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Abstract—Recently, much work has been devoted to the com-
putation of binary masks for speech segregation. Conventional
wisdom in the field of ASR holds that these binary masks cannot
be used directly; the missing energy significantly affects the
calculation of the cepstral features commonly used in ASR. We
show that this commonly held belief may be a misconception; we
demonstrate the effectiveness of directly using the masked data on
both a small and large vocabulary dataset. In fact, this approach,
which we term the direct masking approach, performs compa-
rably to two previously proposed missing feature techniques. We
also investigate the reasons why other researchers may have not
come to this conclusion; variance normalization of the features is
a significant factor in performance. This work suggests a much
better baseline than unenhanced speech for future work in missing
feature ASR.

Index Terms—Direct masking, ideal binary mask, robust auto-
matic speech recognition.

I. INTRODUCTION

B ASELINE systems provide a benchmark for judging
advances in a field. New methods and techniques are

considered effective when their performance exceeds the base-
line. As a field progresses, baselines slowly improve to reflect
the advances that have been made. However, there comes a
time to reevaluate the baseline altogether. For missing feature
techniques designed to provide robustness in automatic speech
recognition (ASR), systems typically have been compared
against unmodified, non-robust features. In this work, we show
that a stronger baseline is available that is comparable to or
outperforms standard missing feature techniques. The paper
also explores explanations for why this stronger baseline has
been overlooked in the literature.
ASR has long been known to suffer from the presence of

background noise [1]. Many techniques have been developed
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that attempt to address this issue.Model-based techniques incor-
porate noise models into recognition [2]; these techniques typi-
cally require some statistical knowledge about the noise source
and may require modifications to the recognizer. Noise-robust
features, on the other hand, attempt to maintain invariance of
the calculated features regardless of the noise condition [3].
Speech enhancement instead attempts to remove the noise from
the signal prior to feature calculation. These methods typically
do not require modifications to the standard recognition system.
Traditional speech enhancement methods, such as spectral

subtraction [4], attempt to modify frame-level noisy speech
spectra to make them closer to those of clean speech. In this
work, we focus on the Computational Auditory Scene Analysis
(CASA) based approach to speech enhancement. CASA, as we
consider it in this paper, refers to sound segregation based on
the perceptual process of auditory scene analysis proposed by
Bregman [5]. It typically operates on a time-frequency (T-F)
representation of the input, and produces an output that can be
viewed as a binary T-F mask.
One proposed goal of CASA is the ideal binary mask (IBM)

[6]. Conceptually, the IBM is very simple. A signal is first trans-
formed into a spectrotemporal representation; the spectrogram
and cochleagram are two common examples. Each pixel of this
two-dimensional image of the signal, or T-F unit, represents the
amount of energy at a particular frequency and time. The IBM is
the binary segregation of these pixels into two groups; one con-
taining energy mostly from a target source and one containing
energy mostly from the interference. Formally, we can define
the IBM as

otherwise
(1)

where is a frequency band and represents a particular time
frame. and represent the amount of energy at
a T-F unit for the clean speech and interfering noise respec-
tively. Fig. 1 provides an example. The threshold is typically
set to 1, corresponding to a local SNR of 0 dB. We note that
other studies have found improved performance using alterna-
tive thresholds [7], [8].
The IBM segregates the signal where a value of unity in-

dicates that the corresponding T-F unit is grouped into the
segregated target, and a value of zero indicates that the unit is
considered part of the interference and hence removed [9]–[11].
We call T-F units with value 1 unmasked, and those with value
0 masked. Approaching the problem in this manner reduces
speech enhancement to a binary classification task [6]. Previous
studies have shown that processing noisy speech using an IBM
can significantly improve speech intelligibility for humans
(e.g. [12]).

1558-7916/$31.00 © 2013 IEEE
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Fig. 1. Ideal Binary Mask example. The top panel is a cochleagram represen-
tation of clean speech. The middle panel is that same speech mixed with fac-
tory noise at an SNR of 10 dB. The bottom panel is the IBM generated from the
mixed speech. (a) Clean Speech; (b) SpeechMixed with Factory Noise; (c) Ideal
Binary Mask.

For ASR, conventional wisdom in the field holds that the IBM
cannot be used directly as the missing energy in the masked re-
gions significantly affects the calculation of cepstral features.
Directly using a mask refers to multiplying a spectrotemporal
representation of the signal by the mask and then resynthesizing
the waveform or calculating features from the masked signal.
Based on this conventional wisdom, many techniques have been
proposed to compensate for this missing energy when incorpo-
rating the IBM or related binary masks in ASR [13]–[15]. In
this work, we will demonstrate that this conventional wisdom
may, in fact, be a misconception. We extend our previous work
in [16], which showed the IBM could be used directly in ASR
for large-vocabulary tasks, in several ways. We present experi-
ments on a small vocabulary dataset to show the effect is not due
entirely to the strength of the language model. Our results show
that directly using the IBM, which we term the direct masking
approach1 as we perform no reconstruction before resynthesis,
not only works, but outperforms two main methods originally
proposed to overcome the supposed inadequacies of the direct
masking approach. In addition, we explain the likely cause for
the original misconception—the lack of variance normalization
in the features used. Results are also shown using estimated
masks to demonstrate the conclusions hold in more realistic
environments.
The rest of the paper is organized as follows. Section II

presents background on the research incorporating the IBM
in ASR. We describe in more detail two common approaches

1Previous work has referred to this approach as zero-imputation [17]. We
believe the term direct masking better distinguishes the approach from other
techniques as no explicit compensation for the missing energy is made.

to utilizing the IBM in ASR and the direct masking approach
in Section III. Our experiments on both small and large vo-
cabulary tasks in Section IV show that using the IBM directly
outperforms these two approaches in many cases. An analysis
of why our results may have differed from previous work
and our final conclusions are presented in Sections V and VI
respectively.

