem. A popular conventional approach to remove or
ttenuate room reverberation is the weighted prediction error (WPE) algorithm (Nakatani et al., 2010). WPE computes a filter based
n delayed linear prediction to estimate room reverberation. Other conventional signal processing approaches include a relative
ransfer function identification method (Talmon et al., 2009), a Wiener-like filter based on estimated reverberation time (Habets
t al., 2009), and employing the estimated power spectral density to estimate late reverberation (Braun et al., 2018).
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Since the introduction of deep learning, data-driven approaches are widely used to directly restore target speech (Kinoshita et al.,
007; Han et al., 2015; Zhao et al., 2018; Defossez et al., 2020; Wang and Wang, 2020a; Schroter et al., 2022; Li et al., 2023; Neri
nd Braun, 2023), and they substantially improve the enhancement performance compared with conventional methods. Many recent
tudies investigated the use of DNN for joint dereverberation and denoising. Yan and Wang (Zhao and Wang, 2020) proposed to
erform speech enhancement in the reverberant-noisy conditions using a densely connected UNet (Huang et al., 2017). The network
perates in the complex domain, and a time–frequency attention module is incorporated to aggregate contextual information across
ime–frequency units in complex feature maps. Li et al. (2021) proposed a Simultaneous Denoising and Dereverberation network
SDDNet) that utilizes a multi-stage model to progressively remove reverberation and then suppress background noise. The core idea
f their network design is to decouple the training targets. SDDNet shows considerable improvement for real-time enhancement
nd is ranked the top in the 2021 Deep Noise Suppression (DNS) challenge (Reddy et al., 2021). Choi et al. (2021) employed
lightweight UNet model for speech enhancement, and achieved strong performance with a relatively small computational cost.
uring training, they used a composite loss function that consists of waveform cosine similarity and the mean absolute error between
omplex spectrograms. Fu et al. (2022) proposed UFormer with two branches: one operates in the magnitude spectrogram and the
ther in the complex domain. Attention modules and dual-path conformers are incorporated to model local and global temporal
ependencies.

This study focuses on monaural speech enhancement and performs joint denoising and dereverberation. When reverberation is
resent, the highly varying nature of room impulse responses makes it difficult to separate the direct sound from its reflections
n the time domain. Most of the existing deep learning approaches operate in the frequency domain (Zhao et al., 2020; Li
t al., 2021; Schroter et al., 2022; Purushothaman et al., 2023). On the other hand, time-domain processing has been shown
o be competitive in other speech processing tasks, for instance, automatic speech recognition (Kinoshita et al., 2020), speaker
dentification (Delcroix et al., 2020; Salvati et al., 2023) and speaker separation (Ravenscroft et al., 2023). Although existing studies
how good performance on tailored evaluation datasets, comprehensive understanding is lacking in terms of how specific techniques
ontribute to enhancement performance, especially dereverberation performance. Our paper aims to fill this void. A related study by
ord-Landwehr et al. (2022) focuses on mask-based source separation. They employed the SepFormer model (Subakan et al., 2021)
s their starting point and optimized its performance on reverberant mixtures. Surprisingly, SepFormer only marginally improves
ver a carefully optimized bidirectional long-short term memory (LSTM) baseline. Rather than advanced DNN architecture, the
uthors found that the effects of objective functions, window lengths and feature domains are more significant for reverberant
peaker separation. Our work is different as it is not limited to mask-based models, and we focus on speech enhancement rather
han speaker separation.

This paper aims to systematically investigate the effects of various factors on speech dereverberation and denoising performance.
e examine two strong baseline models. One is ARN (attentive recurrent network) (Pandey and Wang, 2022), which is a

ime-domain model composed of recurrent neural networks (RNNs) with self-attention. The other is DC-CRN (densely-connected con-
olutional recurrent neural network) (Tan et al., 2021), which is a frequency-domain model consisting of convolutional operations
nd conducts complex spectral mapping. The recent ARN and DC-CRN architectures are representative speech enhancement models,
mploying two primary DNN architectures: RNN and CNN (convolutional neural network). Since most existing speech enhancement
odels utilize RNN or CNN, we believe that our findings can be extended to other DNN models for speech enhancement. To study

he effect of input representation domains, we create the corresponding time-domain or frequency-domain variants for the two DNN
rchitectures. Additionally, we investigate factors such as window lengths, objective functions, and transform layers. Our evaluation
esults suggest that, unlike the common wisdom that frequency domain approaches work better, the representation domain does
ot play a major role in speech dereverberation. For time-domain models, adding linear layers to encode and decode waveform
eatures improves learned representations, which serves a similar function to short-time Fourier Transform (STFT) employed in
requency-domain networks. In summary, the main contributions of our work are three-fold. First, we show that a larger window
ize helps dereverberation performance, which is consistent with the conclusion in Cord-Landwehr et al. (2022). Second, we reveal
hat, for time-domain models, a transform layer is crucial in converting feature maps into an embedding space that is sparser and
ore separable, and benefits dereverberation. Lastly, we compare an optimized ARN architecture to other advanced baselines and

chieve a significant performance advantage in terms of objective speech intelligibility and quality metrics.
The rest of the paper is organized as follows. In Section 2, we formulate the dereverberation and denoising problem. Section 3

escribes DNN models and designs in detail. In Section 4, we present datasets and experimental setups used in our experiments.
xperimental results, analyses, and comparisons are provided in Section 5. Section 6 concludes the paper.

