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ABSTRACT:
Deep learning based speech separation or noise reduction needs to generalize to voices not encountered during

training and to operate under multiple corruptions. The current study provides such a demonstration for hearing-

impaired (HI) listeners. Sentence intelligibility was assessed under conditions of a single interfering talker and

substantial amounts of room reverberation. A talker-independent deep computational auditory scene analysis

(CASA) algorithm was employed, in which talkers were separated and dereverberated in each time frame (simul-

taneous grouping stage), then the separated frames were organized to form two streams (sequential grouping

stage). The deep neural networks consisted of specialized convolutional neural networks, one based on U-Net and

the other a temporal convolutional network. It was found that every HI (and normal-hearing, NH) listener received

algorithm benefit in every condition. Benefit averaged across all conditions ranged from 52 to 76 percentage points

for individual HI listeners and averaged 65 points. Further, processed HI intelligibility significantly exceeded

unprocessed NH intelligibility. Although the current utterance-based model was not implemented as a real-time

system, a perspective on this important issue is provided. It is concluded that deep CASA represents a powerful

framework capable of producing large increases in HI intelligibility for potentially any two voices.
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I. INTRODUCTION

One of the most important characteristics of a successful

speech separation or noise-reduction algorithm involves its

ability to operate in a wide variety of acoustic environments.

This ability is important for machine learning algorithms,

including deep learning, because they typically undergo train-

ing involving exposure to one or more acoustic environments.

If not properly trained, the algorithm can “overfit” its training

environments (its training data) and have difficulty perform-

ing well in acoustic environments that differ from those

environments.

One of the greatest algorithmic challenges involves

generalization to untrained noisy backgrounds. This is

because different noises can vary so widely in their acoustic

characteristics, and altogether, “noise” can be considered to

occupy a vast space. Accordingly, a recent line of studies

involving deep learning noise reduction for hearing-

impaired (HI) listeners focused initially on this aspect of

generalization. These studies demonstrated intelligibility

improvements for HI listeners across a progression that first

involved overlapping noise segments for both training and

testing (Healy et al., 2013), to novel (untrained or “unseen”)

segments of the same noise type (Healy et al., 2015;

Monaghan et al., 2017; Zhao et al., 2018; Keshavarzi et al.,
2019), to entirely novel noise types for training and testing

(Chen et al., 2016).

Closely related to this ability to generalize to untrained

noises is the ability to deal with a variety of acoustic inter-

ferences. Accordingly, studies have progressed from

improving HI speech intelligibility in steady-state noise

(Healy et al., 2013; Healy et al., 2014; Monaghan et al.,
2017; Zhao et al., 2018), to nonstationary noises including

speech babble (Healy et al., 2013; Healy et al., 2014; Healy

et al., 2015; Chen et al., 2016; Monaghan et al., 2017;

Bentsen et al., 2018; Zhao et al., 2018), to complex noises

containing a variety of different sound sources (Healy et al.,
2015; Chen et al., 2016; Zhao et al., 2018). More recently,

improvements in compound interferences have been shown,

including concurrent background noise and reverberation

(Zhao et al., 2018).

Other studies have focused on speaker separation,

which involves the isolation of one talker from one or more

interfering talkers. Despite this representing a somewhat dif-

ferent computational task, deep learning approaches have

also proven effective at improving HI-listener intelligibility

(Healy et al., 2017; Bramsløw et al., 2018). These results
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have also held when reverberation was added to single-talker

interference (Healy et al., 2019), which requires the algorithm

to perform both speaker separation and dereverberation.1

Another important aspect of generalization involves

whether the particular target talker is employed during algo-

rithm training. Two views exist in this regard. In the first

view, the tendency for an algorithm to perform optimally

with a particular frequent communication partner is seen as

a virtue. This is related to the general concept that effective

communication between frequent communication partners

holds particular value (e.g., Tye-Murray et al., 2016). To

achieve this, an algorithm would simply be trained to favor

the voice of one or more frequent partners. But perhaps

more ideally, a highly effective algorithm would perform

equally well when targeting a voice that it had not previ-

ously encountered during training. This is referred to as

talker independence (or speaker independence). Perhaps the

simplest approach that yields talker independence involves

“large scale” training of the network (Chen et al., 2016)

using many different talkers so that the network learns to

identify speech more generally and is not overfit to any par-

ticular voice.

Some work has shown that deep learning can be effec-

tive in a talker-independent context. Chen and Wang (2017)

trained a recurrent neural network (RNN) on speech from 83

talkers in order to generalize to untrained talkers. Six

untrained talkers of both primary genders were used for test-

ing. Although human intelligibility was not assessed, con-

siderable increases were observed using a standard objective

intelligibility metric based on acoustic analysis. Goehring

et al. (2017) trained a neural network using speech from 36

talkers and tested using a single talker not employed for

training. They observed improved intelligibility in noise for

cochlear-implant (CI) users in stationary noises but not in

multi-talker babble. Goehring et al. (2019) then increased

the training set to 80 different talkers and again tested using

a talker not employed for training. They observed improved

intelligibility in multi-talker babble for CI users and for nor-

mal hearing (NH) listeners in CI simulation, but not for CI

users tested in traffic noise. Keshavarzi et al. (2019) trained

an RNN using 80 talkers and used 6 untrained talkers for

testing. Although human intelligibility was not assessed,

improvements in objective intelligibility measures were

obtained, and HI listeners displayed a slight subjective intel-

ligibility preference for the processed relative to the unpro-

cessed speech in multi-talker babble.

These prior studies suggest that deep learning can be

effectively used to improve the intelligibility of noisy

speech in talker-independent settings, at least for CI users

and in some noise conditions. The current study was

designed to provide a clear demonstration of improved intel-

ligibility for HI listeners in two-talker mixtures and room

reverberation. HI listeners show a large intelligibility gap

from NH listeners when interfering speech is present

(Festen and Plomp, 1990; Moore, 2007; Healy et al., 2017).

Further, room reverberation characterizes daily listening

environments and, when combined with interfering speech,

is a major hurdle for target speech perception, particularly

for HI listeners (Plomp, 1976; Culling et al., 2003; Healy

et al., 2019). The current study thus involved speaker sepa-

ration in reverberant conditions in order to further challenge

the algorithm and to increase the ecological validity of the

acoustic environment. The eventual goal is to provide an

algorithm that can separate any two voices, even in subopti-

mal conditions.