II. BACKGROUND

Once speech has been segregated using a binary mask, the
question of how to perform ASR on the segregated speech still
remains. Probably the first study to address this question is by
Cooke et al. [18] who noted that standard ASR techniques had
to be adapted to deal with occluded speech in masked T-F units.
By treating masked speech as missing during classification, they
adapted missing feature techniques in machine learning (e.g.
[19]) to perform HMM based ASR, where the key idea is to
marginalize over missing or unreliable features in probability
calculation (see also [20]). Early studies demonstrated the effec-
tiveness of marginalizing missing data or features by removing
feature components either in the spectral domain [18], [20] or
in the cepstral domain [18], which is far superior to recognizing
noisy speech without processing. Obviously, to apply missing
feature recognition in practice requires a missing feature de-
tector that provides binary labels on feature components such as
T-F units, which is considered the task of speech segregation.
Since speech segregation algorithms operate in the time-fre-
quency (spectral) domain, not in the cepstral domain, missing
feature recognition has focused on coupling with HMM recog-
nizers using spectral features [13].
It is well known that, for ASR, spectral or T-F features are

not nearly as effective as cepstral features [21]. The success
of marginalization has been mainly demonstrated on small-vo-
cabulary tasks, such as digits or phones, and its scalability to
larger vocabularies is questionable [22]. Treating marginaliza-
tion as classifier compensation, Raj et al. [14] proposes feature
compensation techniques by reconstructing missing features in
the spectral domain based on a prior model of speech. With
missing features reconstructed, a whole spectral vector can then
be converted to the cepstral domain where conventional ASR
is performed. A later study by Srinivasan et al. [23] addition-
ally converts spectral uncertainty in mask estimation to the cep-
stral domain for improved ASR. Others advocate ratio masks,
akin to Wiener filtering in speech enhancement, in place of bi-
nary masks in order to couple with cepstral features [22], [24].
Soft-masking [25], [26] takes a similar direction; the mask is al-
tered by either the estimated energy or the uncertainty in the esti-
mate. Ratio masks, soft masks, and reconstruction are all similar
approaches in the sense that they use a real-value mask instead
of a binary mask in the final enhancement.
Reconstruction of unreliable features from the reliable por-

tion of the signal is an inference that is inherently error-prone. It
hence seems logical to ask the question: What if no reconstruc-
tion is attempted? We have found only one study that explored
the results of this simple direct masking approach. Cooke et al.
[17] found that not modifying the masked regions performed
significantly worse than any other approach when using spec-
tral features. In addition, there are reasons to doubt the utility of
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the direct masking approach. First, conventional wisdom would
suggest that something must be done to holes (zeros) in a spec-
trogram or cochleagram created by binary masking [18]. This
conventional wisdom is well founded when recognition is per-
formed in the spectral domain as marginalization is a theoreti-
cally optimal technique. Second, it is not unreasonable to think
that reconstruction, despite its approximate nature, should beat
no reconstruction at all. This reasoning is encouraged by gener-
ally good results obtained from reconstruction research in com-
parison to recognition of noisy speech or some enhanced version
via e.g. spectral subtraction [14], [23], [27]. Subsequent studies
likely either ignored this approach based on the results in [17]
or obtained poor results and declined to report them. Nonethe-
less, one would think that the condition ought to be included as
a baseline in comparisons. We will make those comparisons in
this study and present a likely reason for its absence in previous
work.

III. COMMON APPROACHES

In the previous section, we gave a brief overview of the re-
search concerning the incorporation of binary masks in ASR.
We now present a more detailed description of marginalization
and reconstruction approaches. Both techniques are examples of
missing feature ASR. We separate the two techniques by how
they handle missing features; for a more detailed review, see [7].
We also discuss the simplest method of incorporating the binary
mask, directly using the masked signal.

A. Marginalization-Based ASR

Originally proposed by Cooke et al., marginalization [13]
was the first approach to address the issue of incorporating
binary masks in ASR. While several variations were de-
scribed in [13], we will focus here on the best performing
method—bounded marginalization. Features are partitioned
into reliable and unreliable ones based on a binary mask.
Masked T-F units correspond to unreliable and unmasked
units to reliable features. The marginalization-based speech
recognizer is a modified HMM-GMM based speech recognizer
that treats these masked and unmasked units in separate ways.
In a typical HMM based recognizer, every state is modeled by

a GMM. The likelihood of a feature vector given a particular
state can be obtained by evaluating . By separating
the feature vector into reliable and unreliable components, the
evaluation becomes

(2)

where we integrate over (i.e. marginalize) the possible values
of . As we are using a GMM with diagonal covariance for
modeling, this becomes

(3)

where is a particular Gaussian and is the number of Gaus-
sians in the GMM. The assumption and are independent
given is implicitly made. While this is not true in practice,

it follows from the use of a diagonal covariance matrix in the
Gaussians.
Just as we partitioned the feature vector into reliable and un-

reliable portions, we can partition the means and variances of
each Gaussian. We can then evaluate by evaluating
the Gaussian only over the reliable dimensions. If we do not as-
sume anything about the unreliable data, then the integral eval-
uates to one. However, we can at least determine bounds of the
true feature based on the unreliable vector. Assuming repre-
sents speech energy and we ignore phase interactions, then the
true speech cannot have negative energy or more energy than in
. Note that while this assumption can sometimes be violated

due to phase interactions, this effect is commonly ignored in
missing data literature. The integral can then be evaluated using
these bounds for a more accurate result.
Assuming that a given binary mask is accurate, the marginal-

ization-based recognizer utilizes the available information
from all the T-F units. Reliable units are treated in the standard
way and unreliable features provide bounds on marginaliza-
tion. On small vocabulary tasks such as TIDigits [28], the
marginalization approach performs remarkably well. However,
performance on larger vocabulary systems degrades signifi-
cantly [14], [22]. A likely cause is the use of spectral features
instead of the cepstral features which are known to perform
better in ASR [21]. Methods that allowed for the calculation of
cepstral features were needed to further increase performance,
at least for larger vocabularies.