. Formulation

A reverberant-noisy speech signal 𝐲 can be modeled as a combination of reverberant speech and noise 𝐧. Reverberant speech is
produced by a clean target speech signal 𝐬 convolved with a room impulse response 𝐡, which can be expressed as,

𝐲(𝑘) = (𝐬 ∗ 𝐡)(𝑘) + 𝐧(𝑘), (1)

where {𝐲, 𝐬,𝐧} ∈ R𝐾×1, and 𝐾 is the number of samples in the speech signal. We use 𝑘 to index time samples, and ∗ to represent
the convolution operator. From another perspective, we can divide 𝐲(𝑘) into the target speech 𝐱(𝑘), reverberant speech 𝐫(𝑘) and
background noise 𝐧(𝑘), i.e.,

𝐲(𝑘) = 𝐱(𝑘) + 𝐫(𝑘) + 𝐧(𝑘). (2)
2
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Fig. 1. Diagram of the proposed enhancement pipeline. The input and output are both waveform signals, and the features extracted are either STFT-based or
time-domain overlapped frames depending on the domain of operation. A linear layer is used before and after the backbone network to transform features to a
fixed embedding dimension. Feature aggregation is applied to transform the feature dimension back to the original input size.

Fig. 2. Illustration of two backbone networks: (a). ARN is composed of RNN based blocks plus self-attention, (b). DC-CRN is built upon the UNet architecture
and enhanced with densely connected convolutions. Input features have the same dimension as that of output features.

Note that the target speech 𝐱(𝑘) is different from the dry clean signal, as it incorporates a small time shift and energy decay due to
sound transmission, and may also include early reflections. Converting to the frequency domain by performing STFT, we have,

𝐘[𝑡, 𝑓 ] = 𝐗[𝑡, 𝑓 ] + 𝐑[𝑡, 𝑓 ] + 𝐍[𝑡, 𝑓 ], (3)

where 𝑡 and 𝑓 index time frame and frequency bin, respectively. In this paper, our goal is to recover the target speech signal from a
reverberant-noisy mixture, hence removing reverberation and background noise. With DNN model denoted as 𝑓 and its parameters
as 𝜃, reverberant-noisy enhancement can be expressed as,

𝐱̂(𝑘) = 𝑓 (𝐲(𝑘), 𝜃). (4)

𝐱̂(𝑘) is the estimated target signal. For metric computation, we use 𝐱(𝑘) as the reference target. For reverberant-only conditions, we
do not take the background noise 𝐧 into consideration.

3. Model description

3.1. DNN architectures

We adopt a general architecture for DNN based speech enhancement, and the overall pipeline is depicted in Fig. 1. For a given
input signal, we first perform feature extraction through transform operations to convert the input to the domain of interest. If
speech enhancement is performed in the time domain, input signals are chunked into overlapping frames (denoted as Wave2frame).
Otherwise, we conduct STFT to convert signals to complex-domain spectrograms. Extracted feature maps are first encoded by a
linear layer that transforms the feature dimension into a fixed embedding dimension, and then passed to a DNN block. We employ
two DNN architectures, ARN (Pandey and Wang, 2022) and DC-CRN (Tan et al., 2021) as backbone models. Their detailed designs
are described in the following subsections. The output of the DNN block is fed to another linear layer (decoder layer) that transforms
the feature dimension back to its original size. Finally, we perform feature aggregation to reconstruct target speech signals, where we
perform either inverse STFT (iSTFT) to complex-domain spectrograms or overlap-and-add (OLA) to waveform segments, depending
3

on input type.
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3.1.1. ARN
Fig. 2(a) illustrates the design of ARN, which is a time-domain network consisting of RNNs augmented by self-attention blocks

nd feedforward blocks. In recent years, the attention mechanism has been widely utilized in sequence-to-sequence tasks, such
s automatic speech recognition (Povey et al., 2018), natural language processing (Vaswani et al., 2017; Galassi et al., 2020) and
omputer vision (Guo et al., 2022). The concept of attention is to create a context vector that highlights the salient part of a sequence
nd suppresses irrelevant information. Self-attention operates on the same sequence, and models the dependencies of different parts
f the sequence (Shaw et al., 2018). Recent speech enhancement studies (Giri et al., 2019; Zhao et al., 2020) also report substantial
erformance gain by incorporating attention modules. The default network input is waveform signals. When input features are
TFT complex vectors, the real and the imaginary parts of complex spectrograms are concatenated along the feature dimension
o obtain real-valued vectors. We perform layer normalization on input features, which is an alternative to batch normalization
nd has shown to improve convergence and performance (Ba et al., 2016). Then normalized features pass through an RNN block,
pecifically, an LSTM network to model temporal dependencies. The attention block computes the self-attention of a given sequence.
he output from the attention block passes through a feedforward block, which consists of linear layers, Gaussian error linear units
GELUs) (Hendrycks and Gimpel, 2016), and dropout (Srivastava et al., 2014). The linear layer output is split into four vectors and
re then summated. With residual connections added, we finally obtain the output of an ARN block.

