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Abstract
Automatic speech recognition (ASR) systems suffer from per-
formance degradation under noisy and reverberant conditions.
In this work, we explore a deep neural network (DNN) based
approach for spectral feature mapping from corrupted speech to
clean speech. The DNN based mapping substantially reduces
interference and produces estimated clean spectral features for
ASR training and decoding. We experiment with several differ-
ent feature mapping approaches and demonstrate that a DNN
trained to predict clean log filterbank coefficients from noisy
spectrogram directly can be extremely effective. The experi-
ments show that the ASR systems with these cleaned features
perform well under joint noisy and reverberant conditions, and
achieve the state-of-the-art results on the CHiME-2 corpus with
stereo (corrupted and clean) data.
Index Terms: Robust Automatic Speech Recognition, Deep
Neural Networks, Spectral Feature Mapping, Denoising, De-
verberation

1. Introduction
Automatic speech recognition (ASR) has been making tremen-
dous progress in the last few years and state-of-the-art systems
achieve relatively satisfactory performance under clean condi-
tions. However, ASR systems still suffer from performance
degradation in the presence of acoustic interference, such as
additive noise and room reverberation. Therefore, increasing
attention has been drawn to the robustness of ASR systems.

For acoustic modeling, even the system is trained and tested
under the matched noisy conditions, the performance is still
lower than that trained and tested under the clean condition. It is
primarily because these speech signals are corrupted by interfer-
ence, leading to less informative extracted features for model-
ing. Therefore, robust speech recognition can benefit from fea-
ture enhancement and it would be important to design a front-
end for this process to further improve the ASR performance
under noisy and reverberant conditions.

Deep neural networks (DNNs) have shown strong learning
capacity [1] and been successfully applied to many speech ap-
plications [2, 3]. Our recent studies [4, 5] have used DNNs
for speech dereveberation and denoising. The DNN is trained
to learn the spectral mapping from corrupted speech to clean
speech, which effectively attenuates reverberation and noise
in the spectral domain. It has been shown that the resynthe-
sized time-domain signals using the DNN mapped spectral fea-
tures significantly improve the predicted speech intelligibility
as well as automatic speech recognition results [5]. However,
to resynthesize time-domain signals, the phases of corrupted

speech usually introduce distortion and lead to negative effects
on speech spectrograms.

From the ASR standpoint, features are directly computed
from spectral magnitudes and phases are not involved during
feature extraction. This motivates us to extract acoustic fea-
tures directly from the DNN-generated spectral features for
ASR without time-domain signal resynthesis. In a typical ASR
system, instead of directly using spectral magnitudes, the most
common features include Mel filterbank features and Mel fil-
terbank cepstral coefficients (MFCC) features. Therefore, it is
valuable to employ a DNN to directly produce enhanced fea-
tures either in the spectrogram domain or the Mel filterbank do-
main.

In this paper, we propose to use the DNN for spectral fea-
ture mapping to generate estimated clean spectral features from
the noisy and reverberant signals for robust ASR. We exper-
iment with three spectral feature mapping methods: spectro-
gram to spectrogram (spec-spec), Mel filterbank to Mel filter-
bank (fbank-fbank), and spectrogram to Mel filterbank (spec-
fbank). Then, the DNN-generated features are used for acous-
tic modeling. Because DNN mapping substantially attenuates
the noise and reverberation in the spectral feature domain, the
ASR features are much cleaner than those from the original cor-
rupted speech. We also show that the DNN is effective to learn
not only clean representation from corrupted features but also
filterbank transformation across different feature domains. The
ASR system using the cleaned features achieves better perfor-
mance under adverse conditions, and performs better than to a
state-of-the-art masking-based approach [6].

2. Relation to prior work
To deal with noise, many DNN based methods have been pro-
posed to improve the robustness of ASR systems. Noise-aware
training is proposed to improve noise robust ASR in [7], where
simple estimates of noise are appended to log Mel filterbank
features for DNN acoustic modeling. Recurrent neural net-
works (RNNs) have been applied in a tandem system [8] or
in a hybrid system with deep structure [9] to model temporal
dependency of speech and noise for robust ASR. A memory-
enhanced deep Long Short-Term Memory RNN is also used
in acoustic modeling in combination with a Gaussian mixture
model (GMM) system for noise robustness [10]. A joint train-
ing approach is used to improve the noise robust ASR using
time-frequency masking in [11], which combines a speech sep-
aration module and an acoustic modeling module into a sin-
gle DNN framework. Because the feature plays a critical role
in acoustic modeling, some studies focus on feature enhance-
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Figure 1: System overview.

ment for robust ASR. Most previous work focused on learn-
ing clean version of MFCC using either denoising autoencoders
[12, 13] or RNNs [14]. In [15], spectral subtraction and a RNN
based denoising auto-encoder are employed to learn Mel filter-
bank from noise. Some work has proposed to learn mapping
directly on spectrogram domain, but the performance on ASR
is not clear [16, 17, 18]. To our knowledge, few previous studies
focus on the feature mapping across different feature domains,
i.e., from spectrogram to Mel filterbank as discussed in this pa-
per.