One challenge particular to separating concurrent talk-

ers not employed during algorithm training is known as the

permutation problem (for more detail, the interested reader

is directed to Hershey et al., 2016; Yu et al., 2017; Liu and

Wang, 2019). Briefly, a deep neural network (DNN)

involves an input layer that receives features of the input

signal, a number of hidden layers, and an output layer.

During training, given outputs in the output layer are

assigned to given target sounds. Learning fails when the

assignment of outputs to targets is arbitrary and indetermi-

nate, as it is during training for talker independence. More

specifically, the permutation problem states that output

layers of a DNN cannot be straightforwardly assigned to

individual untrained talkers, which stands in contrast to

talker-dependent separation (Du et al., 2014; Huang et al.,
2015; Healy et al., 2017; Healy et al., 2019). This problem

can be addressed through the technique of deep clustering

(Hershey et al., 2016), which combines DNN based feature

transformations (known as embeddings) and clustering. In

deep clustering, a DNN learns to transform (or expand) each

time-frequency (T-F) unit to an embedding vector so that

the DNN produces similar embedding vectors for the T-F

units that are dominated by the same speaker. The DNN

then estimates the ideal binary mask (Wang, 2005) by clus-

tering embedding vectors (i.e., T-F units) into different talk-

ers. Another solution involves permutation-invariant

training (Kolbaek et al., 2017), in which all possible permu-

tations between network outputs and target sounds are con-

sidered during training. The best output-to-target

assignment is determined, then error is minimized given that

assignment. In the current study, the permutation problem

was addressed by extending deep computational auditory

scene analysis (deep CASA), which integrates permutation-

invariant training at the frame level and sequential cluster-

ing (Liu and Wang, 2019). Deep CASA has been shown to

produce state-of-the-art talker-independent speaker separa-

tion results in anechoic conditions.

The current study aimed to improve the intelligibility of

a target talker in the presence of a single interfering talker

and substantial amounts of room reverberation. Thus, both

speaker separation and speech dereverberation had to be

performed. In addition to the primary generalization involv-

ing untrained talkers, the current implementation required

generalization to untrained intensity relationships between

target and interfering speech (in half of the conditions for

each listener group), and untrained reverberation character-

istics (room impulse responses, RIRs) in all conditions.

Perhaps importantly, the use of different speech corpora for

training and testing also required a “cross-corpus”
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generalization. HI and NH listeners were employed, and

large increases in intelligibility were observed in all condi-

tions. Whereas speech understanding in most background

interferences is challenging for HI listeners, understanding

one voice in the presence of another is also challenging for

NH listeners when reverberation is present. This allowed

large benefits to also be observed for these listeners.

The algorithm was a variation of deep CASA (Liu and

Wang, 2019). In this approach, a simultaneous grouping

stage precedes a sequential grouping stage. The rationale

comes from classic theories of auditory scene analysis, in

which the human analysis of complex sound scenes is

hypothesized to involve such stages (Bregman, 1990), and

from computational auditory scene analysis (Wang and

Brown, 2006), which often employs such stages. In the cur-

rent study, simultaneous grouping was performed by sepa-

rating the acoustic elements corresponding to the two sound

sources in each time frame using deep learning. Specifically,

this stage employed a U-Net convolutional neural network

with densely-connected layers (Dense-UNet; Liu and Wang,

2019). In the sequential grouping stage, these separated

frames were organized to form two streams, one for each

voice. This process was performed using a temporal convo-

lutional network (TCN; Bai et al., 2018; Lea et al., 2016).

The rationale for deconstructing speech separation into these

two stages involves the fact that they are different opera-

tions, requiring different considerations, and potentially dif-

ferent techniques. By separating the grouping processes,

each could be optimized separately, which led to high

performance.

Further, previous studies have largely concentrated on

estimating only the amplitude representation of the signal of

interest. This isolated amplitude information is then com-

bined with the phase of the original unprocessed sound mix-

ture (“noisy phase”) to reconstruct the isolated signal of

interest. In the current study, both the amplitude and phase

of the signal of interest were obtained by working in the

complex domain. In this approach, the real and imaginary

parts are both estimated by the DNN, which allows both the

amplitude and phase of the signal of interest to be

calculated.

II. METHOD

A. Subjects

Two groups of listeners participated. The HI group con-

sisted of ten listeners, representing typical hearing aid users

with bilateral sensorineural hearing loss. All were binaural

hearing aid users, with one exception described below. They

ranged in age from 62 to 88 years (mean¼ 73), and four

were female. These listeners were recruited from The Ohio

State University Speech-Language-Hearing Clinic and sur-

rounding community. Otoscopy, tympanometry (ANSI,

1987), and pure-tone audiometry (ANSI, 2004, 2010a) were

used to verify the listeners’ hearing losses on day of test.

Otoscopy was unremarkable for all listeners. Middle-ear

peak pressures and compliances were within normal limits

for all listeners except for HI10, who presented with flat

tympanograms. However, bone-conduction thresholds

showed no significant air-bone gap for this listener (or any

other), indicating a likely cochlear site of lesion. Figure 1

presents audiograms for each of these listeners, who are

numbered in order of increasing pure-tone average audio-

metric thresholds (PTAs; means across thresholds at 500,

1000, 2000 Hz, and ears). Each panel also indicates ages and

genders. PTAs ranged from 27 to 52 dB hearing level (HL)

with a mean of 43 dB HL. The HI listeners generally had

sloping hearing losses that ranged in degree from mild to

profound.

FIG. 1. Pure-tone air-conduction audiometric thresholds for the listeners with hearing impairment. Listeners are numbered in order of increasing degree of

hearing loss. Right ears are represented by circles, and left ears are represented by X’s. An arrow indicates a threshold exceeding audiometer limits. The NH

limit of 20 dB HL is represented by a horizontal dotted line in each panel. Also provided are identifying numbers, ages in years, and genders for these

listeners.

4108 J. Acoust. Soc. Am. 147 (6), June 2020 Healy et al.

https://doi.org/10.1121/10.0001441

https://doi.org/10.1121/10.0001441


Rather than binaural hearing aids, HI1 uses an amplifi-

cation system with bilateral microphones and contralateral

routing of one of the signals (BiCROS; Harford, 1966).

BiCROS systems are sometimes recommended for patients

with bilateral hearing loss, but with one ear deemed

“unaidable.” With this type of fitting, the better ear receives

an amplified mixture of the sound arriving at both ears,

whereas the poorer ear receives no input from the instru-

ment. Only the better (right) ear of HI1 was tested currently,

in accord with the input he receives in everyday listening.