More details can be found in Pandey and Wang (2022). Following the original implementation, we use four ARN blocks and set
he embedding dimension to 1024. A dropout rate of 5% is used in the feedforward module. The number of trainable parameters
f ARN is 55.7 millions.

.1.2. DC-CRN
DC-CRN performs complex spectral mapping and is developed originally for the convolutional recurrent network (CRN)

rchitecture, which is a strong enhancement model that consists of a convolutional encoder and decoder. In the bottleneck of CRN,
recurrent network is employed to model temporal dependencies. Specifically, a grouped BLSTM (Gao et al., 2018) is applied to

mprove memory and computational efficiency. To capture the benefits of dense connections (Huang et al., 2017; Pandey and Wang,
020), a densely-connected (DC) convolutional block is adopted in place of a standard convolution in both the encoder and decoder,
s illustrated in Fig. 2(b). The core idea of a DC block is to reuse feature maps by splitting a convolution layer into numerous layers
ith fewer channels, and each layer receives the output from all preceding layers. The information flow is improved by this design

ince all convolution layers are directly connected. A 2D convolution, a batch normalization layer (Ioffe and Szegedy, 2015), and
n exponential linear unit (ELU) activation function (Clevert et al., 2016) are the components of a DC block. Within a DC block,
he number of the output channels of the first four convolutional layers is set to 8. All previous outputs are received by the final
ayer and are aggregated with a gated convolution. Unlike CRN that directly concatenates the output of a decoder layer and the
orresponding encoder layer as skip connections (Tan and Wang, 2018; Hu et al., 2020), DC-CRN employs a DC block to the encoder
utput prior to concatenating it with the output of the decoder layer. Such a design helps the fusion of feature maps from both the
ncoder and the decoder and refines the intermediate representations gradually. For the network input of STFT complex vectors,
e stack the real and imaginary parts as separate convolutional channels. The output of DC-CRN is split into two halves and fed

o two linear layers to produce real and imaginary estimates separately. When input features are waveform signals, we only use
ne convolution channel and adopt one linear layer to the DC-CRN output before reshaping it to the waveform. Following the
mplementation in Tan et al. (2021), we adopt five DC blocks in both encoder and decoder parts and set the embedding dimension
o 161. Within the bottleneck, each BLSTM layer has 640 units in either direction. The original numbers of convolution channels
re 2, 16, 32, 64, 128, 256 for the encoder, and mirrored for the decoder (see Tan et al. (2021)). To obtain better enhancement
erformance and meet GPU memory constraints, we increase convolution channels to 2, 24, 48, 96, 192, 384, respectively, resulting
n 18.12 million trainable parameters for DC-CRN.

.2. Loss functions

We examine commonly used loss functions in speech enhancement studies, which include training objectives in both time and
pectral domains. The default loss employed in our experiments is the phase-constrained magnitude (PCM) loss introduced in Pandey
nd Wang (2021), which takes into account both target speech and residual noise. Specifically, the PCM loss 𝑃𝐶𝑀 requires a

reasonable estimate of both speech and residual noise with respect to STFT magnitudes in 1 norm, which is defined as,

𝑃𝐶𝑀 = 1
𝑇𝐹

∑

𝑡,𝑓
||𝐗̂𝑟(𝑡, 𝑓 ) + 𝐗̂𝑖(𝑡, 𝑓 )| − |𝐗𝑟(𝑡, 𝑓 ) + 𝐗𝑖(𝑡, 𝑓 )||

+ 1
𝑇𝐹

∑

𝑡,𝑓
||(𝐘𝑟(𝑡, 𝑓 ) − 𝐗̂𝑟(𝑡, 𝑓 )) + (𝐘𝑖(𝑡, 𝑓 ) − 𝐗̂𝑖(𝑡, 𝑓 ))| − |(𝐘𝑟(𝑡, 𝑓 ) − 𝐗𝑟(𝑡, 𝑓 )) + (𝐘𝑖(𝑡, 𝑓 ) − 𝐗𝑖(𝑡, 𝑓 ))||, (5)

where 𝐗̂ denotes the STFT of a predicted target speech signal, and 𝐘 − 𝐗̂ is the STFT of the estimated residual noise. Subscripts
𝑟 and 𝑖 denote the real and imaginary parts of a complex vector, respectively. Note that, in this context, a residual signal 𝐘 − 𝐗
contains both noise and speech reverberation. 𝑇 and 𝐹 are the total number of time frames and frequency bins, respectively. This
loss is demonstrated to be effective in imposing a phase constraint on speech enhancement. By optimizing the magnitudes of target
speech and residual simultaneously, the infinite number of candidates for the estimated speech complex vector is reduced to two
due to a triangular magnitude relation (Pandey and Wang, 2021). It is also worth noting that the loss is measured in the spectral
4

domain. For loss calculation, we divide a waveform signal into frames or segments with a frame size of 512 samples and a frame
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shift of 128 samples, corresponding to an analysis window of 32 ms with a 25% overlap for the sampling frequency of 16 kHz. Then
we multiply these frames with a Hanning window. The STFT vectors are calculated on windowed frames to define related terms in
the frequency domain.

