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ABSTRACT:
Recent years have brought considerable advances to our ability to increase intelligibility through deep-learning-

based noise reduction, especially for hearing-impaired (HI) listeners. In this study, intelligibility improvements

resulting from a current algorithm are assessed. These benefits are compared to those resulting from the initial dem-

onstration of deep-learning-based noise reduction for HI listeners ten years ago in Healy, Yoho, Wang, and Wang

[(2013). J. Acoust. Soc. Am. 134, 3029–3038]. The stimuli and procedures were broadly similar across studies.

However, whereas the initial study involved highly matched training and test conditions, as well as non-causal opera-

tion, preventing its ability to operate in the real world, the current attentive recurrent network employed different

noise types, talkers, and speech corpora for training versus test, as required for generalization, and it was fully causal,

as required for real-time operation. Significant intelligibility benefit was observed in every condition, which aver-

aged 51% points across conditions for HI listeners. Further, benefit was comparable to that obtained in the initial

demonstration, despite the considerable additional demands placed on the current algorithm. The retention of large

benefit despite the systematic removal of various constraints as required for real-world operation reflects the substan-

tial advances made to deep-learning-based noise reduction. VC 2023 Acoustical Society of America.
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I. INTRODUCTION

Difficulty understanding speech in background noise

remains the primary auditory complaint of hearing-impaired

(HI) listeners (Kramer et al., 1998; Dillon, 2012). This prob-

lem persists despite considerable technological advances

made to hearing aids and other devices over several decades.

A noise-reduction approach that has shown considerable

promise involves deep learning. In this approach, a deep

neural network (DNN) is trained to isolate target speech

from various interferences including background noise,

interfering speech, and/or room reverberation, allowing sub-

stantial increases in target-speech intelligibility. The current

study was conducted to establish advances made toward

implementing single-microphone deep learning noise reduc-

tion1 into hearing devices to solve the speech-in-noise prob-

lem. There were two specific purposes: First, intelligibly

increases for HI and normal-hearing (NH) listeners resulting

from a state-of-the-art deep learning algorithm were exam-

ined. This model was trained and tested using different

noises (noise independent), different talkers and speech

recordings (speaker and channel independent), and used

only past and the current time frame, allowing real-time

operation (causal, see Pandey and Wang, 2022).

Accordingly, it was free of all fundamental constraints pre-

venting operation in the real world. The second purpose of

the current study was to compare these results to those

obtained from the initial demonstration of deep-learning-

based noise reduction (Healy et al., 2013). In sharp contrast

to the current model, that initial model was highly con-

strained. It used the same noise segments from which train-

ing and test noise samples were randomly chosen, and

training and test utterances were selected from the same

talker and recording. This high level of similarity in training

and test would likely cause it to fail if presented with differ-

ent noises and talkers, and it used future time frames, pre-

venting real time operation. The use of similar subject

populations and test conditions facilitates comparison across

the decade.

Prior studies of deep-learning-based noise reduction

that we are aware of and in which human intelligibility was

assessed are listed in Table I. The current focus is on

human-subjects intelligibility (particularly HI or cochlear

implant, CI, listeners) rather than objective measures, the

latter of which involve acoustic comparison of the clean ver-

sus processed noisy speech. Although objective measures

are far more efficient than human-subjects testing, and

therefore invaluable for guiding the design of various model

architectures, these values are often only loosely related to

actual human intelligibility. This is especially true when HI
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TABLE I. Characteristics of various deep-learning models employed to examine human intelligibility. SE, Speech Enhancement; SS, Speaker Separation; SSN, Speech-Shaped Noise; SMN, Speech-Modulated

Noise.

Fundamental Requirements Characteristics

Noise

Segment

Independent

Noise

Independent

Nonstationary

Environmental

Noise

Recordings

Talker

Independent

Corpus/Recording

Channel

Independent Causal

Small

Network

Interference

Plus Room

Reverberation

Cross

Language

Complex

Domain Task

Listener

Type

Noises

Employed

Healy et al. (2013) NO NO YES NO NO NO NO NO NO NO SE NH/HI SSN, Babble

Healy et al. (2015) YES NO YES NO NO NO NO NO NO NO SE NH/HI Babble, Cafeteria

Chen et al. (2016b) — YES YES NO NO NO NO NO NO NO SE NH/HI Babble, Cafeteria

Goehring et al. (2016) YES NO YES NO NO YES YES NO NO NO SE HI SSN, Babble

Goehring et al. (2017) YES NO YES YES YES YES YES NO NO NO SE CI Babble, Traffic

Healy et al. (2017) — — — NO NO NO NO NO NO NO SS NH/HI Interfering Speech

Monaghan et al. (2017) YES NO YES NO NO YES YES NO NO NO SE NH/HI SSN, Babble

Bensten et al. (2018) YES NO YES NO NO YES YES NO NO NO SE NH Babble

Bramsløw et al. (2018) — — — NO NO YES NO a NO NO NO SS NH/HI Interfering Speech

Lai et al. (2018) — YES YES NO NO NO NO NO NO NO SE CI Two-talker, Construction

Zhao et al. (2018) YES NO YES NO NO NO NO YES NO NO SE NH/HI SSN, Babble

Goehring et al. (2019) YES b NO b YES YES YES YES YES NO NO NO SE NH/CI SSN, SMN, Babble

Healy et al., 2019 — — — NO NO NO NO YES NO NO SS NH/HI Interfering Speech

Keshavarzi et al. (2019)c YES NO YES YES YES YES YES NO NO NO SE NH/HI Babble

Healy et al. (2020) — — — YES YES NO NO YES NO YES SS NH/HI Interfering Speech

Healy et al. (2021a) — — — YES YES NO NO YES YES YES SS NH Interfering Speech

Healy et al. (2021c) — YES YES NO NO YESd NO NO NO YES SE NH/HI Babble, Cafeteria

Healy et al. (2021b) — — — YES YES YES NO YES NO YES SS NH/HI Interfering Speech

Li et al. (2021) — YES YES NO NO NO YES NO NO NO SE CI Two-talker, Construction

Current Study — YES YES YES YES YES NO NO NO YES SE NH/HI SSN, Babble

aLow latency model.
bDifferent noise recordings of the same type (babble or traffic) used for training and test.
cSubject preference assessed.
dEffectively causal.
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(or CI) listeners are involved or when complex acoustic

backgrounds are employed (see, e.g., Gustafsson et al.,
1998; Zhao et al., 2018). Other more technical reviews of

deep-learning-based speech enhancement and related sys-

tems that are less focused on human intelligibility assess-

ments may be found elsewhere (e.g., Wang and Chen, 2018;

Nossier et al., 2020; Ochieng, 2022).

The implementation of deep-learning-based noise

reduction into hearing technology can be divided into two

broad considerations: efficacy and viability. The former

refers to the ability of an algorithm to improve intelligibility

for a wide variety of listeners (particularly HI), across a

wide variety of acoustic environments. The latter involves

the ability of an algorithm to operate in real time on an

actual device. So, whereas the former consideration involves

the question, “can it work in principle?” the latter involves

the question, “can it work in practice?”

A. Efficacy considerations

The question, “can it work in principle?” necessarily

means, “does the algorithm increase target-speech intelligibil-

ity across a large variety of environmental conditions for a

wide variety of HI listeners?” The key to efficacy is the ability

of an algorithm to generalize to conditions not encountered

during network training—to tolerate a training-test mismatch.

This is critical because it is obviously impossible to train a

network on all conditions that will be encountered by a lis-

tener in the real world. Models that are not trained using suffi-

ciently varied noises and speech will tend to overfit the

training conditions and fail to generalize.

Table I shows the progression that has occurred with

regard to generalization. If a study included any conditions

that satisfy the listed requirement, then the requirement is

marked “YES.” On a positive note, these works largely

employed actual recordings of environmental sounds and a

range of signal-to-noise ratios (SNRs). They also generally

employed sentence materials and different sentences for

training versus tests were always employed. However, other

aspects of generalization were more challenging. As a result,

these aspects formed the focus of systematic study.

The first aspect to be addressed involved noise indepen-

dence—the use of different noise types and recordings for

network training versus test. As mentioned previously, the

initial introduction of deep-learning-based noise reduction

(Healy et al., 2013) was highly constrained in this aspect,

using the same brief noise recordings for both training and

test. That network was even trained on speech mixed with

noise at the same SNR as that used for the test mixtures.

This highly matched approach was taken for a reason: The

earliest implementations of deep learning used far more

rudimentary techniques than those employed today (ideal

binary mask, perceptrons and restricted Boltzmann

machines, sub-band classifiers, noisy phase, etc.), and large

intelligibility benefit for human listeners would likely not

have been achieved had more mismatched training versus

test conditions been employed.

The first step taken toward noise independence involved

the use of different segments of the same noise recording for

training versus test (e.g., an 8-min segment for training and

a different 2-min segment for test). Table I shows that

noise-segment independence was adopted early on and,

once achieved, was retained in subsequent studies (Healy

et al., 2015; Goehring et al., 2016; Goehring et al., 2017;

Monaghan et al., 2017; Bensten et al., 2018; Zhao et al.,
2018; Goehring et al., 2019; Keshavarzi et al., 2019).