B. Reconstruction-Based ASR

Onemethod that allows for the calculation of cepstral features
is the estimation or reconstruction of missing T-F units. If the
missing T-F units can be reconstructed, then the zeros or holes
in the spectral representation no longer present a problem for
cepstral feature calculation. The first comprehensive study of
feature reconstruction was presented by Raj et al. [14].
It was clearly shown that this method only provided improve-

ments over marginalization when using cepstral features. If in-
stead the recognition was performed in the spectral domain, the
reconstructed features performed worse. The results also held
over larger vocabulary tasks. One benefit of this technique is that
it does not require any modification to a standard recognizer.
Many specific techniques for performing the reconstruction

have been explored [14], [15], [29]. We will present a technique
that has been previously shown to improve results over a base-
line system [23]. A comparison between this method and di-
rectly using the IBM will allow us to determine if reconstruc-
tion is always the preferred approach. We note that while the
reconstruction approach in [23] is similar to the cluster-based
approach proposed on [14], it does not make use of boundary
information when calculating the posterior probability for each
Gaussian component.
As with marginalization, a binary mask is used to partition the

noisy speech vector into a reliable set and an unreliable set
where and . Given , we want

to estimate the true spectral vector for the clean speech.
Assume . In order to estimate , a speech prior

is used [14]. The speech prior, consisting of spectral features
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instead of the cepstral features eventually used for recognition,
is modeled by a GMM. Note that while this approach can use
full covariance matrices, we use diagonal covariance matrices
in our experiments. Just as we used the binary mask to partition
the spectral vector, we can also use it to partition the mean and
covariance of each mixture.

(4)

Ideally we would select the Gaussian that generated the spec-
tral vector for estimation. Since we cannot identify the specific
Gaussian, the estimate is the weighted sum of the estimates from
each Gaussian.

(5)

where is the number of Gaussians and is the expected
value of given the th Gaussian. To estimate , the
marginal distribution is used
[23]. Finally, we compute the expected value of given the
th Gaussian by

(6)

The unreliable portion of the spectral vector is then replaced
by the estimate and cepstral features are computed from
the reconstructed spectrogram. If the estimate exceeds the
original value , then the original value is kept instead. Again,
while this formulation can make use of a prior using full covari-
ance matrices [14], our experiments, as in our previous work
[16], use diagonal covariance matrices. The use of diagonal co-
variance matrices limits the amount of cross-channel interaction
that can be leveraged during reconstruction.
Given that this approach allows for the calculation of cepstral

features, performance is expected to scale to any size vocabu-
lary. As methods for improving reconstruction further develop
(e.g. [27], [30]), ASR results should also improve. While all of
these techniques allow for the incorporation of a binary mask in
ASR and show strong improvements over the baseline of rec-
ognizing noisy speech directly, they began with the implicit as-
sumption that a binary mask cannot be used directly in ASR.

C. Direct Masking Approach

Both of the previously mentioned approaches start from the
same point. Given a binary mask, estimated or ideal, they mask
the signal in the spectral domain. From this point, marginaliza-
tion marginalizes over the masked regions and reconstruction
estimates the original signal in the masked regions. However,
there is a simple third approach that treats the masked regions
as having zero energy. The direct masking approach begins from
the same point as the other two methods, but makes no attempt
to compensate for the masked regions. Other work has referred
to it as zero-imputation [17], but we feel the term direct masking
better captures the distinction between this approach and the
previous two as no actual imputation or marginalization takes
place.
Given a computed binary mask in a spectral domain, we mul-

tiply themask by the representation of the signal in that same do-

main. From themasked spectral representation of the speech, we
can either calculate features or resynthesize a waveform signal.
In our study, we resynthesize the waveform signal prior to calcu-
lating features, but directly calculating features from themasked
spectral representation does not significantly change the results.
Resynthesizing the waveform also allows mask estimation and
feature calculation to be done in different signal representations.
The difference between this method and the previous two ap-

proaches is that no attempt is made to compensate the signal,
features, or recognition system for the artificial zeros introduced
in the spectral domain. One possible issue is that many features
require a log operation and the log of zero is undefined. How-
ever, the artificial zeros are typically not a problem because a
small amount of dither or noise is added to the signal before the
log operation is performed in standard MFCC and PLP calcu-
lation software. Alternatively, a value other than 0 can be used
for masked units in the binary mask. Small values produce sim-
ilar results to using a value of 0 when using ideal binary masks,
however, as will be shown in the next section, nonzero values for
the masked units are essential for improved performance when
using estimated masks.
Outside of Cooke et al. [17], we have been unable to find a

study using this simple approach. The likely cause is that re-
sults were very poor when using this approach in [17]. Since
that study, the conventional wisdom has been that this direct
masking approach does not work. Given this assumption, much
investigation has been made into alternative methods of uti-
lizing the binary mask in ASR. We examine the validity of this
assumption in the next section.