Another loss function 𝑅𝐼+𝑀𝐴𝐺 proposed in Wang et al. (2020) measures the spectrogram similarity in the complex domain.
Defined in terms of real and imaginary spectrograms, it measures the differences of the real and imaginary parts 𝑅𝐼 and the
magnitude difference 𝑀𝐴𝐺. 𝑅𝐼+𝑀𝐴𝐺 is calculated by,

𝑅𝐼+𝑀𝐴𝐺 = 𝑅𝐼 + 𝑀𝐴𝐺 (6)

𝑅𝐼 = 1
𝑇𝐹

∑

𝑡,𝑓
|𝐗̂𝑟(𝑡, 𝑓 ) − 𝐗𝑟(𝑡, 𝑓 )| + |𝐗̂𝑖(𝑡, 𝑓 ) − 𝐗𝑖(𝑡, 𝑓 )| (7)

𝑀𝐴𝐺 = 1
𝑇𝐹

∑

𝑡,𝑓
‖𝐗̂(𝑡, 𝑓 )| − |𝐗(𝑡, 𝑓 )‖, (8)

where | ⋅ | measures the STFT magnitude of a given vector. The rationale for incorporating a magnitude loss is the relative importance
of magnitude over phase (Wang and Wang, 2020b; Wang et al., 2021b; Zhang et al., 2021). We use the same computation as PCM
to obtain related complex vectors in the spectral domain.

For time-domain speech enhancement, we investigate two other popular loss functions. One is the mean absolute error (MAE)
loss, defined as,

𝑀𝐴𝐸 = 1
𝐾

∑

𝑘
|𝐱̂(𝑘) − 𝐱(𝑘)|. (9)

The other one calculates the scale-invariant signal-to-noise ratio (SI-SNR) using the target waveform and the estimated wave-
form (Le Roux et al., 2019),

𝐱𝑡𝑎𝑟𝑔𝑒𝑡 =
⟨𝐱̂, 𝐱⟩𝐱
‖𝐱‖2

(10)

𝐞𝑛𝑜𝑖𝑠𝑒 = 𝐱̂ − 𝐱𝑡𝑎𝑟𝑔𝑒𝑡 (11)

𝑆𝐼-𝑆𝑁𝑅 = −10 log10
‖𝐱𝑡𝑎𝑟𝑔𝑒𝑡‖2

‖𝐞𝑛𝑜𝑖𝑠𝑒‖2
, (12)

where both the estimated signal 𝐱̂ and the target signal 𝐱 are normalized to zero mean before loss computation, and ⟨⋅ , ⋅⟩ computes
the dot product of two vectors. Note that the noise energy term in Eq. (12) refers to both background noise and reverberation.

4. Experimental setup

4.1. Datasets

We use the DNS read_speech dataset (Reddy et al., 2021) as our speech corpus, which consists of around 550 h of speech
utterances. We choose utterances with low estimated reverberation time (i.e. less than 0.17 s) for our experiments, and set aside
10% speakers for validation and 10% speakers for testing, resulting in 39 225 utterances for training, 5176 utterances for validation
and 5314 utterances for testing. For both training and validation, each reverberant-noisy mixture is generated by mixing a clean
utterance convolved with a randomly picked RIR (room impulse response) and a noise segment. The clean utterance is convolved
with the first 50 ms of the RIR in order to create the target signal. Data simulation for reverberant-only experiments is similar except
that no noise is added. Using the RIR-Generator package,1 we artificially generate 12 000 RIRs with a 𝑇60 (reverberation time)
value randomly sampled from 0.3 to 1.2 s using the image method (Allen and Berkley, 1979), as similarly done in Wang and Wang
(2020a). For each RIR generation, we randomly sample a room length and width from [5, 10] m, and height from [3, 4] m. The
microphone is placed at the height of [0, 1] m, and within 0.5 m of the center of the room. The target speaker is placed at the same
height as the microphone, its distance from the microphone is within [0.75, 2.5] m, and it is at least 0.5 m from each wall. We
split RIRs and assign 10k files to training, 1k files for validation, and 1k files for testing. For background noises, we randomly select
22 000 noises from the DNS challenge2 and split them into 20k/1k/1k for training/validation/testing purposes. A noise segment is
produced by randomly picking a noise file and cutting a segment of the same length as the speech utterance. If the noise file is
not long enough, we extend its length by concatenating with another noise file until reaching sufficient length. For noise mixing
in training and validation, we uniformly sample an SNR value from {−5, −4, . . . , 5} dB, which is calculated with respect to a
reverberant speech signal and a noisy signal.