The next step involved full noise independence—the use

of entirely different noise recordings and types for training

versus test. Successful increases in HI intelligibility were

achieved using a noise-independent model by Chen et al.
(2016), by training on a database of 10 000 different noises,

then testing using noises not in the training set. The noise

types in this study were also expanded to be more similar to

those in the real world—in addition to multitalker babble, an

environmental recording containing multiple sound sources

was used (cafeteria noise, which contains speech babble,

impact sounds from dishes, etc.). The data-driven approach

of large-scale training allows the training set to have suffi-

cient variability so that the network learns the concept of

“noise” more generally and is not tied to any specific exam-

ples of it. However, despite this early success and the large

intelligibility benefit observed, this aspect of generalization is

challenging and, as Table I shows, was not adopted routinely

in subsequent papers until several years later. Lai et al.
(2018), Healy et al. (2021c), and Li et al. (2021) employed

fully noise-independent noise-reduction models.

Another primary generalization aspect involves talker

independence (or speaker independence). Whereas the early

studies listed previously tended to focus on noise indepen-

dence rather than talker independence, Goehring et al.
(2017), Goehring et al. (2019), and Keshavarzi et al. (2019)

adopted the opposite approach. Using models that were

talker independent, but not noise independent, Goehring

et al. observed improved intelligibility in noise for CI users,

and Keshavarzi et al. showed that HI listeners displayed a

preference for processed speech.

In addition to background noise, individuals with hear-

ing impairment also have substantial difficulty understand-

ing speech in the presence of an interfering talker. In Healy

et al. (2017), a DNN was trained to separate a target talker

from a single interfering talker of opposite sex,2 and the tar-

get sentence was passed along to the listener (speaker sepa-

ration). As Table I shows, Healy et al. (2020), Healy et al.
(2021a), and Healy et al. (2021b) introduced talker indepen-

dence to speaker separation. The approach taken in these

studies to accomplish talker independence is similar to that

employed for noise—by training using many talkers, the

network learns what “speech” is more generally and not tied

to any particular talker. Because different speech corpora

are typically used for training and testing talker-independent

networks, these models are also speech-corpus or recording-

channel independent (see Sec. IV).

Another corruption common to everyday acoustic envi-

ronments involves room reverberation. Room reverberation
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can be highly detrimental to speech perception, especially

for HI listeners, and especially when combined with back-

ground noise or interfering speech. Zhao et al. (2018) dem-

onstrated the ability of a deep learning algorithm to improve

intelligibility for HI listeners in the presence of background

noise and concurrent room reverberation. This initial study

was noise-segment independent, but not talker independent.

This work was extended to speaker separation involving

interfering speech and concurrent room reverberation using

talker dependent (Healy et al., 2019) and talker-independent

models (Healy et al., 2020).

Recently, the concept of generalization was extended to

perhaps a limit, by examining cross-language generalization

(Healy et al., 2021a). A talker-independent DNN was used

to isolate a target talker from an interfering talker of the

opposite sex and simultaneously remove large amounts of

room reverberation. Training was performed using English

speech materials, but testing was performed using Mandarin

speech materials. These two languages were selected based

on their high prevalence of speakers and lack of known

common ancestry, the latter of which produces large linguis-

tic differences. The observation that the benefit in cross-

language conditions was comparable to that observed in

within-language conditions reflects the vast capability of

modern networks to generalize to acoustic conditions not

encountered during training.

B. Viability considerations

The question, “can it work in practice?” necessarily

means, “can the trained network be implemented into hearing

technology and operate in real-time (while retaining the abil-

ity to produce large intelligibility benefit)?” There is only one

fundamental requirement for viability—causality—that a net-

work operate on only past and present time frames and not

delay output in order to take advantage of future time

frames.3

There are two approaches that can be taken with regard

to network design. One first emphasizes efficacy, whereas

the other first emphasizes viability. The advantages and dis-

advantages of these approaches are discussed in Sec. IV.

Table I shows the different approaches. The earliest studies

emphasized efficacy (e.g., Healy et al., 2013; Healy et al.,
2017; Chen et al., 2016). Accordingly, benefit for human HI

listeners remained high in all conditions as progressive steps

were taken toward generalization (in those studies, noise

independence). Other early studies emphasized viability.

The networks of Goehring et al. (2016), Monaghan et al.
(2017), and Bensten et al. (2018) were causal to be real-time

capable and smaller to produce less burden on hardware.

Improved intelligibility in noise for HI or NH listeners was

observed in most but not all conditions. Keshavarzi et al.
(2019) also employed a small and causal model. Goehring

et al. (2017) and Goehring et al. (2019) extended this work

to CI users and showed that a small and causal model could

improve speech-reception thresholds in noise in most but

not all conditions. The network of Bramsløw et al. (2018)

was causal and low latency, but not small in size. These

authors observed large intelligibility increases in a speaker-

separation task involving HI listeners. The network of Healy

et al. (2021b) was also causal.

“Effectively causal” (Healy et al., 2021c) involves the

use of future time frames that produce delays below the

human detection or disruption threshold, which may be used

without hindrance to the listener (Stone and Moore, 1999;

2005; Goehring et al., 2018) but with potential benefit to the

network. These delays may be introduced so long as they do

not increase the overall latency of the system beyond the

human tolerance thresholds. Using 20 ms of future informa-

tion (and a large complex-domain network), Healy et al.
(2021c) observed significant intelligibility increases in all

effectively causal conditions.

C. The current study

In the current study, HI and NH intelligibility benefit

resulting from a current deep-learning noise-reduction algo-

rithm was assessed. Unlike prior models, the current network

was free of the constraints of the past and performed extensive

generalization (see Table I). The network was trained using

10 000 naturally occurring noises and tested on entirely differ-

ent noises (noise-independent). It was also trained using over

2000 different talkers and tested using a talker not included in

this set and from an entirely different corpus (talker and corpus

independent). Further, the current model employed only past

and the current time frame, allowing it to be fully causal as

required for real-time operation.

Once this assessment was completed, the results were

compared to those associated with the initial study (Healy

et al., 2013). The comparison model is both the first intelli-

gibility demonstration of deep-learning-based noise reduc-

tion and highly constrained. To allow direct comparison, the

test-speech recordings, test-noise types, some SNRs, test

procedures, and listener populations were the same across

studies. In sharp contrast to the current network, the initial

model employed the same talker and sentence corpus for

training and test (talker and corpus dependent) and the same

brief noise segments for training and test (noise dependent).

Also, the initial algorithm employed an analysis window

involving both past and future time frames (non-causal).

The overall goals of the current study were to establish

the intelligibility benefit for HI listeners resulting from a

state-of-the-art network and to establish the benefit that was

lost/gained across the decade-long span of steps taken

toward the creation of this constraint-free, real-time capable

deep-learning-based noise-reduction algorithm for hearing

technology.

II. METHOD

A. Subjects

Two groups of listeners participated. The HI group con-

sisted of 12 listeners, representing typical hearing aid users

with bilateral sensorineural hearing loss. All were binaural

hearing aid users, and seven were female. These listeners
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were recruited from The Ohio State University Speech-

Language-Hearing Clinic and ranged in age from 20 to

85 years (mean¼ 57). Pure-tone audiometry (ANSI, 2004,

2010) was used to verify hearing losses on the day of the

test. In accord with our desire to recruit representative

patients, the degree of hearing loss varied across frequencies

and listeners, who generally had sloping hearing losses that

ranged in degree from mild to profound. Pure-tone average

audiometric thresholds (PTAs) (means across thresholds at

500, 1000, and 2000 Hz across ears) ranged from 27 to

76 dB hearing level (HL) with a mean of 56 dB HL. Three

of the listeners had audiometric thresholds within normal

limits (20 dB HL or lower) for at least one frequency in at

least one ear (see dotted horizontal line in Fig. 1), but

otherwise, all thresholds were elevated in both ears for all

audiometric frequencies. Sensorineural loss was defined as

air-bone gaps of 10 dB or less at 500, 1000, 2000, and

4000 Hz, bilaterally. Although not selected based on the

symmetry of hearing losses, only one subject (HI5) had an

asymmetric loss (15 dB or greater between ears at three or

more contiguous frequencies). No subjects were excluded

based on results of cognitive testing. Figure 1 displays

audiograms for each of these listeners, who are numbered

from HI1 to HI12 in order of ascending PTA.

The NH group consisted of 12 listeners (all female)

with pure-tone audiometric thresholds of 20 dB HL or lower

at octave frequencies from 250 to 8000 Hz on the day of the

test (ANSI, 2004, 2010). The exception was NH10, whose

threshold at 8000 Hz in the right ear was 25 dB HL.

Recruited from undergraduate courses at The Ohio State

University, they ranged in age from 19 to 26 years (mean-

¼ 21) and represented young listeners with “ideal” hearing

abilities. All participants (HI and NH) were native speakers

of American English having no previous exposure to the test

sentences used in the current study, and all received either

course credit or a monetary incentive for participating.