Thresholds for both of his ears are presented in Fig. 1, but

PTA was calculated based on the ear receiving input.

The NH group consisted of ten listeners (all female)

with pure-tone audiometric thresholds of 20 dB HL or lower

at octave frequencies from 250 to 8000 Hz on day of test

(ANSI, 2004, 2010a). Recruited from undergraduate courses

at The Ohio State University, they ranged in age from 18 to

21 years (mean¼ 19.7) and represented young listeners with

“ideal” hearing abilities. All participants (HI and NH) were

native speakers of American English having no previous

exposure to the test sentences used in the current study.

They received either extra course credit or a monetary

incentive for participating.

B. Stimuli

The algorithm was trained using materials from the Wall

Street Journal Continuous Speech Recognition Corpus

(WSJ0; Paul and Baker, 1992). This corpus was developed to

support research on large-vocabulary continuous speech rec-

ognition systems and contains recordings of many talkers

reading Wall Street Journal newspaper articles dating from

1987 to 1989 (approximately 39 000 recorded sentences total-

ing approximately 80 h of audio). The WSJ0 corpus is com-

monly used for training and testing talker-independent

speaker separation (Hershey et al., 2016). Training sentences

for the current study were drawn from the si_tr_s folders of

the WSJ0 corpus, which contain recordings from 49 male and

52 female talkers, each of whom produced an average of 124

sentences. To generate a reverberant two-talker mixture, two

sentences produced by different talkers were selected and

equalized to the same root mean square level. Each of the

talkers comprising a sentence pair could be male or female,

but they were always two different talkers. If the sentences

were different in duration, the longer ones were trimmed to

match the shorter to avoid long periods containing a single

talker. All training and test signals used for processing were

sampled at 16 kHz with 16 bit resolution.

To generate reverberation, a simulated room with dimen-

sions of 6 m � 7 m � 3 m was used. The virtual microphone

(representing the listener) was placed at a fixed position in

the room located at (3, 4, 1.5) m. The room T60 for each sen-

tence pair was a randomly selected value between 0.3 and

1.0 s. Each talker was randomly positioned at one of 36

angles evenly distributed around the microphone, with the

target talker 1 m from the microphone and the interfering

talker 2 m away. Both talkers had the same elevation as the

microphone. Then, each individual recorded sentence of the

pair was convolved with an RIR to generate reverberant

speech, using an RIR generator2 that implements the image

method (Allen and Berkley, 1979). The two reverberant

recordings were mixed in the time domain to generate the

reverberant two-talker mixture. A single target-to-interferer

ratio (TIR) of 0 dB was used to create the training data. In

total, 200 500 such training mixtures were generated, from

which 500 mixtures were set aside for cross validation.

The test stimuli were drawn from a different speech cor-

pus. Specifically, the test material consisted of one male

talker and one female talker reading the Institute of

Electrical and Electronics Engineers (IEEE) revised list of

phonetically balanced sentences (IEEE, 1969), with the

male designated as the target talker. Neither of these talkers

is in the WSJ0 corpus, which was used during algorithm

training. Different-gender talkers were employed for testing

to reduce confusion for the human subjects with regard to

which talker was the target. Algorithm performance has

been shown to be similar when target and interfering talkers

are different genders versus when they are both male or both

female (see Table V from Liu and Wang, 2019).

To generate the test stimuli, the same procedure was

followed as for the training set, except for additional test

TIRs and that the set of talker positions was shifted by 5

degrees to ensure that the test RIRs were different from

those used for training. T60 values for the test sentences

were 0.6 and 0.9 s. These values are representative of con-

siderable amounts of room reverberation. The value of 0.6 s

corresponds to the upper limit for acceptable room reverber-

ation in classrooms (ANSI, 2010b), whereas the value of 0.9

exceeds that limit. Each test stimulus consisted of two sen-

tences, one spoken by each talker. The sentences comprising

each pair were selected so that they matched in duration

without trimming. The average duration difference between

members of a pair was 5 ms, and the difference did not

exceed 10 ms for any pair. In total, 160 such two-talker mix-

tures were generated, and each was prepared in the various

TIR and room T60 conditions. Note that, in addition to the

different RIRs used for training and test, the fixed training

TIR of 0 dB matched one test TIR used for each listener

group but was different from the other TIR used for each

group.

C. Algorithm description

As stated in Sec. I, the current solution was built upon

the principles of auditory scene analysis and CASA, the lat-

ter of which is a traditional approach to speech separation.

This traditional approach typically addresses the speech-

separation problem in two organizational stages: (1) simul-

taneous grouping and (2) sequential grouping. The current

algorithm was a variation of deep CASA, which was

recently proposed for talker-independent speaker separation

in anechoic conditions (Liu and Wang, 2019). Deep CASA

first involves a simultaneous grouping stage, in which the

source signals are separated in each time frame, and then a
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sequential grouping stage, in which the separated frames are

organized to form two streams, each corresponding to one

talker. In the current study, deep CASA was extended to

speaker separation in reverberant conditions by performing

both frame-level segregation and dereverberation during the

simultaneous grouping stage. The estimated direct-sound

signal for each talker was then obtained during the sequen-

tial grouping stage.

As also stated in Sec. I, working in the complex domain

allows both the amplitude and phase of the segregated sig-

nals to be estimated. This use of the complex domain is

reflected in both the training target and in the features

extracted from the original sound mixtures and fed to the

DNN. The training target refers to the goal of the deep learn-

ing algorithm—the output it is trained to produce. This out-

put typically represents the interference-free speech.

Previous studies have employed the ideal ratio mask (IRM)

as the training target. When the IRM is employed, only the

amplitude information of the interference-free speech is

obtained. As indicated earlier, this information is then com-

bined with the noisy phase to construct the interference-free

speech output. In the current study, the training target was

the complex ideal ratio mask (cIRM, Williamson et al.,
2016). In this scheme, both the real and imaginary parts are

estimated by the network, allowing both the amplitude and

phase of the interference-free speech to be calculated.

Further, when the original sound mixture contains reverber-

ation, the training target can either be the anechoic (rever-

beration-free) target speech, fully reverberant target speech,

or target speech containing only some of the reverberation

components. The choice was made currently to dereverber-

ate the segregated signals because HI listeners achieve

higher intelligibility in two-talker reverberant conditions

when dereverberation accompanies signal separation (Healy

et al., 2019).