1 https://github.com/ehabets/RIR-Generator.
2 https://github.com/microsoft/DNS-Challenge.
5
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Table 1
Enhancement (dereverberation) performance of two backbone DNNs.
Model GFLOPs Win (ms) SI-SNR STOI PESQ

Unprocessed 3.920 0.830 2.324

ARN-WM 11.838 32 11.978 0.962 3.494
ARN-WM 11.707 16 11.372 0.959 3.465
ARN-WM 11.528 8 11.738 0.956 3.454

ARN-CSM 11.841 32 11.967 0.961 3.498
ARN-CSM 11.709 16 11.604 0.960 3.478
ARN-CSM 11.528 8 11.001 0.949 3.367

DC-CRN-WM 24.303 32 9.662 0.944 3.257
DC-CRN-WM 24.283 16 9.454 0.943 3.247
DC-CRN-WM 24.273 8 9.376 0.941 3.229

DC-CRN-CSM 24.376 32 9.810 0.945 3.290
DC-CRN-CSM 24.356 16 9.735 0.944 3.285
DC-CRN-CSM 24.345 8 9.572 0.943 3.242

4.2. Setup

For all experiments, speech utterances are sampled at 16 kHz. We apply root-mean squared (RMS) normalization to each
everberant/reverberant-noisy utterance, and scale the corresponding target utterance accordingly. For ARN, we use an Adam
ptimizer (Kingma and Ba, 2015) and train with a batch size of 32 utterances for 100 epochs. The initial learning rate is set to
.0006, and is halved if the validation loss has not improved for three consecutive epochs. We also employ gradient clipping with a
aximum value of 5.0 to avoid gradient explosion. The training procedure of the DC-CRN model is similar, except that we train with
batch size of 16 to satisfy the GPU memory constraint. Within each batch, we randomly cut 4 s of each utterance. Shorter utterances

n a batch are padded with zeros so that all input features have the same size. During loss calculations, zero-padded regions are
gnored. All models are trained using the automatic mixed precision to expedite training (Micikevicius et al., 2018). Two NVIDIA
olta V100 32 GB GPUs are utilized for training, and the batch is evenly distributed to two GPUs using the DataParallel module

rom PyTorch (Paszke et al., 2019) for each training step.
We evaluate enhancement performance using three metrics, scale-invariant SNR (SI-SNR), short-time objective intelligibility

STOI) (Taal et al., 2011) and perceptual evaluation of speech quality (PESQ) (Rix et al., 2001), which are standard objective
valuation metrics in speech enhancement studies. STOI has a typical value range of [0, 1], and we report the narrow-band PESQ
hat is based on the ITU P.862.1 standard (Recommendation, 2001), which ranges from [−0.5, 4.5]. For all these metrics, higher

values indicate better performance.

4.3. Causality

We implement both causal and non-causal versions of two backbone DNNs, in part to facilitate comparisons with other baseline
algorithms. The default settings are non-causal. For causal implementation, we use uni-directional LSTMs in ARN, and apply a
mask to the attention matrix in an attention block such that the entries above the main diagonal are negative infinity to remove
the contributions of future frames. For DC-CRN, the temporal dependencies are modeled by its RNN bottleneck. We easily convert
DC-CRN to the causal version by converting grouped BLSTMs to grouped uni-directional LSTMs. We set the group number to 2 for
the causal version and 4 for the non-causal version, so that their numbers of trainable parameters are close.

5. Experimental results

5.1. Reverberant-only experiments

To study factors impacting dereverberation performance, we conduct a series of experiments to enhance reverberant-only speech
signals or dereverberate the speech signals. We fix the window shift to 2 ms, and experiment with window sizes of 32 ms, 16 ms,
and 8 ms. We set the embedding dimension to be the same for all window sizes for a fair comparison, which is 1024 for ARN and
161 for DC-CRN as described in the respective papers. We also document giga floating-point operations per second (GFLOPs) by
taking the average of enhancing 50 test utterances using an open-source package.3 While ARN is computationally more efficient than
DC-CRN, within each architecture, the computational complexities are close. The results are displayed in Table 1. We denote time
domain models with WM standing for waveform mapping, and frequency domain models with CSM for complex spectral mapping.
Overall, the ARN architecture consistently outperforms DC-CRN across all three metrics, two different representation domains, and
three window sizes. We observe that a larger window size yields a small but consistent benefit for speech dereverberation, and the
baselines with a 32 ms window size perform the best. This is to be expected, especially for longer 𝑇60 values. With shorter STFT

3 https://github.com/Lyken17/pytorch-OpCounter.
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Table 2
Enhancement performance of two backbone DNNs on reverberant-noisy DNS speech.