3. System description
We propose three different methods to learn the spectral map-
ping using the DNN: log spectrogram to log spectrogram, log
Mel filterbank to log Mel filterbank, and log spectrogram to log
Mel filterbank. Fig. 1 shows the overview of the system. We
use the feature mapping from log spectrogram to log Mel filter-
bank as an example. A corrupted time-domain signal is first de-
composed into the spectrogram domain. The corrupted magni-
tude spectrum is then fed into the trained DNN spectral feature
mapping model to learn the clean representation of Mel filter-
bank. An enhanced Mel filterbank feature is generated from the
DNN, directly followed by an ASR feature extraction module.
The enhanced Mel filterbank features are either used directly as
ASR features, or used to compute MFCC features and for ASR
modeling and decoding. The following subsections discuss the
system in detail.

3.1. Spectral feature mapping

We first train a DNN to perform spectral feature mapping for
feature denoising and dereverberation. To train this DNN, we
extract the spectrogram from corrupted speech as inputs and the
spectrogram from clean speech as desired outputs. Specifically,
we first divide the input time-domain signals into 25-ms frames
with 10-ms frame shift, and then apply short time Fourier trans-
form (STFT) to compute log spectral magnitudes in each time
frame. For a 16 kHz signal, each frame contains 400 samples,
and we use 512-point Fourier transform to compute the magni-
tudes, forming a 257-dimensional log magnitude vector x(m)
in the mth frame:

x(m) = [x(m, 1), x(m, 2), . . . , x(m,K)]T (1)

where, x(m,k) is the log magnitude in each frequency bin, and
K = 257 in this study.

Since temporal dynamics incorporates rich information for
speech, we include the spectral magnitude vectors of neighbor-
ing frames into a feature vector. Therefore, the input feature
vector for the DNN is:

x̃(m) = [x(m− d), . . . ,x(m), . . . ,x(m+ d)]T (2)

where d denotes the number of neighboring frames on each side

and is set to 5 in this study. Therefore, the dimensionality of the
input feature vector is 257× 11 = 2827.

The desired output of the DNN is the log Mel filterbank
features of clean speech in the current frame, denoted by a 40-
dimensional feature vector y(m). If the DNN is trained to
learn the clean spectrogram magnitudes, the output is a 257-
dimensional feature vector.

We train a deep neural network to learn the spectral feature
mapping from corrupted speech to clean speech. The objective
function for optimization is based on mean square error. Eq. 3
is the cost for each training sample:

L(y,x;Θ) =
K∑

k=1

(yk − fk(x))
2

(3)

where yk and fk(·) are the desired and the actual output of
the kth neuron in the output layer, respectively. Θ denotes the
weights we need to learn. The input features are normalized to
zero mean and unit variance over all feature vectors in the train-
ing set, and the output is normalized into the range of [0, 1].
The activation functions of both the hidden layers and the out-
put layer are the sigmoid functions. We use backpropagation
with mini-batch stochastic gradient descent to train the DNN
model, and the optimization technique uses adaptive gradient
descent along with a momentum term [19].

Fig. 2 shows an example of the spectral features mapping
for a sentence in CHiME-2 corpus [20]. Fig. 2(a) shows the
log spectrum of the corrupted speech with both living room
noise and reverberation, which is used as the input of the DNN.
The corresponding corrupted Mel filterbank feature is shown
in Fig. 2(b). Figs. 2(c) and (d) show the enhanced Mel fil-
terbank feature produced by the DNN and the Mel filterbank
feature of clean speech, respectively. Comparing Fig. (b) with
Fig. (c), the energy caused by reverberation and additive noise
is largely removed or attenuated, which is a good estimate of
the features for the clean speech as shown in Fig. (d). Although
the DNN does not perfectly generate the spectral structures of
clean speech, the formant information is considerably restored
which is essential to speech recognition.