The features employed currently involved the real and

imaginary components of the complex short-time Fourier

transform (STFT). They were selected because they are

demonstrated effective complex-domain features (Liu and

Wang, 2019). This selection contrasts with the complemen-

tary feature set used in other studies (e.g., Healy et al.,
2019), which are in the real domain and used to estimate the

IRM defined in the magnitude domain.

The talker-independent speaker separation problem in

reverberant conditions was defined as extracting two

anechoic talkers s1ðtÞ and s2ðtÞ from the mixture signal yðtÞ,

y tð Þ ¼ h1 tð Þ � s1 tð Þ þ h2 tð Þ � s2 tð Þ; (1)

where h1ðtÞ and h2ðtÞ are RIRs for specific locations in the

reverberant room, � denotes convolution, and the two test

talkers were not employed during algorithm training. Thus,

this separation goal involving simultaneous signal separa-

tion and dereverberation contrasts with the goal of separat-

ing the two signals, but not performing dereverberation,

which would be accomplished by estimating h1ðtÞ � s1ðtÞ
and h2ðtÞ � s2ðtÞ. The two stages of the current deep CASA

algorithm for reverberant conditions are presented in the fol-

lowing two sections. Additional technical details can be

found in Liu and Wang (2019).

1. Simultaneous grouping

A feedforward DNN was used for this stage with an

architecture referred to as Dense-Unet (Liu and Wang,

2019). Dense-Unet is motivated by recent successes with

DenseNet (Huang et al., 2017) and U-Net (Ronneberger

et al., 2015), and consists of a U-Net having densely-

connected layers. U-Net is a specialized convolutional neu-

ral network composed of an encoder and a decoder that

together form a U-shaped architecture. The encoder in the

first half of the model maps lower-level input features into a

higher level of abstraction. It does so by decreasing the reso-

lution of the input-feature representation at each stage of the

encoder path. In the current implementation, this portion

consisted of four downsampling layers with dense convolu-

tional layers interleaved between every two layers. The

decoder in the second half of the model projects the encoded

features, now having lower resolution, back to their original

resolution. Currently, this portion consisted of four upsam-

pling layers interleaved with dense convolutional blocks.

Given a reverberant mixture signal, an STFT was

applied having frames of length 32 ms with the frame shift

of 8 ms (i.e., 75% overlap). The real and imaginary STFT

features Mðm; f Þ were extracted and delivered to the DNN

just described, where m represents the frame index and f is

the frequency channel. This network was used to estimate

two cIRMs, one for each talker. These masks were point-

wise multiplied by Mðm; f Þ in the complex domain to form

two STFT signals Ŝu1
ðm; f Þ and Ŝu2

ðm; f Þ. These signals rep-

resent the separated and dereverberated talker frames, yet to

be organized over time.

Frame-level permutation invariant training (tPIT;

Kolbaek et al., 2017) criteria were used for network optimi-

zation. Specifically, two loss functions were calculated per

time frame as follows:

l1 mð Þ ¼ Rf jŜu1
m; fð Þ � S1 m; fð Þj þ Rf jŜu2

m; fð Þ
� S2 m; fð Þj; (2)

l2 mð Þ ¼ Rf jŜu1
m; fð Þ � S2 m; fð Þj þ Rf jŜu2

m; fð Þ
� S1 m; fð Þj; (3)

where S1ðm; f Þ and S2ðm; f Þ are the concatenated real and

imaginary STFT features of the two source talkers and j � j
denotes magnitude spectrogram. The loss values l1ðmÞ and

l2ðmÞ were used to obtain the optimally organized talker sig-

nals Ŝo1
ðm; f Þ and Ŝo2

ðm; f Þ,

Ŝo1
m; fð Þ; Ŝo2

m; fð Þ

¼
Ŝu1

m; fð Þ; Ŝu2
m; fð Þ if l1 mð Þ � l2 mð Þ

Ŝu2
m; fð Þ; Ŝu1

m; fð Þ otherwise:

8<
: (4)

4110 J. Acoust. Soc. Am. 147 (6), June 2020 Healy et al.

https://doi.org/10.1121/10.0001441

https://doi.org/10.1121/10.0001441


The above equation selects the output-to-talker assignment

with the smaller loss. Then, via inverse STFT, Ŝo1
ðm; f Þ and

Ŝo2
ðm; f Þ were converted into time-domain signals ŝo1

ðtÞ
and ŝo2

ðtÞ. Finally, the network was optimized to minimize

the signal-to-noise ratio loss function JSNR as

JSNR ¼ �10
X
i¼1;2

log

X
t

siðtÞ2

X
t

si tð Þ � ŝoi
tð Þ

� �2 (5)

using the Adam optimizer (Kingma and Ba, 2014). Figure

2(a) depicts this simultaneous grouping stage.

2. Sequential grouping

Once the two talkers have been separated and dere-

verberated in each time frame, the frames need to be

organized across time into two streams corresponding to

the two utterances. A temporal convolutional network

(TCN) (Bai et al., 2018; Lea et al., 2016) was used as the

DNN in this stage. TCNs have recently been proposed to

replace RNNs based on their performance on a variety of

tasks. A TCN involves a series of convolutional layers

stacked to form a deep network. Its architecture allows it

to capture long-range contextual information, which is

desirable for tracking a talker over a long utterance. The

current TCN had eight dilated convolutional blocks, each

composed of three convolutional layers. As in the previ-

ous simultaneous grouping stage, this sequential stage

used the Adam optimizer (Kingma and Ba, 2014) during

training.

As seen in Eqs. (2)–(5), the training of the previous

simultaneous grouping stage uses s1ðtÞ and s2ðtÞ to optimize

the network with the optimal frame-speaker assignments.

Because these signals are not available at test time, the

sequential grouping stage was trained to predict a temporal

organization given the unorganized signals Ŝu1
ðm; f Þ and

Ŝu2
ðm; f Þ. The input features to this stage were jMðm; f Þj,

jŜu1
ðm; f Þj, and jŜu2

ðm; f Þj. The training target was a 2 � 1

vector A. Specifically, A ¼ ½1; 0� indicates that Ŝu1
and Ŝu2

correctly represent frames for talker 1 and talker 2,

respectively, while A ¼ ½0; 1� means that the frames need to

be switched. Correct prediction of A over the entire utter-

ance optimally organizes the separated frames Ŝu1
and Ŝu2

:
To this end, the network predicted an embedding vector

VðcÞ 2 Rd per time frame and optimized the loss function

(Hershey et al., 2016; Liu and Wang, 2019),

JDC ¼ kVVT � AATk2
F; (6)

in which k � kF denotes the Frobenius norm. The first term

of Eq. (6) represents the predicted frame-talker assignment

and the second term represents the optimal frame-talker

assignment. The loss minimization in Eq. (6) modifies the

network so as to approach the optimal assignment.