Models Win (ms) −5 dB 0 dB 5 dB

SI-SNR STOI PESQ SI-SNR STOI PESQ SI-SNR STOI PESQ

Unprocessed −7.236 0.579 1.326 −3.002 0.652 1.558 0.276 0.714 1.780

ARN-WM 32 7.250 0.831 2.602 8.492 0.878 2.843 9.377 0.907 3.017
ARN-WM 16 7.576 0.836 2.619 8.841 0.883 2.863 9.726 0.912 3.034
ARN-WM 8 7.399 0.832 2.593 8.683 0.880 2.841 9.569 0.909 3.015

ARN-CSM 32 7.604 0.839 2.647 8.858 0.884 2.883 9.744 0.912 3.053
ARN-CSM 16 7.704 0.843 2.659 8.973 0.888 2.897 9.865 0.915 3.064
ARN-CSM 8 7.382 0.836 2.619 8.634 0.882 2.859 9.513 0.911 3.031

DC-CRN-WM 32 5.784 0.779 2.331 6.953 0.839 2.588 7.800 0.877 2.776
DC-CRN-WM 16 5.523 0.778 2.335 6.694 0.837 2.587 7.539 0.875 2.771
DC-CRN-WM 8 5.490 0.773 2.302 6.689 0.834 2.566 7.532 0.873 2.757

DC-CRN-CSM 32 5.915 0.794 2.416 7.096 0.850 2.667 7.941 0.885 2.843
DC-CRN-CSM 16 5.491 0.780 2.327 6.683 0.839 2.586 7.528 0.877 2.772
DC-CRN-CSM 8 5.134 0.764 2.234 6.295 0.827 2.505 7.122 0.867 2.700

Table 3
Enhancement performance comparison of strong baselines and proposed ARN-CSM in reverberant-noisy conditions. Win len/win shift denotes window size and
window shift respectively.

Win len/ −5 dB 0 dB 5 dB

win shift (ms) SI-SNR STOI PESQ SI-SNR STOI PESQ SI-SNR STOI PESQ

Unprocessed −7.236 0.579 1.326 −3.002 0.652 1.558 0.276 0.714 1.780

ARN-CSM (Pandey and Wang, 2022) 16/2 7.091 0.811 2.446 8.401 2.865 2.720 9.322 0.899 2.913
DC-CRN (Tan et al., 2021) 20/10 5.907 0.757 2.139 7.212 0.823 2.437 8.152 0.866 2.654
TFAUNet (Zhao et al., 2020) 20/10 4.826 0.679 1.811 6.034 0.753 2.042 6.955 0.806 2.225
SDDNet (Li et al., 2021) 20/10 5.438 0.745 2.101 6.802 0.810 2.353 7.758 0.854 2.547
TRUNet (Choi et al., 2021) 16/4 5.104 0.729 2.057 6.347 0.795 2.310 7.215 0.842 2.504
UFormer (Fu et al., 2022) 25/10 4.803 0.717 2.021 6.508 0.796 2.322 7.431 0.843 2.522

analysis windows, reverberation modeling within each frame is less accurate, causing worse estimation. The same reasoning applies
to time-domain models. Another finding is that STFT features have a little better performance compared with waveform segments
for DC-CRN. With a large enough window size, time-domain models perform competitively with frequency-domain counterparts.
For example, with a 32 ms window size, ARN-WM has almost the same performance as ARN-CSM, especially for longer 𝑇60 values.

5.2. Reverberant-noisy experiments

We employ the two backbone DNNs to perform non-causal speech enhancement in reverberant-noisy conditions. All the models
are trained from scratch. Similar to the reverberation setting, we control the window shift to 2 ms. The test data is created by first
convolving test utterances with test RIRs, and then mixing them with test noises at three SNR levels: −5 dB, 0 dB and 5 dB. We
display enhancement results in Table 2. Overall, the ARN architecture still achieves better enhancement performance. Compared
with the best result obtained by DC-CRN, we observe over 1 dB SI-SNR improvement, over 3% higher in STOI and 0.2 in PESQ.
Window size has a noticeable impact on enhancement performance. For DC-CRN, large window sizes are always beneficial in terms
of SI-SNR, STOI, and PESQ. When the window size is 8 ms, we observe a noticeable drop in enhancement performance, especially
in PESQ. The drop is significant for complex spectral mapping: for DC-CRN-CSM at −5 dB SNR, the window size of 8 ms has a 0.03
STOI drop and 0.18 PESQ degradation compared to the window size configuration of 32 ms. In terms of ARN, the 16 ms window
size produces the best enhancement performance. This could result from a compromise between denoising and dereverberation, as
removing background noise would not require a large window size. The effect of feature domains is consistent with the finding
in Section 5.1: there is a slight advantage of CSM over WM, but the overall performance is close. Additionally, for both ARN and
DC-CRN, the scores of waveform mapping variants are less affected by the window size compared with CSM counterparts. This could
be because the time difference between neighboring waveform samples is fixed, while the frequency spacing changes, as window
size varies. In other words, window size does not impact the time resolution of WM, but alters the frequency resolution of CSM.