For the DNNs trained to learn Mel filterbank features, we
can directly extract MFCC features for ASR GMM modeling
and use DNN-generated Mel filterbank features for ASR DNN
training. For the DNN trained to learn spectral magnitudes, it is
straightforward to apply Mel filterbank to DNN-generated spec-
trogram and then compute Mel filterbank and MFCC.

Note that, in order to ensure matched features, the DNN
is treated as a front-end to enhance the features for both ASR
training and test data.

3.2. ASR modeling

We use the Kaldi toolkit [21] to build the automatic speech
recognition system for the task. We first build a GMM-HMM
system using MFCC features. We concatenate 13-dimensional
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Figure 2: (a) Log magnitude spectrogram of corrupted speech

with both noise and reverberation, (b) log Mel filterbank of cor-

rupted speech, (c) DNN outputs, (d) log Mel filterbank of clean

speech.

MFCCs from a context window of 7 frames, which are then
de-correlated and compressed to 40 dimensions by linear dis-
criminant analysis (LDA). This is followed by maximum like-
lihood linear transform (MLLT) for further de-correlation. In
order to reduce speaker variance, we also apply feature-space
maximum likelihood linear regression (fMLLR) on the result-
ing features, which is estimated by speaker adaptive training
(SAT). The HMM is a 3-state cross-word triphone system with

around 2000 tied states in the final system.

Then we build a DNN-HMM hybrid system using 40-
dimensional log Mel filterbank features with their deltas and
double-deltas from a 11-frame context window. We first pre-
train the DNN generatively with stacked RBMs, which are then
used to initialize the DNN with 7 hidden layers of 2048 sig-
moid units. Then we train the DNN with the tied triphone state
targets using the alignment obtained from the GMM-HMM sys-
tem. Following [9], we realign the data with the trained DNN
and retrain the DNN using the new alignment. We repeat this
process for three times until the performance become saturated.
We further improve the system by applying sMBR-based se-
quence training on the DNN [22]. For faster convergence of the
sMBR training, we regenerate the lattices after the first iteration
and train for 4 more iterations. For the decoding, we use the
standard 5k trigram language models provided by the task.

4. Evaluation
4.1. Task and data description

We evaluate the effectiveness of our proposed neural networks
for different spectral features mapping methods on Track 2 of
the CHiME-2 challenge [20], which is a medium-vocabulary
task for word recognition under reverberant and noisy environ-
ments without speaker movements. In this task, three types
of data are provided based on the Wall Street Journal (WSJ0)
5K vocabulary read speech corpus: clean, reverberant and re-
verberant+noisy. The clean utterances are extracted from the
WSJ0 database. The reverberant utterances are created by con-
volving the clean speech with binaural room impulse responses
(BRIR) corresponding to a frontal position in a family living
room. Real-world non-stationary noise background recorded in
the same room is mixed with the reverberant utterances to form
the reverberant+noisy set. The noise excerpts are selected such
that the signal-to-noise ratio (SNR) ranges among -6, -3, 0, 3, 6
and 9 dB without scaling. The multi-condition training, devel-
opment and test sets of the reverberant+noisy set contain 7138,
2454 and 1980 utterances respectively, which are the same ut-
terances in the clean set but with reverberation and noise at 6
different SNR conditions.

4.2. Experimental settings

We first choose all sentences from the CHiME-2 clean train-
ing set and the reverberant+noisy training set to train the DNN
based spectral feature mapping model. With the trained DNN
model, we map the corrupted spectral features for all reverber-
ant+noisy training, development and test utterances to estimated
clean spectral features. For spectral feature mapping, we choose
to use 2×2048 sigmoid units in the hidden layers to train the
DNNs. The parameters in the experiments are tuned in the de-
velopment set to optimize the performance for each method.
For acoustic modeling (AM), we use 7×2048 sigmoid hidden
units to train the AM DNN for all three feature mapping meth-
ods. All the three feature mapping methods use the same train-
ing recipe.

4.3. Results and discussions

The CHiME-2 corpus provides two channel signals, and we
evaluate systems that take the average of both channel signals
as input for DNN spectral feature mapping.