Once the embeddings VðcÞ were predicted, a K-means

algorithm clustered these vectors into two groups, labeled as

ÂðmÞ ¼ 0; 1f g, which were used to organize Ŝu1
ðm; f Þ and

Ŝu2
ðm; f Þ. Finally, the inverse STFT was applied to yield the

time-domain signals ŝ1ðtÞ and ŝ2ðtÞ, which are the estimated

anechoic talker signals. Figure 2(b) depicts this sequential

grouping stage.

FIG. 2. Schematic of the current deep CASA algorithm for talker-

independent speaker separation in reverberant conditions. The processing

flow is from bottom to top, and so the lower panel (a) represents the first

stage (simultaneous grouping) and the upper panel (b) represents the second

stage (sequential grouping). cRM stands for an estimate of the cIRM.
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In the current study, the simultaneous grouping stage

was trained for 20 epochs, and the parameters with the low-

est cross-validation loss in Eq. (5) were chosen and used

during training of the sequential-grouping stage. Then, the

sequential-grouping TCN was trained for 15 epochs, and the

parameters with the smallest number of sequential organiza-

tion errors on the cross-validation set were selected and

used during the inference phase. The lowest cross-validation

losses occurred before these epoch numbers.

Figure 3 displays spectrogram images of various stages

of processing for an example reverberant two-talker mix-

ture. Figure 3(a) displays the mixture. The target utterance

was, “All sat frozen and watched the screen” and the inter-

ferer utterance was, “Hold the hammer near the end to drive

the nail.” They were mixed at a TIR of –5 dB in a room with

T60 ¼ 0.9 s. Figures 3(b) and 3(c) display these individual

utterances prior to mixing and the addition of reverberation.

Figures 3(d) and 3(e) display these utterances separated

from the reverberant two-talker mixture [Fig. 3(a)] using the

deep CASA algorithm. A visual indication of algorithm

accuracy can be obtained by comparing Fig. 3(b) to Fig.

3(d) and Fig. 3(c) to Fig. 3(e), all relative to Fig. 3(a).

D. Procedure

There were eight conditions for each listener (two proc-

essing conditions � two TIRs � two T60s). The processing

conditions consisted of the concurrent reverberant sentences

prior to and following processing by the algorithm to target

the anechoic speech of the male talker (unprocessed/proc-

essed). The TIRs were 0 and 5 dB for the HI listeners and –5

and 0 dB for the NH listeners. The T60 values of 0.6 and

0.9 s were used for both listener groups. Each listener heard

160 sentence pairs, blocked by condition, with 20 sentences

in each condition. Unprocessed/processed conditions were

presented juxtaposed within each TIR-T60 block. The order

of the TIR-T60 blocks was randomized for each listener, as

was the order of the two processing conditions within each

TIR-T60 block. The sentence materials were presented to

each listener in a fixed order to ensure a random correspon-

dence between sentence pairs and conditions. No sentence

was used more than once for any listener, including that no

sentence was used for both target and interferer.

Test stimuli were played back using a Windows PC and

an Echo Digital Audio Gina 3 G digital-to-analog converter

(Santa Barbara, CA), routed through a Mackie 1202-VLZ

mixer (Woodinville, WA), and presented diotically over

Sennheiser HD 280 Pro headphones (Wedemark, Germany).

The stimuli were scaled to the same total root-mean-square

level and presented at 65 dBA in each ear for the NH listen-

ers, as measured by a sound-level meter and flat-plate cou-

pler (Larson Davis models 824 and AEC 101, Depew, NY).

For the HI listeners, the test stimuli were presented at

65 dBA plus individualized frequency-specific gains, as pre-

scribed by the NAL-RP hearing-aid fitting formula (Byrne

et al., 1990).3 In the case of HI1, who was tested monaurally

in the right ear, the NAL-RP gains were calculated using

audiometric thresholds for that ear only. A RANE DEQ

60 L digital equalizer (Mukilteo, WA) was used to apply the

desired frequency-gain response for each HI listener, as

described in Healy et al. (2015). Since the NAL-RP formula

does not prescribe gains for 125 or 8000 Hz, the gains for

250 and 6000 Hz, respectively, were applied to these two

frequencies.

During a brief familiarization immediately preceding

formal testing, listeners heard 25 IEEE practice sentences

FIG. 3. (Color online) Spectrogram images illustrating the separation of a target sentence from a reverberant mixture of two talkers using the deep CASA

algorithm. The utterances were mixed at TIR ¼ –5 dB in a room with T60 ¼ 0.9 s.
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equally divided into five blocks. The practice conditions

were: (1) anechoic speech spoken by the target talker only,

(2) algorithm processed, in the most favorable TIR-T60

condition for each listener type, (3) algorithm processed, in

the least favorable condition for each listener type, (4)

unprocessed, in the most favorable condition for each lis-

tener type, and (5) unprocessed, in the least favorable con-

dition for each listener type. These sentences were distinct

from both the targets and interferers used for formal

testing.

During this familiarization phase, the HI listeners were

asked if the presentation level was comfortable. Two HI lis-

teners (HI5 and HI10) reported that the stimuli sounded

loud. After the overall presentation level was reduced by

5 dB, they reported that it was comfortable. The overall pre-

sentation level after application of NAL-RP gains and com-

fort adjustment ranged from 74.7 to 90.5 dBA across HI

listeners (mean¼ 83.3 dBA). Because their individualized

hearing-aid gains were provided via the experimental appa-

ratus, HI listeners were tested with their hearing aids

removed.

Following familiarization, the listeners heard the eight

blocks of experimental conditions while seated in a double-

walled audiometric booth with the experimenter. They were

instructed to attend to the male voice, to repeat back each

sentence as best they could, and to guess if unsure of what

was said. No sentences were repeated for any listener, and

listeners were blind to the condition being presented. The

experimenter controlled the presentation of each stimulus

and scored keywords correctly reported. The 20 target sen-

tences presented in each experimental condition contained

five keywords each, for 100 keywords in each condition.