B. Stimuli

Target sentences for evaluation purposes were drawn

from the standard recordings of the Hearing in Noise Test

(HINT, Nilsson et al., 1994) and were produced by a male

talker in general American English. Speech-shaped noise

and multi-talker babble were used as background noises for

FIG. 1. Pure-tone air-conduction audiograms for the HI listeners. Circles represent right ears and �’s represent left ears. The horizontal dotted line in each

panel represents the NH limit of 20 dB HL. Listener ages and sexes are also listed.
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the evaluation. The babble was a standard 9 min 52 s record-

ing from auditec (http://www.auditec.com). The HI listeners

were tested at –2 and –5 dB SNR in SSN and at 0 and –2 dB

SNR in babble. The NH listeners were tested at –2 and

–5 dB SNR in both SSN and babble. Stimuli were presented

as unprocessed noisy sentences and as algorithm-processed

(enhanced) versions of noisy sentences.

The algorithm was trained using speech materials from

the LibriSpeech corpus (Panayotov et al., 2015).

LibriSpeech is a corpus of approximately 1000 h of speech

from more than 2000 speakers. It is primarily used for

research on large-vocabulary continuous speech recognition

systems. The data in LibriSpeech are derived from the

LibriVox project (Kearns, 2014), which contains audiobook

recordings created using volunteers from across the globe.

Pandey and Wang (2020a,b) found LibriSpeech to be highly

effective for training corpus-independent speech enhance-

ment algorithms. Since LibriSpeech is recorded by thou-

sands of volunteers in diverse environments, recording

conditions vary considerably within the dataset, which is a

key to avoiding overfitting corpus-specific characteristics,

such as recording microphones and room acoustics.

The training noises consisted of 10 000 nonspeech

sounds from a sound-effect library (Richmond Hill, ON,

Canada4). Pairs of clean and noisy speech were created dur-

ing training by randomly selecting an utterance, a noise seg-

ment, and an SNR from { –5, –4, –3, –2, –1, 0} dB. A set of

150 validation mixtures was generated using utterances

from 6 speakers in the Wall Street Journal Corpus (WSJ0;

Paul and Baker, 1992) and a factory noise from the

NOISEX dataset (Varga and Steeneken, 1993).

C. Algorithm description

Given a speech signal s and a noise signal n with N
samples, a noisy speech signal y is modeled as

y ¼ sþ n; (1)

where y; s; nf g 2 R1�N . A speech enhancement algorithm

is concerned with improving the intelligibility and quality of

noisy speech y by obtaining a good estimate of s (i.e., ŝ)

from y. The current model was a time-domain algorithm.

For such an algorithm, the input feature is the time-domain

signal y instead of a time-frequency representation, such as

short-time Fourier transform (STFT), and the estimated out-

put is the time-domain signal ŝ. This approach alleviates the

need to perform fast Fourier transformations and then the

inverse transforms to return to the time domain.

In the current algorithm, an attentive recurrent network

(ARN) was employed for mapping a noisy waveform to an

enhanced waveform (Pandey and Wang, 2022). The ARN

accepts speech-plus-noise input and is a monaural (single-

microphone) system. The algorithm is made causal by restrict-

ing the use of time-frame information to the current and

past frames. A block diagram of the ARN for time-domain

speech enhancement is shown in Fig. 2. Details on the ARN,

including comparisons across various implementations and

comparisons to other approaches, may be found in Pandey

and Wang (2022).

We note that the LibriSpeech training utterances are

very different from the HINT sentences used for testing, and

the 10 000 noises used for training also differed from those

used for testing. The development of a corpus-independent

DNN in low SNR conditions has been found to be particu-

larly challenging due to the recently revealed cross-corpus

generalization issue in DNNs (Pandey and Wang, 2020b).

The current algorithm represents a large improvement

in terms of speech enhancement problem formulation. In the

initial study, speech enhancement was formulated as

magnitude-only enhancement and trained subband DNNs

were used to estimate the ideal binary mask (IBM). The

goal of the algorithm was to obtain an accurate estimate of

the IBM and not the clean speech. This early formulation

requires the use of noisy phase for reconstruction but also

leads to limited magnitude enhancement. The current study

formulates speech enhancement in the time domain, where

the goal is to directly estimate the enhanced waveform from

the noisy waveform, and as a result, the magnitude and the

FIG. 2. (Color online) The employed ARN for time-domain speech

enhancement.
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phase are jointly enhanced. In the case of ideal estimation, a

time-domain algorithm will output the clean speech,

whereas the IBM will output intelligible speech but with

variable quality. Moreover, a time-domain algorithm does

not require feature extraction at the input or waveform

reconstruction at the output. Healy et al. (2013) used a set of

complementary features (from Wang et al., 2013) at the

input and performed waveform reconstruction at the output

using gammatone filterbanks.

The current algorithm also represents an advance in

terms of model architecture compared to the initial study,

which employed multilayer perceptrons with pretraining

based on restricted Boltzmann machines (see Wang and

Wang, 2013). The current algorithm employs modern DNN

building blocks suitable for effective sequential processing

with contextual information, such as long short-term mem-

ory (LSTM; Hochreiter and Schmidhuber, 1997) and self-

attention (Vaswani et al., 2017). More specifically, the ARN

algorithm combines the power of recurrent neural networks

(RNNs) and self-attention for processing a sequence of

noisy speech frames. The RNN is naturally suited for

sequential modeling, where a sequence of input frames is

processed one by one in temporal order. The output for a

given input frame in the sequence is a function of the input

frame as well as RNN hidden states that encode past input

frames. However, RNNs suffer from the problem of explod-

ing and vanishing gradients and have difficulty encoding

longer-term correlations. The LSTM used in the ARN is a

form of RNN that alleviates this problem to some extent.

The mechanism of self-attention, on the other hand, uses all

the input frames in a sequence to estimate the output of a

given input frame by correlating the given frame with all the

input frames and utilizing (attending to) the input frames

that are most helpful for the estimation. It was recently

found to be superior to RNN for a plethora of sequential

modeling tasks. However, self-attention does not exploit

sequential order, i.e., it does not care about the temporal

order of input frames. The ARN is designed to leverage the

capabilities of RNN sequential processing and self-

attention’s longer contextual modeling.

In the ARN currently employed for speech enhance-

ment, a noisy input y is first segmented into overlapping

frames using a frame size of L samples and a frame shift of

H samples to get Y 2 RT�L, where T is the number of

frames. Next, all the frames are projected to a higher dimen-

sion of size D using a linear encoder, which serves the pur-

pose of dimension expansion. The output from the encoder

is processed using a stack of four ARN blocks. The output

from the final ARN block is projected back to the original

frame size of L using a linear decoder at the output. Finally,

overlap-and-add is applied to the sequence of enhanced

frames to obtain the enhanced waveform.

The building blocks of the ARN are shown in Fig. 3.

The ARN is composed of an RNN block, an attention block,

and a feedforward block. The input to the RNN block is first

normalized using a layer normalization (Ba et al., 2016) and

then processed using an LSTM RNN. Layer normalization

is used for faster training convergence and improved gener-

alization. LSTM is used to model the temporal dependency

between the sequence of frames in a causal fashion. The

input and the output of the RNN block are of size T � D.

The RNN block is followed by the attention block. The

input to the attention block is normalized using two separate

layer normalizations having different scale and bias parame-

ters. The first output is used as query (Q), and the second

output is used as key Kð Þ and value Vð Þ for a following self-

attention mechanism, where Q; K; Vf g 2 RT�D.

A schematic of the self-attention mechanism is shown

in Fig. 4. It involves three trainable vectors

q; k; vf g 2 R1�D. The rows in Q; K; and V are refined

using the following gating mechanism:

K0 ¼ K � r kð Þ; (2)

Q0 ¼ Lin Qð Þ � r qð Þ; (3)

V0 ¼ V � r Lin vð Þð Þ � Tanh Lin vð Þð Þ½ �; (4)

FIG. 3. The components of an ARN

block. It is composed of an RNN

block, an attention block, and a feed-

forward block. Layer Norm denotes

layer normalization and � is the ele-

mentwise addition operator.

FIG. 4. The self-attention mechanism inside the attention block. The inputs

to self-attention are Q; K and V, and the final output is A. Vectors q; k, v

and parameters of linear projections are trainable.
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where r is the sigmoidal nonlinearity, Lin is a linear layer

and � is elementwise multiplication. Before the element-

wise multiplication, vectors q, k, and v are broadcast to

match with the shape of matrices Q, K, and V, respectively.

Given that v is a fixed vector, r Linðvð ÞÞ � TanhðLinðvÞÞ is

also a fixed vector. This operation is only required at train-

ing time for the optimization of v (Merity, 2019). A precom-

puted constant vector from the best model after training is

used during evaluation.

The final output of the attention block, A 2 RT�D, is

computed using the following set of equations:

W ¼ Q0K0Tffiffiffiffi
D
p ; (5)

W0 ¼ Mask Wð Þ; (6)

W0 i; jð Þ ¼
W i; jð Þ if i � j

�1 otherwise;

(
(7)

P ¼ Softmax W0ð Þ; (8)

Softmax Wð Þ i; jð Þ ¼ eW i; jð Þ

XT

j¼1

eW i; jð Þ
; (9)

A ¼ PV0; (10)

where T is the transpose operator.

First, correlation scores between pairs of rows in Q0 and

K0, fQ0i; K0jg, where i; j 2 1;…; Tf g, are computed using

Eq. (5). Next, correlation scores of future frames are masked

or ignored by using a mask operator defined in Eq. (7),

which sets the correlation scores of future frames to �1.