IV. RE-EVALUATION EXPERIMENTS

Our experiments parallel the research described in the pre-
vious section.We will compare the results of bounded marginal-
ization and spectral reconstruction to the direct masking ap-
proach on both a small and large vocabulary dataset. The small
vocabulary dataset, TIDigits [28], was used in Cooke et al. [13].
Since the strength of the spectral reconstruction technique over
marginalization was seen on larger datasets, we will focus on
spectral reconstruction for the large vocabulary dataset, Aurora4
[31]. Our recognition systems are similar to the ML-trained sys-
tems used in [13], [14], [23]. We acknowledge that our baseline
results are not state of the art, but our goal was to have a fair
comparison to the previously discussed studies.

A. TIDigits

The TIDigits corpus [28] consists of connected digit utter-
ances. It has been widely used for speaker independent ASR
studies [13], [32], [33]. As in previous studies, we use the male
and female subsets of the corpus. The training set consists of
8623 utterances spoken by 55 male and 57 female speakers. The
test set consists of 8700 utterances by a different set of 56 male
and 57 female speakers, making the task speaker and gender
independent. Note that, unlike the original study on missing
feature recognition by Cooke et al. [13], we use the full test
set to evaluate different ASR strategies. The direct masking
approach is compared with marginalization and reconstruction
based missing data approaches.
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Before presenting our results, we first describe the features
and models used. Marginalization based recognition is typically
performed in the T-F domain. Since features in the T-F domain
can be defined in multiple ways, we choose 5 more commonly
used feature representations to evaluate marginalization. They
are as follows:
• Cochleagram: Cochleagram is a popular feature represen-
tation in CASA that has been widely used for IBM es-
timation and other purposes [34]. To generate cochlea-
gram based features, the signal is first passed through a 64
channel gammatone filterbank to perform T-F decomposi-
tion [34] (see Ch. 1). The channel center frequencies are
uniformly spaced from 50 Hz to 8000 Hz in the ERB-rate
scale. The output at each channel is then windowed using a
20 msec rectangular window with a 10 msec overlap (this
corresponds to a frame rate of 100 Hz). The energy within
each window is finally compressed using a log operation
to obtain the cochleagram based feature at each T-F unit.
In order to bound the feature values from below by 0, the
energy values are incremented by 1 before compression.

• Rate64: The Rate64 features are obtained in a similar
fashion. After decomposing the signal using a 64-channel
gammatone filterbank, the instantaneous Hilbert envelope
is extracted at the output of each channel. The envelope
is then smoothed using a first-order filter with a time
constant of 8 msec and downsampled to 100 Hz to obtain
the features. Rate64 features are used in [13]. We use the
CASA Toolkit [35] to extract this feature.

• Cubic compressed Rate64 (CRate64): This feature is sim-
ilar to Rate64. After the initial T-F decomposition, the
Hilbert envelope at each channel is directly downsampled
to 100 Hz without smoothing, followed by a cubic root
compression operation. Cubic compressed ratemap fea-
tures are used in [33]. Smoothed versions have also been
used in other studies [25], [32].

• Cubic compressed Rate64 with delta (CRate64_D):
Studies in marginalization-based ASR have shown that
adding delta components (temporal derivatives) can be
useful in improving ASR performance [25], [36]. There-
fore, as a fourth feature, we augment CRate64 features
with their temporal derivatives to obtain CRate64_D
features. We chose CRate64 because it produced the
best performance on a smaller development set of 240
utterances.

• Spectrogram: All the above feature representations use a
non-linear frequency axis. As a fifth feature, we use the
spectrogram representation that has a linear frequency axis.
Spectrogram features are obtained by first transforming the
time-domain signal to the spectral domain using the FFT.
The frame rate is set to 10 msec and the window size to 20
msec. A Hamming window is used, as is commonly done.
The energy (squared amplitude) within each T-F unit is fi-
nally compressed using the log operator, as in the case of
cochleagram features, to obtain a 160 dimensional feature
representation at each time frame. Spectrogram based fea-
tures are used in [22]. We did not add delta components
since the performance with delta components was found

to be comparable to those without them, when tested on
the smaller development set.

For the direct masking and reconstruction based approaches,
mean and variance normalized perceptual linear predictive
(PLP) cepstral coefficients are extracted from the segregated
target signal to perform recognition. A 39-dimensional feature
representation that consists of 13 static coefficients along with
its delta and acceleration coefficients are used. Segregation is
performed either in the linear frequency domain using spec-
trogram features, or the non-linear frequency domain using
cochleagram features. When using the spectrogram represen-
tation, the target is resynthesized from the mixture using the
inverse DFT and the overlap-add method. Before applying the
inverse DFT, the unreliable (masked) values of the spectro-
gram, as defined by the IBM, are set to 0 in the direct masking
approach. In the reconstruction based approach, they are esti-
mated using the method described in the previous section. A
1024-component, GMM-based speech prior model is trained
using the training set of the TIDigits corpus for this purpose.
When using the cochleagram representation, the target signal
is resynthesized from the mixture using the method described
in [34] (see Section 1.3.6), which is based on an approach
introduced byWeintraub [37]. For the direct masking approach,
the IBM is used directly to segregate the target speech. For the
reconstruction based approach, masked T-F units of a cochlea-
gram are first reconstructed. The reconstructed feature value
in each T-F unit is then used to determine the percentage of
target speech energy with respect to the mixture energy within
the unit. Together with the 1s in the IBM, this defines a ratio
mask for the mixture signal which is then used to resynthesize
the target [34], [37]. Unlike the spectrogram, resynthesis in the
cochleagram domain is defined in terms of the original signal
and a ratio mask.
In all three approaches, the IBM defined using a local SNR

criterion of 0 dB is used to identify the masked and unmasked
regions in the T-F representation of a noisy utterance [6].2 The 0
dB criterion is commonly used in CASA to define binary masks.
The IBM is defined for each feature separately, by comparing
the premixed target and noise energy at each T-F unit. Even
though the masks look strikingly similar for all features, they
do have some differences. The delta mask for CRate64_D is
defined in the same way as in [25]. A delta feature is considered
reliable or unmasked if all the static features used to calculate
it are reliable, in accordance with the IBM. The direct masking
and reconstruction based strategies use the IBMs corresponding
to the cochleagram and the spectrogram features.
The ASR module consists of 11 word-level HMMs, one

for each digit (1–9, ‘oh’ and ‘zero’), a silence model, and
a short-pause model. Each word-level HMM consists of 8
emitting states, with the observation probability modeled as a
mixture of 10 diagonal Gaussian components [13], [23]. The
short-pause model has only 1 state, tied to the middle state of