The total duration of testing was approximately 1 h for each

listener.

III. RESULTS AND DISCUSSION

A. Human performance

Sentence intelligibility was operationalized as the per-

centage of sentence keywords correctly reported. Figures 4

and 5 display intelligibility for each individual listener in

each condition: Fig. 4 for the HI listeners and Fig. 5 for the

NH listeners. In Fig. 4, listeners are plotted in order of

increasing PTA. Figure 6 displays group-mean scores and

standard errors of the mean for each condition, with the HI

and NH listeners plotted separately. In each figure, the

unprocessed and processed conditions for each T60 are rep-

resented by different columns, and the TIRs are displayed in

separate panels. The algorithm benefit for each listener (or

group of listeners) at a given TIR and T60 corresponds to the

difference between a solid column (unprocessed) and

the hatched column directly to the right (processed). The

absence of a column indicates that the listener was unable to

correctly report any of the 100 keywords in that condition,

which occurred for HI7, HI8, and HI9.

FIG. 4. Sentence-intelligibility scores for each individual HI listener in the

presence of a single interfering talker and substantial room reverberation.

Listeners are numbered and plotted in order of increasing hearing loss, as in

Fig. 1. Each column represents a different condition. The unhatched white

and black columns represent scores for unprocessed, reverberant concurrent

sentences, and the hatched columns represent scores following algorithm

processing, which targeted the interference-free, reverberation-free target

speech. The white-filled columns represent scores when the room T60

equaled 0.9 s, and the black and shaded columns represent scores when the

room T60 equaled 0.6 s. The two TIRs of 0 and 5 dB are displayed in sepa-

rate panels.

FIG. 5. As Fig. 4, but for the NH listeners, who are numbered and plotted

arbitrarily, in the order in which they participated in the experiment.
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1. HI listeners

As Fig. 4 shows, every HI listener received algorithm

benefit in every condition. Considering all listeners and con-

ditions (40 processed–unprocessed cases), benefit was 50

percentage points or greater in 93% of cases, 60 percentage

points or greater in 78% of cases, and 70 percentage points

or greater in 28% of cases. Algorithm benefit across all con-

ditions for individual HI listeners ranged from 52 percentage

points (HI9) to 76 percentage points (HI7), with a grand

mean overall benefit of 64.7 percentage points.

As expected, unprocessed scores tended to decrease

from left to right in Fig. 4 as degree of hearing loss

increased. This is likely due to the difficulty associated with

providing adequate amplification in cases of severe to pro-

found hearing loss and the increased suprathreshold deficits

associated with greater degrees of sensorineural hearing

loss. This association between PTA and unprocessed scores

was confirmed using Spearman’s rank correlations between

the rankings of listener PTAs and scores, for each of the

four unprocessed conditions (each jrsj � 0.74, p� 0.01).

However, the same consistent decrease in performance with

increasing PTA was not as clearly observed in the

algorithm-processed conditions. In these conditions, scores

tended to be more consistently high in each panel.

Spearman’s correlations showed no significant relationships

between PTA and score for three of the four processed con-

ditions (each jrsj � 0.57, p� 0.08), with (TIR¼ 5 dB, T60

¼ 0.9 s) being the exception (jrsj ¼ 0.78, p¼ 0.005).

Therefore, processed scores were generally high even for

those listeners having large amounts of hearing loss and

very low unprocessed scores. Consequently, and expectedly,

algorithm benefit was largely related to unprocessed scores

(jrj ¼ 0.48, p¼ 0.002, across all conditions), where lower

unprocessed scores produced more room to improve and

tended to produce larger benefit.

With regard to HI group-mean scores, conditions pro-

gress from least favorable toward the left of Fig. 6 to most

favorable at the right. The first pair of conditions had the

lowest TIR and highest reverberation time (TIR¼ 0 dB, T60

¼ 0.9 s). It produced the lowest group-mean HI unprocessed

score of 5%, which rose to 68% following processing (ben-

efit¼ 62.5 percentage points). The next pair, in the same

0 dB TIR panel, produced the largest benefit. This mean HI

unprocessed score of 9% rose to 81% following processing

(benefit¼ 72.5 percentage points). In the next panel, the

TIR was 5 dB, and both unprocessed and processed scores

were higher. The left pair of conditions in this panel pro-

duced an HI benefit of 65.1 percentage points. The right-

most pair of conditions had the highest unprocessed score at

26%, and correspondingly, the lowest benefit of 58.6 per-

centage points.

Planned comparisons consisting of uncorrected paired t-
tests on rationalized arcsine units (RAUs; Studebaker, 1985)

were performed to examine algorithm benefit for the HI lis-

teners in each condition. Scores for unprocessed versus the

corresponding processed condition were significantly differ-

ent for each of the four combinations of TIR and T60

[t(9)� 11.7, p� 0.001]. These significant results all survive

Bonferroni correction for multiple comparisons.

2. NH listeners

As Fig. 5 shows, algorithm benefit was also observed

for every NH listener in every condition (albeit very slight

in one case). As expected, these listeners produced consider-

ably higher unprocessed scores. Accordingly, algorithm

benefit was smaller than for the HI listeners, especially at

the more favorable TIR (lower panel) where unprocessed

scores were highest. Across all conditions, benefit was 30

percentage points or greater in 70% of cases and 40 percent-

age points or greater in 45% of cases. When only the less

favorable TIR of –5 dB was considered, these proportions

rose: 30 percentage points or greater in 100% of cases and

40 percentage points or greater in 75% of cases.

As observed for the HI listeners, greater algorithm ben-

efit was correlated with lower unprocessed scores (jrj
¼ 0.85, p< 0.0001, across all conditions). At the less favor-

able TIR of –5 dB, the group-mean benefits from algorithm

processing (Fig. 6) were 47.4 and 45.2 percentage points for

FIG. 6. Group-mean sentence-intelligibility scores and standard errors of the mean for each condition. The unprocessed and processed conditions for each

T60 are represented by different columns, and the TIRs (�5, 0, and 5 dB) are displayed in separate panels, as in Figs. 4 and 5. Means for the NH and HI lis-

teners are presented separately. Note the different TIRs employed for the two listener groups.
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the two reverberation conditions (T60 ¼ 0.9 and 0.6 s,

respectively). At the more favorable TIR of 0 dB, group-

mean unprocessed scores were above 50% in both T60 con-

ditions and benefits were 32.9 and 21.2 percentage points.