Then, the softmax operator in Eq. (9) is applied to convert

correlation scores to probability values P 2 RT�D. The soft-

max operator uses exponential followed by summation in

the denominator. The exponential converts a �1 (from

mask) to 0, and hence, the contribution of future frames in

the total sum of denominator becomes zero, which makes

the algorithm fully causal. Finally, the attention output,

A 2 RT�D, is computed using Eq. (10). The final output

from the attention block is obtained by adding A to Q, which

provides a residual connection for improved gradient flow

during training (He et al., 2016).

The output from the attention block is processed using a

feedforward block. The feedforward block provides addi-

tional representation power to the preceding attention block

(Vaswani et al., 2017). The input to the feedforward block is

normalized using two separate layer normalizations. The

first normalized input is processed using a fully connected

block shown in Fig. 5. In the fully connected block, a linear

layer is first used to project its input of size D to a higher

dimension of size 4D, which is followed by Gaussian error

linear unit (GELU) nonlinearity (Hendrycks and Gimpel,

2016) and dropout. The output of size 4D is then collapsed

to size D by splitting it into four different vectors and adding

them together. Finally, the collapsed output is added to the

second normalized input to get the final output of the feed-

forward block.

All stimuli were resampled to 16 kHz for processing.

Prior to mixing, the target (clean) speech was scaled to

achieve the desired SNR. Next, the input to the network was

root-mean-square (RMS) normalized. A frame size of 20 ms

(L¼ 320) and a frame shift of 2 ms (H¼ 32) were used. The

use of a smaller frame shift was inspired by earlier studies

on corpus-independent speech enhancement (Pandey and

Wang, 2020a,b), where a smaller frame shift led to

improved generalization on untrained corpora. The RNN

block used LSTM with a hidden size of 1024. The parameter

D was set to 1024. A dropout of 5% was used in the fully

connected block.

The ARN was trained for 100 epochs with a batch size

of 32 utterances. The pairs of clean and noisy utterances

were dynamically generated during training by adding ran-

dom segments of speech to random segments of noise. All

the utterances within a batch were either truncated or pad-

ded with zeros to have length of 4 s.

The Adam optimizer was used for training (Kingma and

Ba, 2014). The learning rate was set to 0.0002 for the first 33

epochs after which it is exponentially decayed every epoch

using a scale that resulted in a learning rate of 0.00002 in the

final epoch. All the models were developed in PyTorch.

Mixed precision training was used to increase efficiency

(Micikevicius et al., 2017). The ARN was trained using two

Nvidia V100 32GB GPUs, with each batch distributed over

two GPUs using PyTorch’s DataParallel module.

Figure 6 displays waveforms and spectrograms for

clean, noisy, and algorithm-processed versions of a HINT

sentence used in the present study.

FIG. 5. The fully connected block inside the feedforward ARN block.
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D. Procedure

There were eight conditions for each listener (two proc-

essing conditions � two noise types � two SNRs). Again,

processing conditions were unprocessed speech-in-noise and

algorithm processed speech-in-noise, and the noise types

were SSN and babble. SNRs for HI were –2 and –5 dB in

SSN and 0 and –2 dB in babble. SNRs for NH listeners were

–2 and –5 dB in both noise types. Each listener heard 160

sentences, blocked by condition, with 20 sentences in each

block. For each combination of noise type and SNR, unpro-

cessed and processed conditions were presented juxtaposed.

The presentation order of the four noise type-SNR combina-

tions was randomized for each listener, as was the order of

the two processing conditions within each noise type-SNR

block. By presenting the sentences in the same fixed order

to all listeners, but randomizing conditions, the correspon-

dence between the sentence list and condition was random.

No sentence was used more than once for any listener.

The stimuli were played back from a Windows PC

using an RME Fireface UCX digital-to-analog converter

(RME, Haimhausen, Germany), through a Mackie 1202-

VLZ mixer (Mackie, Woodinville, WA), and presented

diotically using Sennheiser HD 280 Pro headphones

(Sennheiser, Wedemark, Germany). The overall RMS level

of each stimulus was set to 65 dBA in each ear using a

sound-level meter and flat-plate coupler (Larson Davis mod-

els 824 and AEC 101, Depew, NY). For the HI listeners,

additional frequency-specific gains were applied to compen-

sate for the hearing loss of each individual using the

NAL-RP hearing-aid fitting formula (Byrne et al., 1990).

This formula does not prescribe gains at 125 or 8000 Hz,

and so the gains applied to 250 and 6000 Hz, respectively,

were also applied to these two most extreme standard audio-

metric frequencies. These gains were implemented using a

RANE DEQ 60 L digital equalizer (RANE, Mukilteo, WA),

as described in Healy et al. (2015). Accordingly, these lis-

teners were tested without their hearing aids.

Twenty-five practice stimuli were presented to each lis-

tener prior to formal testing, consisting of five stimuli in

each of the following five conditions: (1) sentences in quiet,

(2) processed sentences in babble at the higher of the two

SNRs for each listener group, (3) processed sentences in

SSN at the lower SNR for each listener group, (4) unpro-

cessed sentences in babble at the higher SNR, and (5) unpro-

cessed sentences in SSN at the lower SNR. During this

familiarization, listeners were instructed to repeat back each

sentence as best they could and guess if unsure of the con-

tent of the sentence. Hearing-impaired listeners were also

asked to report about the loudness of the signals. All but two

reported that the stimuli sounded audible and comfortable.

HI10 reported that they sounded comfortable after reducing

the presentation level by 5 dB. HI12 reported that the stimuli

sounded comfortable and audible after a 10-dB reduction in

presentation level. The final presentation level for the HI lis-

teners ranged from 81.0 to 98.6 dBA (mean¼ 91.2).

Listeners then heard the 160 test stimuli while seated in a

double-walled sound booth. They were again instructed to

repeat back each sentence to their best ability, guessing if

unsure. The experimenter controlled the presentation of each

stimulus and scored words correctly reported. For a word to

be scored as correct, it had to be repeated exactly apart from

verb tense (is/was, are/were, and has/had) and article (a/the)

variations. The 20 target sentences presented in each condition

each contained three to seven words, for a total of 103 to 110

words in each condition. Sentence recognition was expressed

as the percentage of words correctly reported, and these

percent-correct scores were transformed to rationalized arcsine

units (RAUs; Studebaker, 1985) prior to statistical analysis.

III. RESULTS AND DISCUSSION

A. HI listeners

Figures 7 and 8 display intelligibility scores for each

individual HI listener in each condition. Results for the SSN

FIG. 6. (Color online) Enhancement of a HINT utterance corrupted by speech-shaped noise at –5 dB SNR using the employed ARN.
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conditions are displayed in Fig. 7, and those for the babble

conditions are displayed in Fig. 8. Each panel corresponds

to a different SNR, as indicated. The black and shaded/

hatched columns represent scores before and after algorithm

processing, respectively. The absence of a black column for

HI12 in SSN at –5 dB SNR reflects that this subject was

unable to correctly report any words in that unprocessed

condition. The algorithm benefit for each listener in each

condition corresponds to the difference in height between a

shaded/hatched column and the black column immediately

to the left of it.

Apparent from Fig. 7 is that the algorithm benefitted all

HI listeners at both SNRs in SSN. At least half of the HI lis-

teners received benefit exceeding 45 and 50% points for the

SNRs of –5 and –2 dB, respectively. Algorithm benefit in

SSN exceeded 30% points in 21 out of the 24 cases (12 HI

listeners� 2 SNRs). Apparent from Fig. 8 is that all HI lis-

teners also received benefit at both SNRs in babble, with at

least half of them receiving benefit exceeding 50% points at

both SNRs. The benefit in babble exceeded 30% points in

23 of the 24 cases.

Planned comparisons consisting of four two-tailed

paired t-tests on RAUs between unprocessed and processed

scores revealed significant algorithm benefit for HI listeners

at each noise types and SNR [each t(11) �7.9, each p value

< 0.0001, each Cohen’s d> 3.02]. These significant results

survive Bonferroni correction.

B. NH listeners

Figures 9 and 10 display intelligibility for the individual

NH listeners. Results for the SSN conditions are displayed

in Fig. 9, and those for the babble conditions are displayed

in Fig. 10. Note that the NH listeners were tested at the

same SNRs as the HI listeners in SSN, but overlapped at

only one SNR in babble. As anticipated, the performance of

the NH listeners exceeded that of the HI listeners in unpro-

cessed conditions. The mean NH scores for unprocessed

stimuli were 64% and 86% correct for the two SSN SNRs

(–5 and –2 dB) and 57% and 82% correct for the two babble

SNRs (also –5 and –2 dB). Accordingly, the algorithm bene-

fit was considerably smaller for the NH than for the HI lis-

teners. However, some benefit was observed in 20 of the 24

cases for SSN and in all 24 of the cases for babble. Planned

comparisons consisting of two-tailed paired t-tests on RAUs

for each of the four conditions of Figs. 9 and 10 revealed

FIG. 7. Sentence intelligibility scores for individual HI listeners. Black col-

umns represent unprocessed speech-in-noise conditions and shaded/hatched

columns represent these same conditions following algorithm processing.

Algorithm benefit is then represented as the difference between a shaded/

hatched column and the solid column directly to its left. The background

was speech-shaped noise (SSN) at the SNRs indicated.