2Note that Cooke et al. [13] use a binary mask called the a priorimask based
on whether the mixture energy is within 3 dB of the target energy, corresponding
to a local criterion of 7.7 dB instead of 0 dB. We experimented with both the a
priorimask and the IBM using a smaller development set of 240 utterances and
found that the latter works better, and hence is used for marginalization-based
ASR.
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TABLE I
WORD ACCURACIES OBTAINED USING THE CLEAN TEST SET OF

THE TIDIGITS CORPUS FOR VARIOUS FEATURES

the silence model. The HMMs are trained in clean conditions
using the HTK Toolkit [38]. Note that for marginalization-based
ASR, HMMs are trained for each of the 5 features, whereas
for the remaining two approaches they are trained using PLP
cepstral features. The HTK decoder is adapted to perform
bounded marginalization experiments. Additionally, word
insertion penalties for each of the features and each of the
methods are tuned separately using the development set of 240
test utterances.
1) Baseline Results: Before examining the performance of

the various methods for incorporating the IBM in ASR, we first
establish the baseline performance for each of the features pre-
viously described. Table I shows the word accuracy obtained in
clean conditions. As expected, the best performance is obtained
using PLP features as they reside in the cepstral domain as op-
posed to the other features that reside in the spectral domain.
The next best performance is obtained using CRate64_D fea-
tures. Rate64 performs the worst amongst the features that are
considered.
In order to test robustness to additive noise, clean speech

is mixed with three noise types from the NOISEX-92 corpus
[39]—car noise, babble noise and factory noise, at 6 SNR con-
ditions ranging from 20 dB to 5 dB, in decrements of 5 dB.
Figs. 2(a)–2(c) show theword accuracywhen trainedHMMs are
directly used to recognize noisy speech. Clearly, a marked dete-
rioration in performance is observed for all features as the SNR
decreases. Again, the best performance is obtained using PLP
cepstral features. Notice that when additive noise is stationary
(car noise), PLP features perform quite well, possibly because
they are normalized and therefore, less affected by such noise
types. Notice that for the other two noise types the decline in
performance for the spectral features is quick and pronounced.
In fact, the performance of the PLP features at 5 dB is compa-
rable to or better than every other feature at greater SNRs.
2) IBM Results: Now that we have established the rele-

vant baselines for our features, we examine the performance
of the various methods for utilizing the IBM in ASR. Since
marginalization results can be significantly affected by the
feature used, we perform marginalization experiments using
each of the previously described features to determine the
best feature for comparison against other techniques. The
marginalization results using the 5 spectral features are shown
in Figs. 3(a)–3(c). Among the five features, CRate64_D per-
forms the best in most conditions, likely due to the addition
of the delta components. For babble noise at 5 dB, even
though CRate64 performs slightly better than CRate64_D,
the difference is not statistically significant at . At

Fig. 2. Word accuracies in noisy conditions for 6 features and 6 SNR condi-
tions from 20 dB to 5 dB, in decrements of 5 dB on TIDigits. Also shown is
the average word accuracy for each feature, across all SNR conditions. (a) Car
noise. (b) Babble noise. (c) Factory noise.

5 dB the IBM is sparse and therefore, the delta mask is even
sparser. Since delta components are fully marginalized during
recognition, having a very sparse delta mask reduces the effect
of adding delta components to the feature. Both cochleagram
and CRate64 perform significantly better than Rate64 and
obtain similar word accuracies in most conditions. Note that
the rate of deterioration in performance with respect to SNR is
lower for spectral features compared to the other features. But
the peak performance of spectrogram (in clean conditions) is
significantly lower than that of CRate64_D (see Table I). As a
result, only for factory noise at-5 dB does it perform better than
CRate64_D features. At high SNR conditions, it performs even
worse than Rate64 features.
Next, we compare marginaliziation with the other two

approaches—direct masking and reconstruction. The compar-
isons are presented in two parts, based on the domain in which
marginalization and target speech segregation/reconstruction
are performed. In the first part, they are performed using spec-
trogram features with a linear frequency axis. The results of this
comparison are shown in Figs. 4(a)–4(c). In the second part,
they are performed in the non-linear frequency domain. Since



HARTMANN et al.: DIRECT MASKING APPROACH TO ROBUST ASR 1999

Fig. 3. Marginalization results for five spectral features in noisy conditions on
TIDigits. Bounds are applied during marginalization in all the cases, except for
the delta components of CRate64_D feature. Also shown is the average word
accuracy across all SNR conditions. Note that the scale on the ordinate does not
start at 0. (a) Car noise; (b) babble noise; (c) factory noise.