5.3. Comparison with other baselines

To demonstrate the effectiveness of the proposed architectures, we compare different models under the same experimental setting
in 5.2 for speech enhancement in reverberant-noisy conditions. For our ARN-CSM baseline, we employ a window shift of 2 ms and
the window size of 16 ms. The DC-CRN implementation follows the original configuration in Tan et al. (2021), where we do not use
linear layers to transform input features and adopt a window size of 20 ms with a 50% overlap. We compare with several strong
7
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Table 4
Enhancement performance comparison of different training targets.

−5 dB 0 dB 5 dB

SI-SNR STOI PESQ SI-SNR STOI PESQ SI-SNR STOI PESQ

Unprocessed −7.236 0.579 1.326 −3.002 0.652 1.558 0.276 0.714 1.780

Early reverberation 7.604 0.839 2.647 8.858 0.884 2.883 9.744 0.912 3.053
Direct-path 7.415 0.835 2.638 8.540 0.884 2.880 9.750 0.909 3.049
Dry clean 6.897 0.821 2.426 7.995 0.872 2.674 9.235 0.891 2.968

Table 5
Enhancement performance comparison of different loss functions.

−5 dB 0 dB 5 dB

SI-SNR STOI PESQ SI-SNR STOI PESQ SI-SNR STOI PESQ

Unprocessed −7.236 0.579 1.326 −3.002 0.652 1.558 0.276 0.714 1.780

PCM 7.604 0.839 2.647 8.858 0.884 2.883 9.744 0.912 3.053
RI+MAG 7.951 0.838 2.649 9.239 0.884 2.890 10.140 0.912 3.062
MAE 8.191 0.820 2.507 9.489 0.869 2.732 10.387 0.898 2.904
SI-SNR 7.864 0.811 2.470 8.995 0.861 2.696 9.892 0.893 2.864

The first baseline is TFAUNet (time–frequency attention UNet) by Zhao and Wang (2020). We convert the original implementation
o a causal setting by eliminating future frames in attention computation, and also modify dilated convolutions to fit the causal
equirement. The second baseline is SDDNet (Li et al., 2021), and we follow the original description by using a 320-point STFT with
50% overlap and also compress spectral magnitudes. Additionally, we adopt the three-stage implementation as it leads to the best
bjective metrics. The third model for comparison is the tiny recurrent UNet by Choi et al. (2021), denoted as TRUNet. Following
heir description, we use a 16 ms window length and 4 ms window shift. Our implementation uses an open-source repository4 as

reference. The last baseline is UFormer (Fu et al., 2022). Following their default setting in the publicly available code repository,5
we adopt a window size of 25 ms and a 10 ms window shift for a 512-point STFT computation.

We present comparison results in Table 3. Our ARN-CSM shows a clear advantage over other baselines in all metrics. Especially at
−5 dB SNR, ARN-CSM has 1.184 dB SI-SNR improvement over the second best baseline of DC-CRN, and STOI reaches 0.811, which
is 6.6% higher than SDDNet. In addition, the PESQ value of 2.446 is much higher than the next two best baselines of DC-CRN and
SDDNet, demonstrating its strong ability in speech dereverberation and denoising.

5.4. Training targets

In this study, we adopt a training target obtained by convolving dry clean signals with the first 50 ms of a simulated RIR, denoted
as ‘‘early reverberation’’. In addition, we conduct a set of enhancement experiments with different training targets using ARN-CSM
for joint denoising and dereverberation, and present the results in Table 4. This evaluation includes the direct-path signal, obtained
by first setting the 𝑇60 parameter of the RIR generator to zero and then convolving with the dry clean signal (Wang et al., 2021a),
and the dry clean signal. As shown in the table, training with the proposed early-reverberation target produces slightly better results
than the direct-path signal. Training with the dry-clean signal consistently performs worse across different SNR levels. Using the
dry-clean signal as the target increases training difficulty and may lead to artifacts in the enhanced speech (Valin et al., 2022).

5.5. Loss functions

To examine the effect of loss functions, we perform speech enhancement using the ARN-CSM variant in reverberant-noisy
conditions. The results of the loss functions described in Section 3.2 are shown in Table 5. We find that the frequency-domain
loss functions (PCM and RI+MAG) show a clear advantage over the time-domain losses (MAE and SI-SNR) in STOI and PESQ. This
advantage could be explained as follows. In the time domain, reverberation is produced by convolving a speech signal with an RIR,
which is non-additive, and room impulse responses are highly sensitive. In the frequency domain, reverberant speech amounts to the
product of the frequency response of an RIR and a complex spectrogram,6 which should be easier to separate. Also, both PCM and
RI+MAG regulate STFT magnitude estimation, which benefits STOI and PESQ metrics that are measured in magnitudes. PCM and
RI+MAG perform similarly in terms of STOI and PESQ, although RI+MAG has a small improvement over PCM in SI-SNR. Among
time-domain losses, MAE performs slightly better than SI-SNR, which is very sensitive to sudden changes of speech samples.