FIG. 8. As Fig. 7, but for individual HI listeners and speech in multitalker

babble.
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significant benefit [each t(11)� 3.9, each p value< 0.01,

each Cohen’s d> 1.61]. This set of significant results also

survives Bonferroni correction.

C. Comparison between HI and NH listeners

Figure 11 displays group-mean sentence intelligibility

scores and standard errors of the mean (SEMs) for both HI

and NH listeners, plotted separately, in each condition.

Again, noise types and SNRs are plotted in separate panels,

black columns represent unprocessed scores, and shaded/

hatched represent processed scores. The group-mean algo-

rithm benefit for the HI listeners was 46 and 48% points for

SSN at –5 and –2 dB SNR, respectively, and 58 and 53%

points for babble at –2 and 0 dB SNR, respectively. When

benefit was expressed in RAUs to control for ceiling and

floor effects, these values increased slightly to 50 units for

both SSN SNRs, and 60 and 57 units in babble. The figure

also shows that the manipulation of SNR yielded the desired

baseline (unprocessed) scores for the HI listeners (scores

free of strong floor and ceiling effects). The mean baseline

intelligibilities were 13% and 36% correct for SSN and 24%

to 37% correct for babble. For the NH listeners, group-mean

benefit values were 16 and 8% points at –5 and –2 dB SNR,

respectively, in SSN, and 18 and 13% points at these SNRs

in babble. Conversion to RAUs produced no change in

benefit at the lower SNR for either noise type and an

increase to 13 and 19 units at the higher SNR in SSN and

babble respectively.

To address the question of whether the algorithm can

restore NH speech-in-noise recognition abilities to these HI

listeners, the performance of the HI listeners following algo-

rithm processing was compared to the performance of young

NH listeners without processing, in the conditions common to

both groups. As Fig. 11 shows, the HI listeners approached

within 1% point of the NH listeners’ performance in one con-

dition (babble at –2 dB SNR) and within 5% points in the

remaining two conditions (SSN at –5 and –2 dB SNR).

Although we note that nonsignificant differences do not imply

equality, three planned comparisons (two-tailed Welch’s

independent-samples t-tests on RAUs) between the algorithm-

processed scores for the HI listeners and the unprocessed

scores for the NH listeners in the three common conditions

were conducted. These differences were not significant [each

t� 1.1, each p> 0.3, each Cohen’s d< 0.41, dfs adjusted

using the Welch-Satterthwaite method ranged 17–22].

D. Comparison to Healy et al. (2013)

To examine the human-subjects performance differ-

ences associated with upgrading to the current modern

FIG. 9. As Fig. 7, but for individual NH listeners and speech in SSN. FIG. 10. As Fig. 7, but for individual NH listeners and speech in multitalker

babble.
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problem formulation and network architecture while sub-

stantially increasing the demands placed on the algorithm,

the present results were compared with those of Healy et al.
(2013). The present study was identical to Healy et al.
(2013) in terms of the speech recordings used, the noise

types and (most) SNRs employed, the populations from

which subjects were drawn, the numbers of subjects, the

testing procedures, and the inclusion criteria for each lis-

tener group. The particular noises differed but were of the

same type (SSN and babble). The primary difference across

studies was the algorithm used for processing and the

demands that had to be met.

Again, the 2013 algorithm was both trained and tested

using the same talker and 10-s noise segments and it oper-

ated on future time frames, meaning it was neither talker,

noise, nor corpus independent, nor was it causal. The present

algorithm was required to generalize to an untrained talker,

from an untrained corpus, and to untrained noise types, as

well as being fully causal. Figures 12 and 13 display group-

mean sentence intelligibility scores and SEMs for HI and

NH listeners in the conditions common to both studies, with

SSN in the upper panels and babble in the lower panels of

each figure. Pairs of columns labeled “2023” represent the

current results and are replotted from Fig. 11, whereas pairs

of columns labeled “2013” are from Healy et al. (2013). As

with the previous figures, benefit is represented as the differ-

ence between each unprocessed (solid column) and the cor-

responding processed score (hatched column). It is noted

that baseline (unprocessed) scores differed across studies,

likely attributable to the different samples of listeners

employed and the use of different noises of the same type

(different SSNs and different babbles).

Figure 12 displays scores for the HI listeners. In SSN at

–5 dB SNR (top left panel), the group-mean algorithm bene-

fit was the same across studies (46% points). However,

group-mean algorithm benefit was considerably higher cur-

rently relative to 2013 (48 vs 24% points) at –2 dB SSN (top

right panel). For HI listeners in babble, mean benefit was

slightly higher in the current study compared to 2013 at both

–2 dB SNR (58 vs 55% points, bottom left panel) and 0 dB

SNR (53 vs 50% points, bottom right panel).

Figure 13 displays scores for the NH listeners. In SSN,

the SNR common across studies was –5 dB. In this condi-

tion, group-mean benefit was slightly lower in the current

study compared to 2013 (16 vs 17% points, top panel).

Normal-hearing benefit was more noticeably lower for the

current study than for 2013 in babble at –5 dB SNR (18 vs

35% points, bottom left panel) and at –2 dB SNR (13 vs

FIG. 11. Group mean (and standard error) sentence intelligibility for the HI and NH listener groups. The background noise type and SNR are indicated, and

the HI and NH groups are plotted separately. As in Figs. 7–10, benefit is reflected as the difference between a shaded/hatched column and the black column

immediately to its left.
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21% points, bottom right panel), perhaps partly reflecting

the fact that the unprocessed scores were higher in the cur-

rent study.

Planned comparisons consisting of two-tailed Welch’s

t-tests on RAUs were used to assess differences in group-

mean algorithm benefit between the two studies. For HI sub-

jects, mean benefit was numerically higher for the present

(2023) algorithm in all 4 conditions, despite the far greater

demands placed on it, but this difference was only signifi-

cant in SSN at –2 dB [t(18.6)¼ 3.1, p< 0.01, d¼ 1.28].

For NH subjects, there was no significant difference in

benefit between the 2023 vs 2013 results in two out of the

three conditions common to both studies (SSN at –5 dB

SNR and babble at –2 dB SNR). In babble at –5 dB SNR,

benefit was significantly higher for the 2013 algorithm

[t(20.1)¼ 3.68, p¼ 0.0015, d¼ 1.50].

To determine the ability of these t-tests to detect differ-

ence between the results of the present study and those of

the 2013 study, a set of post hoc power analyses was con-

ducted using the MKmisc package (Kohl, 2022) in R 4.2.2

(R Core Team, 2020). It was determined that each of the

seven comparisons had a power greater than or equal to 0.8

to detect an effect size of 1.2. Accordingly, these tests had

sufficient power to detect large differences, should they

exist.

E. Objective measures of intelligibility and sound
quality

Table II displays objective measures obtained from

acoustic analyses of the current stimuli. Scores for both

noisy mixtures and processed mixtures are provided. Short-

time objective intelligibility (STOI; Taal et al., 2011), repre-

sents a correlation between the amplitude envelope of the

clean speech and that of the enhanced speech from the mix-

ture. Extended short-time objective intelligibility (ESTOI;

FIG. 12. Comparison between the cur-

rent study (2023) and the initial study

(Healy et al., 2013). Shown are sen-

tence intelligibility scores (and stan-

dard errors) for HI listeners, in two

noise types, at different SNRs, both

before and after algorithm processing.

The comparison is between benefit

obtained currently versus that obtained

in 2013. Benefit is reflected as the

height difference between each

shaded/hatched column and the adja-

cent black column. The speech record-

ings, noise types, testing procedures,

and subject populations were identical

across studies. The primary difference

was the demand placed on the algo-

rithm and the network architecture.
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Jensen and Taal, 2016), is similar and designed to better

handle fluctuating noisy signals. Perceptual evaluation of

speech quality (PESQ; Rix et al., 2001) is an objective mea-

sure of sound quality and ranges from �0.5 to 4.5. These

measures have been developed and validated for NH (and

not HI) listeners. Finally, the scale invariant signal-to-noise

ratio (SI-SNR; Le Roux et al., 2018) is an SNR estimate of

the noisy and processed signals. STOI increased from noisy

to ARN-processed by 20 points when averaged across con-

ditions. ESTOI increased by an average of 32 points. PESQ

increased by an average of 0.8, and SI-SNR increased by an

average of 10 dB.

IV. GENERAL DISCUSSION

The current results demonstrate that state-of-the-art

deep-learning-based noise reduction can produce large intel-

ligibility improvements for HI and NH listeners, despite the

considerable demands associated with extensive generaliza-

tion and fully causal operation. Intelligibility benefit result-

ing from processing averaged 46 to 58% points across

conditions for the HI listeners. Benefit was lower for NH lis-

teners (8 to 18 points), who typically experience less benefit.

These benefits were statistically significant in all conditions.

The other goal of the current study was to compare the

ability of the current algorithm to improve intelligibility

FIG. 13. As Fig. 12, but for the NH

listeners.

TABLE II. Improvement in objective scores for sentences in two noise

types at different SNRs.