CRate64_D produced the best performance in this domain, it is
chosen to represent marginalization. The corresponding results
are shown in Figs. 5(a)–5(c).
As we can see from Fig. 4, when using the linear frequency

domain, marginalization-based recognition performs signifi-
cantly worse than both of the other approaches in all test cases.
The performance gap between the direct masking approach and
reconstruction is much closer. Only when the SNR drops below
5 dB on the two more difficult noise types, babble and factory,
does the direct masking approach begin to outperform recon-
struction. Since the IBM becomes very sparse in those cases, it
is likely that the reconstruction suffers from the lack of reliable
T-F units. It is unsurprising that performance at high SNRs and
for car noise is comparable since baseline performance for PLP
features in those cases was already strong.
The trends are somewhat different when using the non-linear

frequency domain (see Fig. 5). The most obvious difference is
the improvement seen for marginalization; inmany cases its per-
formance is now comparable to the other methods. Again, at low
SNRs for the two more difficult noise types, the direct masking

Fig. 4. Comparison of marginalization, direct masking, and reconstruction in
the linear frequency domain on TIDigits. Marginalization uses spectral features.
The other two approaches use PLP cepstral features. Also shown is the av-
erage word accuracy across all SNR conditions. (a) Car noise. (b) Babble noise.
(c) Factory noise. Note the scale of the ordinate.

approach still performs better than reconstruction. However, in
many cases the reconstruction does slightly outperform the di-
rect masking approach. Our main point in comparing the two
domains is to show that relative performance between direct
masking and reconstruction is consistent. This allows us to con-
nect these results to the results in the next section which focus
on the linear frequency domain.
We would like to highlight a key point based on the results

from this dataset. At no condition do the results justify a con-
clusion that the direct masking approach is not a viable method
for incorporating the IBM in ASR. None of the results here pro-
vide strong evidence that the evaluated marginalization or re-
construction techniques are significantly better than the direct
masking approach. In the next section we will examine whether
similar conclusions hold on a larger dataset.

B. AURORA4

Our experimental setup here is very similar to the one used
in the previous set of experiments. The Aurora4 [31] corpus
is a 5000-word closed vocabulary task. It was generated by
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TABLE II
WORD ACCURACY RESULTS USING THE IBM ON THE AURORA4 TEST SET. TIME DOMAIN REFERS TO FEATURES CALCULATED AFTER CONVERTING THE MASKED
SIGNAL BACK TO THE TIME DOMAIN. SPECTRAL DOMAIN REFERS TO FEATURES CALCULATED DIRECTLY FROM THE MASKED SPECTRAL REPRESENTATION

TABLE III
WORD ACCURACY RESULTS USING THE IBM ON THE AURORA4 TEST SET. BASELINE IS THE UNSEGREGATED NOISY SPEECH

Fig. 5. Comparison of marginalization, direct masking, and reconstruction in
the non-linear frequency domain on TIDigits. Also shown is the average word
accuracy across all SNR conditions. Note that the scale on the ordinate does not
start at 0. (a) Car noise; (b) babble noise; (c) factory noise.

adding noise to clean speech recordings in the Wall Street
Journal (WSJ0) database [40]. Each utterance has been mixed
with a noise source at a randomly chosen SNR between 5 and
15 dB. In total, six different noise types are used. Note that
Aurora4 does not allow for a breakdown by SNR as each test
set contains a mix of SNR conditions.

Using the HTK toolkit [38], we trained a baseline HMM
recognizer on clean speech. Our models consisted of tied-state
intra-word triphones with 16 Gaussians per state. The CMU
dictionary was used for our pronunciations. Cepstral mean and
variance normalized PLP features with delta and acceleration
coefficients were used, giving a 39-dimensional feature vector.
The reconstruction speech prior, consisting of a mixture of 1024
Gaussians, was also trained using the HTK. Again, the IBMwas
generated by comparing the premixed clean speech energy to the
noise energy in the linear frequency domain using a local SNR
threshold of 0 dB. After masking, the signal is converted back
to the time domain before calculating features. As noted earlier,
similar results are obtained by calculating features directly from
the masked spectral representation as shown in Table II.
We performed recognition experiments to compare the use

of masked and reconstructed speech.3 Our results utilizing the
IBM can be seen in Table III. Baseline refers to the recog-
nition of unsegregated noisy speech. As expected, the addi-
tion of noise causes a significant drop in performance com-
pared to word accuracy when recognizing clean speech, which
is 91.7%. Reconstruction refers to speech where the masked re-
gions have been estimated utilizing the technique described in
Section III-B. When comparing these results to the baseline, we
see a significant improvement. This is the type of comparison
typically shown in the literature discussing spectral reconstruc-
tion [23], [27], [29]. With such improvements in accuracy over
the baseline, it is easy to see how claims about the utility of re-
construction can be made.
However, these two results alone do not tell the whole story.

Consider the direct masking results where no attempt to re-
construct masked units has been made; performance is better
than reconstructed speech in every case. By attempting to re-
construct the missing spectral energy, performance was actually
hindered. Combined with the results presented on TIDigits, this
highlights a major issue within the missing-feature ASR litera-
ture.Without a comparison against the direct masking approach,
it is unclear whether a particular reconstruction technique pro-
vides any benefit.
While our results show the direct masking approach signifi-

cantly outperforms this particular reconstruction technique, we

3We did not perform marginalization-based experiments since the best per-
forming spectral feature performed worse on clean speech than the baseline for
any noise.
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Fig. 6. Word accuracy results averaged over all noise conditions on the Aurora4
dataset. Results show the effect of manipulating the value for masked units with
the ideal binary mask.