Also as found for the HI listeners, NH algorithm benefit was

significant in every condition tested, as indicated by planned

comparison paired t-tests on RAUs [t(9)� 6.3, p� 0.001].

These significant results also survive Bonferroni correction.

Another question involves the role of the algorithm

under conditions in which unprocessed intelligibility is

already high and so assistance is not needed. Under these

conditions, it is important to ensure that decrements in per-

formance do not occur as a result of the extensive process-

ing. Although the current conditions did not produce high

baseline scores for HI listeners, several NH scores were

above 70% to 80% at the more favorable TIR (25% of

scores �70% and 10% � 80%). In no case was intelligibility

reduced by processing.

Final comparisons of interest involve the performance

of HI listeners aided by the algorithm (processed scores)

versus NH listeners without the algorithm (unprocessed

scores), in conditions of identical background interference.

This comparison represents the reception of speech by a typ-

ical HI listener having access to the current algorithm versus

that of a young-NH conversation partner. These compari-

sons can be seen in the center panel of Fig. 6, where the TIR

was 0 dB and T60 was 0.9 and 0.6. At the larger T60 value,

HI processed intelligibility (68%) exceeded NH unprocessed

intelligibility (51.4%), and did so significantly [t(18)¼ 2.54,

p¼ 0.02]. This was also true at the smaller T60 value, where

HI processed intelligibility (81.2%) exceeded NH unpro-

cessed intelligibility (68.3%), significantly [t(18)¼ 2.85,

p¼ 0.01]. These significant results also survive Bonferroni

correction for the two tests.

B. Objective measures of intelligibility and sound
quality

Objective scores are based on the measurement of

acoustic signals themselves. They are often employed in the

signal-processing literature and can provide a prediction of

human performance (although the relationships between

these values and actual human performance can be tenuous,

especially for some metrics and when concurrent

interferences including reverberation are employed; see,

e.g., Zhao et al., 2018). These scores are presented currently

to facilitate replication and comparison with other methods.

They were based on an analysis of all 160 test sentences

processed for each condition.

The metrics employed currently are all widely used and

included (1) extended short-time objective intelligibility

(ESTOI; Jensen and Taal, 2016), (2) short-time objective

intelligibility (STOI, Taal et al., 2011), (3) perceptual evalu-

ation of speech quality (PESQ; Rix et al., 2001), and (4)

source-to-distortion improvement (DSDR; Vincent et al.,
2006). ESTOI, like its predecessor STOI, is an

intelligibility-prediction metric that reflects how accurately

the amplitude envelope of the clean target speech is retained

in the corrupted-then-processed speech. Because it is essen-

tially a correlation between envelopes, the scale typically

ranges from 0 to 1 (or from 0 to 100%). PESQ is a sound-

quality prediction. It also reflects a comparison between

clean and processed speech and has a scale ranging from

–0.5 to 4.5. Finally, DSDR reflects the signal-to-noise ratio

improvement in dB resulting from processing. For all four

metrics, larger values are preferred, and the direct-sound

(anechoic) target signal was used as the reference signal.

Table I displays these objective values in each condi-

tion. Substantial improvements were observed for all four

metrics as a consequence of algorithm processing. ESTOI

improved from an average of 25.2% for the unprocessed

reverberant mixtures to 71.7% for the processed stimuli,

corresponding to a 46.5 percentage-point improvement.

STOI improved from an average of 54.3% to 87.2%, repre-

senting an increase of 32.9 percentage points, which is

higher than the value obtained in Healy et al. (2019). Mean

PESQ scores improved from an average of 1.45 to 2.63 for

an increase of 1.18, and mean DSDR equaled 12.0 dB.

These large improvements are in accord with the large

human-intelligibility improvements observed in the main

experiment.

IV. GENERAL DISCUSSION

The current study provides a demonstration of

improved intelligibility for HI (and NH) listeners when deep

learning based speaker separation is required to generalize

to talkers not employed for training. In addition, the current

TABLE I. Average ESTOI, STOI, PESQ, and DSDR values at different room reverberation and TIR conditions for the target speaker in reverberant two-

talker mixtures prior to and following processing by deep CASA.

T60 (s)
0.6 0.9

AverageTIR (dB) –5 0 5 –5 0 5

ESTOI (%) Unprocessed 20.48 27.84 36.26 14.37 23.28 28.99 25.20

Processed 66.55 74.79 81.95 58.17 70.94 77.75 71.69

STOI (%) Unprocessed 48.46 56.32 63.71 44.43 53.76 59.29 54.32

Processed 84.56 88.52 92.32 79.72 87.20 90.91 87.20

PESQ Unprocessed 1.23 1.47 1.72 1.25 1.42 1.59 1.45

Processed 2.45 2.69 2.97 2.25 2.60 2.83 2.63

DSDR (dB) Proc-Unp 13.95 11.78 10.50 13.42 11.62 10.87 12.02
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algorithm generalized to untrained utterances, TIRs, and

reverberant RIRs. However, another generalization

employed currently is perhaps underappreciated. It involves

the use of different speech corpora for training versus test.

This concept of “corpus independence” is not trivial and

extends beyond the existence of different utterances.

Whereas IEEE is a conventional speech-testing corpus con-

taining phonetically-balanced sentences read in citation

style, the WSJ0 corpus consists of read-aloud newspaper

articles by a large number of talkers. They were also

recorded in different environments using different appara-

tus. Accordingly, these corpora differ with regard to both

linguistic aspects (e.g., speaking style, syntactic structure,

semantic predictability, lexical content, phonetic balance,

sentence length, etc.) and acoustic aspects (e.g., recording

environment, microphone, etc.).

The current study also employed a range of HI-listener

characteristics that was wider than employed by us previ-

ously. The upper age limit was extended to 88 years (HI9),

and one listener had an asymmetric hearing loss and

BiCROS (HI1). The benefit experienced by these two listen-

ers was below the mean for all HI subjects, but it was still

quite large, despite a floor effect that limited benefit for

HI94 (58 and 52 percentage points, respectively, when aver-

aged across all conditions). These results suggest that the

current approach can be extended to a considerable variety

of listeners and hearing losses, including asymmetric.

The current results can be compared directly to those of

Healy et al. (2019), which was similar in design and proce-

dures, and employed the same IEEE speech materials. Both

the previous study and the current study employed a single

interfering talker and concurrent reverberation and

employed deep learning to isolate the anechoic target talker.