STOI (%) ESTOI (%) PESQ SI-SNR (dB)

Noisy ARN Noisy ARN Noisy ARN Noisy ARN

Babble �2 dB 62.6 84.9 38.4 72.6 1.47 2.37 �2.0 8.1

0 dB 68.4 88.4 45.5 78.1 1.59 2.56 0.0 9.6

SSN �5 dB 59.0 77.9 32.7 62.9 1.37 2.01 �5.0 6.2

�2 dB 67.2 85.3 43.0 73.4 1.54 2.33 �2.0 8.7
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relative to the performance of the initial demonstration

(Healy et al., 2013). This comparison provides a cumulative

assessment of algorithm performance, or possible perfor-

mance loss, resulting from the removal over time of various

real-world constraints including talker, corpus, and noise

dependence, as well as from causal operation. Whereas the

removal of these constraints increases the challenge, it is

necessary for operation in the real world. For HI listeners, it

was found that the benefit observed currently matched or

exceeded that observed in the initial study (but only signifi-

cantly exceeded in one condition). For NH listeners, benefit

was lower currently than in the initial study (but only signifi-

cantly so in one condition).

It was noted that baseline intelligibility in unprocessed

conditions differed somewhat across the current study and

the initial demonstration (see Figs. 12 and 13). However, all

scores are free of strong floor and ceiling effects, and so

they largely fall in the linear portion of the psychometric

function relating intelligibility to information content. This

allows benefit (differences across two points on this largely

linear function) to be compared with reasonable confidence.

Nevertheless, the comparison of exact benefit values across

studies should not be emphasized.

It is concluded that modern deep-learning-based noise

reduction can produce large intelligibility benefit for HI lis-

teners (and also some benefit for NH listeners), despite the

removal of multiple constraints and the resultant demanding

test conditions. No decrement in benefit was observed for

the HI listeners (but some decrement was observed for the

NH listeners) resulting from the current algorithm relative to

the initial demonstration, thus illustrating the advancements

made to neural network design and deep-learning-based

noise reduction since 2013.5

As mentioned in Sec. I, there are two main approaches

to model design. In the efficacy-first approach, the focus is

on network performance and obtaining large intelligibility

benefit across a wide variety of generalizations. Causality

and network size (viability) is addressed once this efficacy

is achieved (network size refers to computational complex-

ity and the burden placed on host hardware). This is the

approach that we have taken in this area. In the viability-

first approach, causal networks are employed that are often

also small in size. Examples of this approach include

Goehring et al. (2016), Goehring et al. (2017), Goehring

et al. (2019), Monaghan et al. (2017), Bensten et al. (2018),

and Keshavarzi et al. (2019). Each approach has advantages

and disadvantages. An early emphasis on efficacy produces

networks that are unable to be implemented, but that pro-

duce vast benefit. An early emphasis on viability provides

networks that are more easily implemented, but that typi-

cally produce smaller benefit. The logic for each is as fol-

lows: The emphasis on efficacy retains intelligibility benefit,

while advances in network design allow this algorithm per-

formance to remain as steps are taken toward implement-

ability. The emphasis on viability retains implementability,

while advances in network design allow intelligibility bene-

fit to increase over time.

One advantage to the former approach is that a large

intelligibility-benefit benchmark is established, and this

benchmark can be monitored as generalization is systemati-

cally advanced and steps are taken toward viability.

Accordingly, the performance “costs” associated with each

step are known and alternative approaches can be sought if

that cost is high. An example of this approach involves the

comparison in Healy et al. (2021b), who examined the cost

associated with conversion to causal operation. The large

intelligibility-benefit benchmark established using a non-

causal speaker-separation/de-reverberation network (Healy

et al., 2020) was used to directly establish the “causal cost”

by modifying the 2020 model to be fully causal. A decre-

ment in HI intelligibility benefit was observed in most but

not all conditions, and these decrements were statistically

significant in half of the conditions tested. However, benefit

resulting from the large network remained high despite the

removal of future time frames. It was concluded that a cost

associated with causal processing was present in most con-

ditions, but may be considered modest relative to the overall

level of benefit. Thus, that path forward can be followed,

resulting in a speaker separation/de-reverberation algorithm

that is fully causal and yet produces large intelligibility ben-

efit for HI listeners.

A generalization challenge that was revealed more

recently involves the concept of speech-corpus or recording-

channel independence (Pandey and Wang, 2020b). The use

of the same fixed recording apparatus and environment for

the training and test speech can lead to overfit even when

different speakers are recorded. This is because the network

may be sensitive to characteristics of the microphone and

recording room and may learn to rely on them. In practice,

the use of a large multi-talker corpus for training and a sepa-

rate standardized corpus for testing produces not only talker

independence but also corpus/recording channel indepen-

dence (e.g., see, Healy et al., 2020). Pandey and Wang

(2020b) attributed the challenge of cross-corpus generaliza-

tion largely to differences in recording channels and pro-

posed techniques to successfully address cross-corpus

generalization.

The cross-language study of Healy et al. (2021a) per-

haps best exemplifies the ability of modern networks to gen-

eralize. The speaker-separation network not only

generalized across different languages, it also removed large

amounts of room reverberation and generalized across

speech corpus/recording channels, target-to-interferer

energy ratios, room impulse responses (reverberation), and

talkers. Despite only NH listeners being tested (they typi-

cally produce smaller benefit than do HI listeners), intelligi-

bility increases averaged 44% points and were comparable

to those observed in within-language conditions. Modern

network training requires the availability of vast amounts of

training data, including many examples of speech and noise.

The largest speech corpora are typically in English, which

could potentially hinder the deployment of deep-learning-

based noise reduction in non-English-speaking countries.

However, the study of Healy et al. (2021a) demonstrates
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that this is not an issue, and instead large generalizations are

possible including across different languages. This work fur-

ther suggests that the learning that takes place by modern

networks transcends particular languages and is instead per-

haps more centered on the commonality of sounds that

humans produce.

One characteristic of some modern networks (see

Table I) involves operation in the complex domain or the

estimation of both amplitude and phase of the target speech.

It had been found that phase could not be estimated directly

in frequency-domain/mask-based models, but that estima-

tion of both the real and imaginary parts allowed both the

amplitude and phase of the target speech to be estimated

(Williamson et al., 2016). In the current time-domain model,

the clean target speech is estimated directly, which codes

both amplitude and phase. These approaches contrast with

the traditional one, in which only the amplitude of the target

speech is estimated, then combined with the phase of the

speech-plus-noise mixture (“noisy phase"). The use of

highly similar testing conditions across Healy et al. (2019)

and Healy et al. (2020) allows direct comparison to be made

across two different speaker-separation algorithms. The dif-

ferences between the models employed were considerable

and far from restricted to only complex operation. However,

one difference involved the use of noisy phase (2019) versus

complex operation (2020). Both studies employed reverber-

ant single-talker interference, the same speech materials,

and the common condition [SNR¼ 0 dB, T60¼ 0.6 s]. The

algorithmic advances over the one-year span allowed HI-

listener benefit observed in the latter study (73% points) to

exceed that observed in the former study (56% points),

despite the additional challenge associated with talker inde-

pendence in the latter study.

With regard to potential bilateral use, the ARN is a

time-domain algorithm that maps a sequence of noisy

speech frames to the corresponding sequence of enhanced

frames. The algorithm does not alter the scale (level) or tim-

ing of clean speech embedded in a noisy signal as it is

trained using a scale-preserving MSE (mean squared error)

loss measured in terms of signal samples (Pandey and

Wang, 2022). In other words, the ARN is expected to main-

tain time and level cues at the sample-point level. The

ramifications of this include that, for example, if applied to

left- and right-ear signals independently in bilateral hearing

aids, the ARN would preserve interaural time and level dif-

ferences important for sound localization.

Finally, it is noted that the current network remains

large in size. Although computational complexity and the

demand that a neural network places on the device on which

it runs is not a fundamental aspect of viability, it is nonethe-

less an important consideration. Fortunately, the emerging

field of DNN model compression provides techniques that

can be used to reduce the size of a model while retaining

high performance (see, e.g., Tan and Wang, 2021).

Real-time deep-learning-based noise reduction has

recently been implemented into commercial products, which

demonstrates the real-world feasibility of such applications.

For example, the software plugin Krisp (https://krisp.ai/)

uses artificial neural networks to remove noise in voice and

videoconferencing applications such as Zoom. However, its

capacity to increase intelligibility, especially for HI listen-

ers, has yet to be determined to our knowledge. More rele-

vant for listeners with hearing loss, a hearing aid containing

on-board deep-learning-based noise reduction was made

available in 2021—the Oticon MoreTM line. Using speech in

diffuse noise, intelligibility increases of approximately 5%

points or 1.2 to 1.5 dB reductions in speech reception thresh-

olds were observed relative to the prior generation Oticon

hearing aid (Santurette et al., 2020). Although future advan-

ces will undoubtedly produce larger intelligibility benefits,

the commercial availability of on-board deep-learning-based

noise reduction is a substantial accomplishment and marks a

major milestone.
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1“Noise reduction” is used here as an umbrella term to describe the isola-

tion of target speech from various types of interference including back-

ground non-speech noise, speech babble, interfering speech from a single

talker, room reverberation, and concurrent interferences involving more

than one such interference. More specific terms for these processes

include speech enhancement, speaker separation, and de-reverberation.

“Single microphone” refers to conditions in which target speech and noise

are received by the same single microphone and represents one of the

most challenging but broadly applicable noise-reduction approaches.
2Talkers of different sex were employed for testing human subjects in

order to reduce confusion with regard to which talker was the target.