do not claim that the idea of reconstruction itself is ineffec-
tive. More sophisticated techniques can potentially surpass the
simple direct masking approach. In Table III we also show re-
sults for perfect reconstruction, where every missing T-F unit
has been replaced by the true energy of the clean speech. If the
reconstruction worked perfectly, it would significantly outper-
form the direct masking approach.
As mentioned previously, the artificial zeros in the spectral

value could potentially have unknown effects depending on the
type of feature calculation software used. Instead of using a
value of 0 for the masked units, any value between 0 and 1
can be substituted. Fig. 6 presents results for a range of values.
Values near 0 produce nearly identical results, demonstrating
that a small value near 0 can be safely substituted without de-
creasing performance. As the value used increases, performance
does decrease, but this is to be expected; more noise energy is
being included in the signal as the value increases.
We recognize that results using ideal masks may not tell the

whole story since estimated masks do contain errors. We now
examine the effects of mask errors on our results. We first ex-
amine the effects of randomly perturbing the ideal mask and
then demonstrate results using estimated masks. To randomly
perturb the masks a T-F unit is randomly and independently se-
lected and its value is flipped; the process is repeated until a
certain percentage of energy in the flipped T-F units has been
reached. Obviously the errors introduced in this manner would
differ from the errors seen in a mask estimation algorithm, but
it does provide a general idea of the effect of mask errors and
has been used in previous studies [17], [23].
Results on the Aurora4 test set are shown in Fig. 7. Average

word accuracy across all 6 noise types for both the direct
masking and reconstruction approaches versus energy devia-
tion are shown. Energy deviation is the ratio of energy in the
incorrectly labeled T-F units with respect to the total target
energy. We use this metric as opposed to a simple count of unit
labeling errors because we expect errors in high energy units
to affect the final result more than those in low energy regions.
Our results show reconstruction begins to outperform the direct
masking approach at around 10% energy deviation on average.
However, by the time reconstruction becomes the better per-
forming metric, performance is similar to the baseline.

Fig. 7. Word accuracy results on the Aurora4 test set using randomly perturbed
ideal binary masks. Average results over all 6 test conditions are displayed.
Results on all test conditions follow the same general pattern. The results use
an IBM where a given percentage of energy has been incorrectly classified as
speech or noise dominant.

For our estimated mask experiments, we use a simple mask
estimation technique. An estimate of noise and speech power
is used to calculate the instantaneous SNR. Given the SNR
estimate, a binary mask can be estimated. The noise estimate
uses a power spectral density estimator recently proposed
by Hendriks et al. [41] and the speech estimate comes from
the work of Erkelens et al. [42]. In working with estimated
masks, we learned that a small change to the direct masking
approach can produce large performance improvements. Since
the estimated mask contains errors, a less aggressive masking
approach seems appropriate. Instead of using a binary mask
with zeros for masked regions, any real value between 0 and 1
could be used. We found that a value of 0.5 performed best on
a development set for this mask estimation algorithm. While
this can be viewed as similar to soft-mask approaches, it still
differs significantly; only a single uniform value is used for
all masked units as opposed to estimating a specific value for
each T-F unit. Results comparing the performance of the direct
masking and reconstruction approach using estimated masks
can be seen in Table IV. Both approaches provide a modest, but
significant improvement over the baseline. As expected, based
on our results using perturbed masks, there is no significant
difference between the two approaches since the results are
relatively close to the baseline. Fig. 8 shows the performance
of direct masking using various values for the masked regions.
Performance is robust to a range of values and values between
0.2 and 0.6 all perform well.
Results on ideal, estimated, and perturbed masks provide ev-

idence that the simple direct masking approach does not per-
form significantly worse than reconstruction. In fact, just a small
reduction in energy deviation would produce a larger increase
in performance than perfect reconstruction would produce over
the direct masking approach. Improvements to mask estimation
may provide greater performance improvements compared to
improvements to reconstruction methods.
The direct masking approach provides a stronger baseline

compared to unsegregated noisy speech for missing feature
ASR. We also believe this demonstrates that future work in
mask estimation can evaluate performance in ASR without
requiring more complicated reconstruction techniques. We
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Fig. 8. Word accuracy results averaged over all noise conditions on the Aurora4
dataset. Results show the effect of manipulating the value for masked units in
an estimated mask.

TABLE IV
WORD ACCURACY RESULTS USING ESTIMATED BINARY MASKS ON THE
AURORA4 TEST SET. BASELINE IS THE UNSEGREGATED NOISY SPEECH

acknowledge that the reconstruction approach evaluated in
this study provides a relatively simple baseline. However, it
still requires training general speech models and implementing
the reconstruction technique. Direct masking operates without
additional work. In the next section we will explain why
our experiments showed, in contrast to previous results, that
directly using binary-masked speech can work well in ASR.

V. DIRECT MASKING AND VARIANCE NORMALIZATION

We have established that directly using the IBM can perform
well, but why has this not been previously reported? The direct
masking approach has been previously tested [17] and results
were poor. Other studies likely ignored this approach based on
these early results. If this is true, then what is different between
our experimental setup and the likely setup of previous work?
In our previous study [16], we found correlation between lan-
guage model strength and recognition performance, suggesting
that the Aurora results may have been due to the influence of the
language model. However, the present study shows a similar ef-
fect for small vocabulary and large vocabulary tasks, indicating
that the language model may not be a primary reason.
The remaining difference is the features used. Due to its pop-

ularity, previous work likely used MFCCs generated using the
HTK. As already mentioned, our experiments used PLP fea-
tures generated using the ICSI tool Feacalc [43]. In order to test
our hypothesis that the feature type could drastically affect the
results, we attempted to use the direct masking approach with
MFCC features. Results on the TIDigits data mixed with fac-
tory noise are shown in Fig. 9. Performance for other noise types
was similar. The direct masking approach using the IBM clearly
does not work. In fact, it performs worse than no segregation at
all. Obviously if previous researchers had seen a similar result,
it would have served as a strong motivator to explore techniques
for incorporating a binary mask in ASR.

Fig. 9. Word accuracies for the factory noise condition on TiDigits for MFCCs
with and without variance normalization and with and without the IBM. Results
are shown for 6 SNR conditions from 20 dB to 5 dB, in decrements of 5 dB.
Also shown is the average word accuracy across all SNR conditions.