4 https://github.com/YangangCao/TRUNet.
5 https://github.com/felixfuyihui/Uformer.
6 Strictly speaking the statement is only valid when the STFT analysis window is greater than the length of the RIR filter, and it is otherwise an approximation.
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Fig. 3. Illustration of the baseline, and two transforms performed in DC-CRN-WM corresponding to the ‘‘Linear Transformation’’ and ‘‘Conv Channel
Transformation’’. Also shown are feature dimensions in the format of (𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠,𝑁𝑢𝑚𝑂𝑓𝐹𝑟𝑎𝑚𝑒𝑠, 𝐹 𝑟𝑎𝑚𝑒𝐿𝑒𝑛𝑔𝑡ℎ) with 𝐿 denoting frame
length and 𝐸 embedding dimension.

Table 6
The effect of transform layers on DC-CRN-WM for speech dereverberation.
Model SI-SNR STOI PESQ

Unprocessed 3.920 0.830 2.324

Baseline (no transform layer) 7.865 0.920 3.038

Linear transformation 9.830 0.939 3.169
Conv channel transformation 9.880 0.939 3.197

5.6. Transform layer

Previous studies suggest that the initial layers of CNN-based time-domain networks can emulate STFT-like transformations (Luo
and Mesgarani, 2018; Borgström and Brandstein, 2020). In this section, we investigate and evaluate the effect of different transforms.
We argue that the incorporation of a transform layer is crucial for time-domain networks for speech dereverberation, and is a
major factor contributing to their competitive performance compared with frequency-domain counterparts. A transform layer in this
context refers to a learnable layer that operates on input vectors, which works like STFT operations. It is typically a linear layer,
but it can be other learnable operations like convolution. To validate this argument, we employ a causal DC-CRN-WM network as
our baseline and compare the speech dereverberation results of different transforms. For the baseline network, instead of a linear
encoder, we add a convolutional layer with a stride of (1,2) and a kernel size of (1,4), corresponding to the number of frames and
frame length, respectively. The number of channels is set to 16, and the subsequent convolution layer is changed accordingly. Unlike
traditional approaches that use a linear encoder, our baseline integrates a convolutional layer with a stride of (1,2) and a kernel size
of (1,4), corresponding to the number of frames and frame length, respectively. We regard the frame length as the feature dimension.
The added convolution operation is applied locally and does not project the feature dimension to the embedding dimension. This
setup leads to a fully convolutional baseline without any linear pre- or post-processing layers, distinguishing it from models with
transform layers. Fig. 3 illustrates this baseline and two kinds of transform layer. The first transform layer (Linear Transform) is
the proposed design, where we perform linear transformation before the convolutional encoders on the feature dimension directly.
The second transform layer (Conv Channel) employs a convolution layer to transform the feature dimension into the embedding
dimension, which treats the feature dimension as convolutional channels and serves as the transform layer.

The speech dereverberation results are listed in Table 6. As shown in the table, the baseline with no transform layer clearly
underperforms the others. Compared with the two transforms, STOI drops by 1.9%, and PESQ by over 0.13. Using a linear layer or a
convolution operation to encode features to an embedding space results in similar dereverberation performance. Fig. 4 visualizes the
magnitude spectrograms of a target utterance and the corresponding reverberant utterance, along with the learned representations
obtained by the baseline and two transforms (obtained before the backbone network in Fig. 1). Note that we only plot the first
channel for the baseline, as visualizations of other channels are similar. The learnable representations of ‘‘Linear Transform’’ and
‘‘Conv Channel’’ show similar patterns, which resemble globally the magnitude spectrogram of the target utterance, hence beneficial
for dereverberation. Without a transform layer, the convolutional encoder operates locally and cannot capture the global pattern of
reverberation.

6. Conclusion

We have investigated various techniques and designs for speech dereverberation and speech enhancement in reverberant-noisy
conditions. Using two backbone DNNs, we contrast time-domain and frequency-domain models. Our investigation has led to the
following observations and insights. A proper transform layer is crucial for speech dereverberation of time-domain models, as it
9
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Fig. 4. Effects of transform layers: (a). The magnitude spectrogram of a target utterance. (b). The magnitude spectrogram of the corresponding reverberant
utterance. (c). The visualization of the encoded output obtained for the fully convolutional baseline. (d). Visualization of the encoded output by performing
convolutional transform on the feature dimension. (e). Visualization of the encoded output by performing a linear transform on the feature dimension.

enables learning meaningful and sparse representations that are similar to STFT magnitudes. Although STFT features show a slight
advantage over waveform signals, with a large enough window size and a simple linear transform layer, one can obtain equally strong
dereverberation performance using time-domain models. We also show that window sizes play a significant role in enhancement
models, and larger window sizes tend to result in better dereverberation performance. Using an optimized loss function and the above
insights, a frequency-domain ARN outperforms other strong baselines and achieves state-of-the-art enhancement performance on the
DNS dataset.
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