But whereas the previous study was performed in talker-

dependent fashion, the current model was talker and corpus

independent. A different deep learning algorithm was also

involved. Both studies employed a TIR¼ 0 dB and T60

¼ 0.6 s condition for HI listeners. The benefit observed in

the previous study (for the direct-sound target) was 55.8 per-

centage points, whereas the benefit observed currently was

72.5 percentage points. Thus, the current algorithm pro-

duced better performance despite the addition of talker inde-

pendence and cross-corpus generalization.

The primary algorithmic differences between the stud-

ies involved different neural networks, different amounts of

training data, different input features, and different training

targets. With regard to training target, the previous study

employed the IRM, whereas the current study employed the

cIRM. The superiority of the cIRM is sufficient to allow the

deep CASA-estimated cIRM, which is an imperfect estimate

of the ideal version, to outperform the actual IRM, which is

an oracle mask calculated using knowledge of the unmixed

target speech and interference (Liu and Wang, 2019).

Whereas the current study focused on generalization,

real-time operation represents another important aspect of

implementation for any algorithm. We take this opportunity

to provide our perspectives. Perhaps the most fundamental

characteristic of a real-time feasible network is causality—

that it operates on only past and current time frames of the

input signal, and not on future time frames (within the delay

tolerance of the human auditory system, e.g., Stone and

Moore, 1999, 2002). The other primary characteristic of a

real-time feasible network involves its computational cost

and the ease with which it can be implanted into portable

hardware. Whereas the first characteristic is fundamental,

the second characteristic is a direct function of hardware

capabilities, which are improving constantly.

Researchers have demonstrated human intelligibility

improvements using real-time feasible DNNs. The approach

has generally involved (i) operation on non-future time

frames and (ii) smaller networks to reduce the computa-

tional cost (e.g., Goehring et al., 2017; Monaghan et al.,
2017; Bentsen et al., 2018; Bramsløw et al., 2018; Goehring

et al., 2019; Keshavarzi et al., 2019). These works provide

important proof of concept that small, causal networks can

still improve human intelligibility. However, the use of less

speech information and smaller networks typically leads to

less benefit.

Our approach has been to target maximum benefit.

Accordingly, we have not yet addressed real-time operation,

and we have been relatively unconcerned with network size.

The current network is an example of this approach—it is

not causal because its input involves utterance-level fea-

tures, and little effort has been directed toward minimizing

complexity. The rationale is that the performance of large

non-causal networks provides an upper bound for benefit

and a valuable reference. This way, any performance decre-

ment associated with each step taken toward real-world

implementation can be known. Any modification that results

in a substantial performance decrement from the reference

then has a known cost, and so it can be assessed accordingly

and alternatives sought.

We also argue that simply reducing the size of a tradi-

tional neural network may not be the optimal approach to

real-time operation. Instead, advances in network architec-

ture and insight from the growing field of model compres-

sion have the potential to provide new opportunities. The

rationale is that these new architectures can be more effi-

cient and capable of performance similar to larger and less

efficient traditional networks. The key is to view large per-

formance sacrifices as a nonnecessity.

A closely related point involves the hardware imple-

mentation of a neural network into hearing devices. We’ve

advocated previously for implementation on an external

smartphone-type device with wireless bidirectional commu-

nication to a small earpiece (Healy et al., 2017; Wang,

2017). In addition to offering considerable processing

power, these devices mitigate the battery limitations of ear-

worn devices. Noteworthy is that smartphone manufacturers

have already implemented hardware dedicated to supporting

machine learning and neural networks. A challenge moving

forward will be to limit the latencies associated with periph-

eral aspects of processing such as wireless communication,

which have the potential to add to algorithm latencies.
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Finally, we note that each improvement in hardware capa-

bility relaxes the constraints on computational cost.

V. CONCLUSIONS

The current study provided a demonstration that deep

learning can produce large intelligibility gains for listeners

having typical sensorineural hearing loss (and for NH listen-

ers) in a talker-independent context. A complex interference

consisting of a single competing talker and substantial

amounts of room reverberation was employed, and cross-

corpus generalization was required. The single-microphone

deep CASA algorithm produced intelligibility benefits for

all listeners in all conditions. Benefit averaged across all

conditions and HI listeners was 65 percentage points. This

benefit was largest for those who need it most—those with

the lowest unprocessed scores, who tended to have the larg-

est degree of hearing loss. It also allowed HI listeners hav-

ing access to the algorithm to outperform young NH

listeners (without the algorithm) in identical interference

conditions. Finally, speech quality was not assessed in

human listeners, but the PESQ measure suggests that con-

siderable improvements in this aspect were also produced.

Because the gender difference between talkers employed

currently was introduced to assist the human listeners in

their task and is not required for algorithm performance (Liu

and Wang, 2019), the current model could theoretically sep-

arate any two voices, even in challenging reverberant condi-

tions. The non-causal nature of the current model is in

accord with our goal of establishing maximum performance

benchmarks, against which models appropriate for real-time

implementation can be compared.
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1Whereas the aspects of generalization described in Sec. I can be consid-

ered primary, other aspects of generalization by deep learning noise

reduction or speaker separation algorithms have been demonstrated.

Essentially all studies employ different speech utterances for training and

testing. Improved intelligibility for HI (or CI) listeners has also been dem-

onstrated in untrained signal-to-noise or TIRs (e.g., Chen et al., 2016;

Zhao et al., 2018; Goehring et al., 2019; Healy et al., 2019), and untrained

room-impulse-responses when reverberation is involved (e.g., Zhao et al.,
2018; Healy et al., 2019).

2https://github.com/ehabets/RIR-Generator.
3In accordance with our prior work on this topic, all conditions were

equated to the same presentation sound pressure level. The equating of

level following processing results in increases in the level of target speech

in processed conditions, relative to that level in the corresponding unpro-

cessed conditions. However, this technique is preferred because it best

mimics an implementation strategy in which gains (hearing aid amplifica-

tion or CI current mappings) are applied following noise reduction, when

noise reduction is turned on.

4This lower bound for algorithm benefit observed currently is likely influ-

enced by a floor effect in which subject HI9 was unable to correctly report

a single keyword in any of the four unprocessed conditions. His unpro-

cessed scores would likely be lower were it not for the floor at 0% correct,

which would result in larger benefit.
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