Fig. 10. Word accuracies for the Aurora4 dataset for MFCCs with and without
variance normalization and with and without the IBM.

Fig. 11. Variances for the first 13 MFCCs computed from speech mixed with
babble noise, clean speech, and IBMmasked speech. The noise was mixed with
speech from TIDigits at an SNR of 5 dB.

Many differences exist between the two feature types, but we
found variance normalization was the only crucial difference.
Although HTK-based features typically do not use variance nor-
malization, HTK does provide this functionality. To show the
effects of variance normalization, we perform it on the MFCC
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Fig. 12. Each plot shows the mean subtracted 3rd cepstral coefficient. The noisy speech has been mixed with factory noise at 5 dB SNR. The black line shows
the plot of clean speech versus itself, illustrating the ideal relationship between enhanced speech and clean speech.

Fig. 13. Comparison of IBM masked MFCC features with clean speech. Noisy speech is created by mixing clean speech from TIDigits and factory noise at 5 dB
SNR. Feature histograms in the top row are unnormalized while those in the bottom are normalized. The RMS distance on the right is computed over every point
for each cepstral coefficient. The distance is between masked speech features and clean speech features.

features and show the results in Fig. 9. Each dimension was nor-
malized to have a unit variance per utterance. Two things are im-
mediately obvious when comparing the results in Fig. 9. First,
variance normalization has improved every result. Even recog-
nition on the noisy speech directly is significantly improved at
lower SNRs. It appears the decreased variance in the features
caused by the interference in the signal is a significant source
of the performance degradation. Second, the direct masking ap-
proach now performs remarkably well. The benefits of using
the IBM are only significant at lower SNRs. The variance nor-
malized cepstral features themselves appear to be fairly robust
in this small vocabulary domain. Regardless, simple variance
normalization allows the direct use of the IBM to be a strong
alternative to other techniques.
Fig. 10 presents the same experiments for Aurora4. On the

larger vocabulary dataset, the binary masked MFCC features
perform reasonably well even without variance normalization.
As opposed to the TIDigits results, in all cases the binary
masked features outperform the unenhanced features. The
strength of the language model in this dataset may allow the
recognizer to overcome the mismatch in the features. Even
though the unnormalized features see an improvement on the
Aurora4 dataset, variance normalization clearly provides a
large boost in performance.

We can examine the average variance of the first 13 cepstral
coefficients of the MFCC features used. Results are shown for
babble noise at 5 dB SNR for the TIDigits data set in Fig. 11.
The pattern is consistent across all noise types and SNRs. As
expected, variances for features generated from noisy speech
are less than features generated from clean speech. The noise
effectively fills in T-F units with low energy and decreases the
dynamic range of the clean speech. Variance normalization is
commonly used in robust ASR; Chen and Bilmes provide a thor-
ough analysis of the effects of normalization on noisy speech in
[44].
Fig. 12 illustrates the effects of masking and variance normal-

ization on the noisy speech for the third cepstral coefficient. In
each plot, the noisy speech is shown versus clean speech. The
data has been binned in order to show the density instead of the
individual points. If the noisy speech matched the clean speech
perfectly, only the bins along the diagonal marked by the black
line would contain points. One can consider matching this ideal
line as a goal for enhancement. The left subfigure shows that
adding noise decreases the variance of the data. Noisy speech
features also lack a linear relationship with clean speech. The
middle subfigure shows that masking increases the variance and
improves the linear relationship with clean speech, but the in-
creased variance has caused the plot to deviate from the ideal
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line. Finally, the right subfigure demonstrates that variance nor-
malization maintains the linear relationship and also corrects
the deviation. Similar patterns are seen for other cepstral co-
efficients.
A more detailed look at the effects of variance normaliza-

tion on masked speech over all cepstral coefficients can be seen
in Fig. 13. The top row uses unnormalized features and the
bottom row uses normalized features. The first column con-
tains features calculated from IBMmasked noisy speech and the
second column contains features calculated from clean speech.
In each plot, the data has been binned into histograms. When
comparing the histograms of unnormalized clean speech and
masked speech, the differences in the 0th feature are the most
obvious. This is to be expected as both the addition of noise
and the masking significantly change the amount of energy in
any frame. Differences in other features are also more promi-
nent than those seen in the normalized features. For the final
column, the root mean square (RMS) distance of the corre-
sponding points for each coefficient is shown. This plot uses the
actual values for the features and is not a comparison of the his-
tograms. The RMS plot clearly demonstrates that variance nor-
malization significantly reduces the difference between masked
and clean speech features, especially for lower order cepstral co-
efficients. We should note that, although Fig. 13 examines the
5 dB case, similar observations hold for other SNRs.

VI. CONCLUSION

We have shown the commonly held belief that a binary mask
cannot be used directly in ASR is incorrect. In fact, directly
using the IBM performs comparably to previously proposed
missing data methods on a variety of datasets. Previous work
likely missed this result due to the lack of variance normaliza-
tion on acoustic features. By controlling the variance of the fea-
tures, even results on the unsegregated noisy speech improved.
Since the increase in variance appears to be a major issue, sim-
ilar ASR systems should include variance normalization. We
also demonstrated that nonzero mask values can significantly
improve the performance of the direct masking approach when
utilizing estimated masks.
The direct masking approach requires no additional overhead

once a mask has been computed, and it is arguably the easiest
approach to using a binary mask for ASR. While we certainly
do not claim the direct masking approach should replace all
missing data methods, we believe it presents a stronger baseline
compared to unenhanced speech. Also, future work in speech
enhancement may be able to evaluate their methods in terms of
ASR performance without needing to implement more compli-
cated missing feature methods.
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