Algorithm performance appears similar when target and interfering talk-

ers are same versus different sex (Liu and Wang, 2019).
3Other considerations important for implementation into hearing devices

include computational complexity of the network and power consump-

tion. However, whereas causality is fundamental, these other consider-

ations are relative to the ever-advancing processing capabilities of the

system on which it runs. But it is clear that smaller/more efficient net-

works are more readily implementable.
4See www.sound-ideas.com (Last viewed 5/21/2021).
5Diehl et al. (2023) published a study following revision of the current

manuscript that involved a talker- and noise-independent DNN that oper-

ated in the complex domain and in real time. Speech-reception-threshold

benefits for HI listeners were approximately 4 dB. The timely conver-

gence of that work and the present study further highlights the ability of

techniques evolved over the past decade to produce substantial intelligi-

bility benefits under unconstrained conditions.

ANSI (2004). S3.21 (R2009), American National Standard Methods for
Manual Pure-Tone Threshold Audiometry (American National Standards

Institute, New York).

ANSI (2010). S3.6, American National Standard Specification for
Audiometers (American National Standards Institute, New York).

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). “Layer normalization,”

arXiv:1607.06450.

Bensten, T., May, T., Kressner, A. A., and Dau, T. (2018). “The benefit of

combining a deep neural network architecture with ideal ratio mask esti-

mation in computational speech segregation to improve speech

intelligibility,” PLoS One 13, e0196924.

2766 J. Acoust. Soc. Am. 153 (5), May 2023 Healy et al.

https://doi.org/10.1121/10.0019341

https://krisp.ai/
http://www.sound-ideas.com
http://arxiv.org/abs/arXiv:1607.06450
https://doi.org/10.1371/journal.pone.0196924
https://doi.org/10.1121/10.0019341


Bramsløw, L., Naithani, G., Hafez, A., Barker, T., Pontoppidan, N. H., and

Viranen, T. (2018). “Improving competing voice segregation for hearing-

impaired listeners using a low-latency deep neural network algorithm,”

J. Acoust. Soc. Am. 144, 172–185.

Byrne, D., Parkinson, A., and Newall, P. (1990). “Hearing aid gain and fre-

quency response requirements for the severely/profoundly hearing

impaired,” Ear Hear. 11, 40–49.

Chen, J., Wang, Y., Yoho, S. E., Wang, D. L., and Healy, E. W. (2016).

“Large-scale training to increase speech intelligibility for hearing-

impaired listeners in novel noises,” J. Acoust. Soc. Am. 139, 2604–2612.

Dillon, H. (2012). Hearing Aids, 2nd ed. (Thieme, New York).

Diehl, P. U., Singer, Y., Zilly, H., Sch€onfeld, U., Meyer-Rachner, P., Berry,

M., Sprekeler, H., Sprengel, E., Pudszuhn, A., and Hofmann, V. M.

(2023). “Restoring speech intelligibility for hearing aid users with deep

learning,” Sci. Rep. 13, 2719–2730.

Goehring, T., Bolner, F., Monaghan, J. J. M., van Dijk, B., Zarowski, A.,

and Bleeck, S. (2017). “Speech enhancement based on neural networks

improves speech intelligibility in noise for cochlear implant users,” Hear.

Res. 344, 183–194.

Goehring, T., Chapman, J. L., Bleek, S., and Monaghan, J. J. M. (2018).

“Tolerable delay for speech production and perception: Effects of hearing

ability and experience with hearing aids,” Int. J. Audiol. 57, 61–68.

Goehring, T., Keshavarzi, M., Carlyon, R. P., and Moore, B. C. J. (2019).

“Using recurrent neural networks to improve the perception of speech in

non-stationary noise by people with cochlear implants,” J. Acoust. Soc.

Am. 146, 705–718.

Goehring, T., Yang, X., Monaghan, J. J. M., and Bleek, S. (2016). “Speech

enhancement for hearing-impaired listeners using deep neural networks

with auditory-model based features,” in Proceedings of the 2016 24th
European Signal Processing Conference (EUSIPCO), August

28–September 2, Budapest, Hungary, pp. 2300–2304.

Gustafsson, S., Jax, P., and Vary, P. (1998). “A novel psychoacoustically

motivated audio enhancement algorithm preserving background noise

characteristics,” in Proceedings of the 1998 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP ’98,

May 15, Seattle, WA, pp. 397–400.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for

image recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, June 27–30, Las Vegas, NV, pp.

770–778.

Healy, E. W., Delfarah, M., Johnson, E. M., and Wang, D. L. (2019). “A

deep learning algorithm to increase intelligibility for hearing-impaired lis-

teners in the presence of a competing talker and reverberation,” J. Acoust.

Soc. Am. 145, 1378–1388.

Healy, E. W., Delfarah, M., Vasko, J. L., Carter, B. L., and Wang, D. L. (2017).

“An algorithm to increase intelligibility for hearing-impaired listeners in the

presence of a competing talker,” J. Acoust. Soc. Am. 141, 4230–4239.

Healy, E. W., Johnson, E. M., Delfarah, M., Sevich, V. A., Krishnagiri, D.

S., and Wang, D. L. (2021a). “Deep learning based speaker separation

and dereverberation can generalize across different languages to improve

intelligibility,” J. Acoust. Soc. Am. 150, 2526–2538.

Healy, E. W., Johnson, E. M., Delfarah, M., and Wang, D. L. (2020). “A

talker-independent deep learning algorithm to increase intelligibility for

hearing-impaired listeners in reverberant competing talker conditions,”

J. Acoust. Soc. Am. 147, 4106–4118.

Healy, E. W., Taherian, H., Johnson, E. M., and Wang, D. L. (2021b). “A

causal and talker-independent speaker-separation/dereverberation deep

learning algorithm: Cost associated with conversion to real-time capable

operation,” J. Acoust. Soc. Am. 150, 3976–3986.

Healy, E. W., Tan, K., Johnson, E. M., and Wang, D. L. (2021c). “An effec-

tively causal deep learning algorithm to increase intelligibility in untrained

noises for hearing-impaired listeners,” J. Acoust. Soc. Am. 149, 3943–3953.

Healy, E. W., Yoho, S. E., Chen, J., Wang, Y., and Wang, D. L. (2015).

“An algorithm to increase speech intelligibility for hearing-impaired lis-

teners in novel segments of the same noise type,” J. Acoust. Soc. Am.

138, 1660–1669.

Healy, E. W., Yoho, S. E., Wang, Y., and Wang, D. (2013). “An algorithm

to improve speech recognition in noise for hearing-impaired listeners,”

J. Acoust. Soc. Am. 134, 3029–3038.

Hendrycks, D., and Gimpel, K. (2016). “Gaussian error linear units

(GELUS),” arXiv:1606.08415.

Hochreiter, S., and Schmidhuber, J. (1997). “Long short-term memory,”

Neural Comput. 9(8), 1735–1780.

Jensen, J., and Taal, C. H. (2016). “An algorithm for predicting the intelligi-

bility of speech masked by modulated noise maskers,” IEEE/ACM Trans.

Audio. Speech. Lang. Process. 24, 2009–2022.

Kearns, J. (2014). “LibriVox: Free public domain audiobooks,” https://libri

vox.org/ (Last viewed April 26, 2023).

Keshavarzi, M., Goehring, T., Turner, R. E., and Moore, B. C. J. (2019).

“Comparison of effects on subjective intelligibility and quality of speech

in babble for two algorithms: A deep recurrent neural network and spec-

tral subtraction,” J. Acoust. Soc. Am. 145, 1493–1503.

Kingma, D. P., and Ba, J. (2014). “ADAM: A method for stochastic opti-

mization,” arXiv:1412.6980.

Kohl, M. (2022). “MKmisc: Miscellaneous functions from M. Kohl,” R

package version 1.9, https://github.com/stamats/MKmisc (Last viewed

February 7, 2023).

Kramer, S. E., Kapteyn, T. S., and Festen, J. M. (1998). “The self-reported

handicapping effect of hearing disabilities,” Int. J. Audiol. 37, 302–312.

Lai, Y.-H., Tsao, Y., Lu, X., Chen, F., Su, Y.-T., Chen, K.-C., Chen, Y.-H.,

Chen, L.-C., Li, L. P.-H., and Lee, C.-H. (2018). “Deep learning-based

noise reduction approach to improve speech intelligibility for cochlear

implant recipients,” Ear. Hear. 39, 795–809.

Le Roux, J., Wisdom, S., Erdogan, H., and Hershey, J. R. (2018). “SDR—

Half-baked or well done?,” arXiv:1811.02508v1.

Li, L. P.-H., Han, J.-Y., Zheng, W.-Z., Huang, R.-J., and Lai, Y.-H. (2021).

“Improved environment-aware-based noise reduction system for cochlear

implant users based on a knowledge transfer approach: Development and

usability study,” J. Med. Internet Res. 23, e25460.

Liu, Y., and Wang, D. L. (2019). “Divide and conquer: A deep CASA

approach to talker-independent monaural speaker separation,” IEEE/

ACM Trans. Audio. Speech. Lang. Process. 27, 2092–2102.

Merity, S. (2019). “Single headed attention RNN: Stop thinking with your

head,” arXiv:1911.11423.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D.,

Ginsburg, B., Houston, M., Kuchaiev, O., Venkatesh, G., and Wu, H.

(2017). “Mixed precision training,” arXiv:1710.03740.

Monaghan, J. J. M., Goehring, T., Yang, X., Bolner, F., Wang, S., Wright,

M. C. M., and Bleeck, S. (2017). “Auditory inspired machine learning

techniques can improve speech intelligibility and quality for hearing-

impaired listeners,” J. Acoust. Soc. Am. 141, 1985–1998.

Nilsson, M., Soli, S. D., and Sullivan, J. A. (1994). “Development of the

hearing in noise test for the measurement of speech reception thresholds

in quiet and in noise,” J. Acoust. Soc. Am. 95, 1085–1099.

Nossier, S. A., Wall, J., Moniri, M., Glackin, C., and Cannings, N. (2020).

“An experimental analysis of deep learning architectures for supervised

speech enhancement,” Electronics 10, 17.

Ochieng, P. (2022). “Deep neural network techniques for monaural speech

enhancement: State of the art analysis,” arXiv:2212.00369.

Panayotov, V., Chen, G. D., and Khudanpur, S. (2015). “LibriSpeech: An

ASR corpus based on public domain audio books,” in Proceedings of
IEEE International Conference on Acoustics, Speech and Signal
Processing, April 19–24, Queensland, Australia, pp. 5206–5210.

Pandey, A., and Wang, D. (2020a). “Learning complex spectral mapping for

speech enhancement with improved cross-corpus generalization,” in

Proceedings of Interspeech, October 25–29, Shanghai, China, pp. 4511–4515.

Pandey, A., and Wang, D. (2020b). “On cross-corpus generalization of

deep learning based speech enhancement,” IEEE/ACM Trans. Audio.

Speech. Lang. Process. 28, 2489–2499.

Pandey, A., and Wang, D. (2022). “Self-attending RNN for speech enhance-

ment to improve cross-corpus generalization,” IEEE/ACM Trans. Audio.

Speech. Lang. Process. 30, 1374–1385.

Paul, D. B., and Baker, J. (1992). “The design for the Wall Street Journal-

based CSR corpus,” in Speech and Natural Language: Proceedings of a
Workshop Held at Harriman, February 23–26, New York, NY.

R Core Team (2020). R: A Language and Environment for Statistical
Computing, https://www.R-project.org/ (Last viewed February 7, 2023).

Rix, A. W., Beerends, J. G., Hollier, M. P., and Hekstra, A. P. (2001).

“Perceptual evaluation of speech quality (PESQ)—A new method for

speech quality assessment of telephone networks and codecs,” in

Proceedings IEEE International Conference on Acoustics, Speech, and
Signal Processing, May 7–11, Salt Lake City, UT, pp. 749–752.

J. Acoust. Soc. Am. 153 (5), May 2023 Healy et al. 2767

https://doi.org/10.1121/10.0019341

https://doi.org/10.1121/1.5045322
https://doi.org/10.1097/00003446-199002000-00009
https://doi.org/10.1121/1.4948445
https://doi.org/10.1016/j.heares.2016.11.012
https://doi.org/10.1016/j.heares.2016.11.012
https://doi.org/10.1080/14992027.2017.1367848
https://doi.org/10.1121/1.5119226
https://doi.org/10.1121/1.5119226
https://doi.org/10.1121/1.5093547
https://doi.org/10.1121/1.5093547
https://doi.org/10.1121/1.4984271
https://doi.org/10.1121/10.0006565
https://doi.org/10.1121/10.0001441
https://doi.org/10.1121/10.0007134
https://doi.org/10.1121/10.0005089
https://doi.org/10.1121/1.4929493
https://doi.org/10.1121/1.4820893
http://arxiv.org/abs/arXiv:1606.08415
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/TASLP.2016.2585878
https://doi.org/10.1109/TASLP.2016.2585878
https://librivox.org/
https://librivox.org/
https://doi.org/10.1121/1.5094765
http://arxiv.org/abs/arXiv:1412.6980
https://github.com/stamats/MKmisc
https://doi.org/10.3109/00206099809072984
https://doi.org/10.1097/AUD.0000000000000537
http://arxiv.org/abs/arXiv:1811.02508v1
https://doi.org/10.2196/25460
https://doi.org/10.1109/TASLP.2019.2941148
https://doi.org/10.1109/TASLP.2019.2941148
http://arxiv.org/abs/arXiv:1911.11423
http://arxiv.org/abs/arXiv:1710.03740
https://doi.org/10.1121/1.4977197
https://doi.org/10.1121/1.408469
https://doi.org/10.3390/electronics10010017
http://arxiv.org/abs/arXiv:2212.00369
https://doi.org/10.1109/TASLP.2020.3016487
https://doi.org/10.1109/TASLP.2020.3016487
https://doi.org/10.1109/TASLP.2022.3161143
https://doi.org/10.1109/TASLP.2022.3161143
https://www.R-project.org/
https://doi.org/10.1121/10.0019341


Santurette, S., Ng, E. H. N., Jensen, J. J., and Loong, B. M. K. (2020).

Oticon More Clinical Evidence (Oticon, Somerset, NJ).

Stone, M. A., and Moore, B. C. J. (1999). “Tolerable hearing aid delays. I.

Estimation of limits imposed by the auditory path alone using simulated

hearing losses,” Ear Hear. 20, 182–192.

Stone, M. A., and Moore, B. C. J. (2005). “Tolerable hearing-aid delays:

IV. Effects on subjective disturbance during speech production by

hearing-impaired subjects,” Ear Hear. 26, 225–235.

Studebaker, G. A. (1985). “A ‘rationalized’ arcsine transform,” J. Speech.

Lang. Hear. Res. 28, 455–462.

Taal, C. H., Hendriks, R. C., Heusdens, R., and Jensen, J. (2011). “An algo-

rithm for intelligibility prediction of time–frequency weighted noisy

speech,” IEEE Trans. Audio. Speech. Lang. Process. 19, 2125–2136.

Tan, K., and Wang, D. L. (2021). “Towards model compression for deep

learning based speech enhancement,” IEEE/ACM Trans. Audio. Speech.

Lang. Process. 29, 1785–1794.

Varga, A., and Steeneken, H. J. (1993). “Assessment for automatic speech recog-

nition: II. NOISEX-92: A database and an experiment to study the effect of

additive noise on speech recognition systems,” Speech Commun. 12, 247–251.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.

N., Kaiser, Ł., and Polosukhin, I. (2017). “Attention is all you need,”

Adv. Neural Inf. Process. Syst. 30, 5998–6008.

Wang, D., and Chen, J. (2018). “Supervised speech separation based on

deep learning: An overview,” IEEE/ACM Trans. Audio. Speech. Lang.

Process. 26, 1702–1726.

Wang, Y., Han, K., and Wang, D. (2013). “Exploring monaural features for

classification-based speech segregation,” IEEE Trans. Audio. Speech.

Lang. Process. 21, 270–279.

Wang, Y., and Wang, D. (2013). “Towards scaling up classification-based

speech separation,” IEEE Trans. Audio. Speech Lang. Process. 21,

1381–1390.

Williamson, D. S., Wang, Y., and Wang, D. L. (2016). “Complex ratio

masking for monaural speech separation,” IEEE/ACM Trans. Audio.

Speech. Lang. Process. 24, 483–492.

Zhao, Y., Wang, D. L., Johnson, E. M., and Healy, E. W. (2018). “A deep

learning based segregation algorithm to increase speech intelligibility for

hearing-impaired listeners in reverberant-noisy conditions,” J. Acoust.

Soc. Am. 144, 1627–1637.

2768 J. Acoust. Soc. Am. 153 (5), May 2023 Healy et al.

https://doi.org/10.1121/10.0019341

https://doi.org/10.1097/00003446-199906000-00002
https://doi.org/10.1097/00003446-200504000-00009
https://doi.org/10.1044/jshr.2803.455
https://doi.org/10.1044/jshr.2803.455
https://doi.org/10.1109/TASL.2011.2114881
https://doi.org/10.1109/TASLP.2021.3082282
https://doi.org/10.1109/TASLP.2021.3082282
https://doi.org/10.1016/0167-6393(93)90095-3
https://doi.org/10.1109/TASLP.2018.2842159
https://doi.org/10.1109/TASLP.2018.2842159
https://doi.org/10.1109/TASL.2012.2221459
https://doi.org/10.1109/TASL.2012.2221459
https://doi.org/10.1109/TASL.2013.2250961
https://doi.org/10.1109/TASLP.2015.2512042
https://doi.org/10.1109/TASLP.2015.2512042
https://doi.org/10.1121/1.5055562
https://doi.org/10.1121/1.5055562
https://doi.org/10.1121/10.0019341

	s1
	l
	n1
	n2
	n3
	t1
	t1n1
	t1n2
	t1n3
	t1n4
	s1A
	s1B
	s1C
	s2
	s2A
	s2B
	f1
	s2C
	d1
	f2
	d2
	d3
	d4
	f4
	d5
	d6
	d7
	d8
	d9
	d10
	f5
	s2D
	s3
	s3A
	f6
	s3B
	f7
	f8
	s3C
	s3D
	f9
	f10
	f11
	s3E
	s4
	t2
	fn1
	fn2
	fn3
	fn4
	fn5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c62
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c58
	c57
	c59
	c60