The results are shown in Table 1. For comparison, the base-
line (noisy) is trained on the original reverberant+noisy train-
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System -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average

noisy 36.7% 26.5% 21.0% 16.4% 13.1% 11.6% 20.9%

fbank-fbank 34.0% 23.6% 19.0% 14.6% 12.6% 10.9% 19.1%

spec-spec 33.9% 24.0% 19.5% 14.0% 12.2% 11.1% 19.1%

spec-fbank 30.6% 22.5% 17.8% 12.9% 11.3% 10.8% 17.6%

Table 1: WER comparisons for three spectral feature mapping methods on the CHiME-2 corpus. “noisy” stands for the ASR baseline

using noisy signals without a preprocessing front-end as inputs. “fbank-fbank” stands for the ASR system with the DNN based

spectrogram to Mel filterbank features mapping. “spec-spec” stands for the DNN based spectrogram to spectrogram mapping. “spec-

fbank” stands for the DNN based spectrogram to Mel filterbank features mapping. The best performance in each condition is marked

in bold.

System -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average

noisy 28.2% 20.7% 16.3% 13.1% 9.49% 9.10% 16.1%

fbank-fbank 31.2% 22.5% 17.9% 13.2% 10.6% 9.21% 17.4%

spec-spec 29.5% 22.2% 16.2% 12.6% 11.1% 10.1% 16.9%

spec-fbank 28.0% 19.9% 14.8% 11.9% 10.2% 8.91% 15.6%
Narayanan[6] 25.6% 19.6% 16.8% 13.8% 10.7% 10.6% 16.2%

Table 2: WER on the CHiME-2 corpus with the clean alignment.

ing set multi-conditionally without any pre-processing. It is a
strong baseline, which by itself already outperforms the best
entry in the challenge workshop (26.9%) [23, 20]. The three
proposed systems in this paper directly utilize mapped spec-
tral features for acoustic modeling, which achieve considerably
better performance than the baseline on all SNR conditions. As
is expected, the feature mapping front-end obtains bigger im-
provement in lower SNRs than in higher SNRs. The average
relative improvements are 8.6%, 8.6%, 15.8% for fbank-fbank,
spec-spec, and spec-fbank, respectively. In addition, the map-
ping from spectrogram to Mel filterbank yields the best results,
suggesting that the DNN is capable of learning clean features
across different feature domains and it is not necessary to per-
form denoising autoencoders to the same features. It is worth
mentioning that all the proposed methods substantially outper-
form the spectral mapping method in [5], where the learned
clean spectral magnitudes are used to resynthesize the time-
domain waveforms for ASR modeling.

Note that our ASR system is a very powerful recognizer.
We have trained the same ASR system on the clean dataset
(WSJ0) that is parallel to the CHiME-2 noisy+reverberant cor-
pus and achieved 2.5% WER on the clean evaluation set. This
inspires us to utilize the AM DNN trained on the clean data to
produce a better alignment which can be used for AM DNN
training on the noisy data. This strategy has been used in pre-
vious studies [9, 6] and we present results on using these clean
alignments to facilitate comparisons with previous approaches.
We evaluate the ASR results using three spectral feature map-
ping methods with the clean alignment in Table 2.

In Table 2, the baseline system produces substantially better
results with clean alignment, which even outperforms two of the
spectral feature mapping methods (fbank-fbank and spec-spec).
This might suggest that with very accurate clean alignment, a
strong AM DNN is able to learn part of the denoising and dere-
verberation functions. However, the best results still come from
the feature mapping from spectrogram to Mel filterbank, where
the WER is decreased by 3.1% relative over the baseline. We
also directly show the state-of-the-art results on the CHiME-2
corpus reported in [6], which we improve upon by about 0.6%1.

1While the Narayanan number here is presented for comparison,

Therefore, although clean alignment can boost ASR results un-
der noisy and reverberant conditions, the DNN trained to learn
the mapping from spectrogram to Mel filterbank can still im-
prove the performance.

5. Conclusion and future work
In this paper, we have proposed to use DNNs for spectral fea-
ture mapping to improve ASR performance under noisy and re-
verberant conditions. The DNNs can be trained to learn the
mapping for different feature domains and can produce an en-
hanced front-end for ASR feature extraction. The experiments
show that our proposed approach significantly boosts ASR per-
formance under noisy and reverberant conditions. Especially,
the DNN can effectively learn the mapping from the spectro-
gram domain to the Mel filterbank domain, and the ASR system
using this front-end achieves the state-of-the-art results on the
CHiME-2 corpus.

In this study, we utilize stereo data to train a front-end DNN
for spectral feature denoising and dereverberation, and use the
enhanced features to train another DNN for acoustic modeling.
It is interesting to train the two DNNs jointly, similar to the
mask estimation in [11, 24]. Specifically, our approach pro-
vides a good initialization for both DNNs, then we can concate-
nate both and train a joint DNN for feature enhancement and
acoustic modeling togther. This will be our future work.
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there are a number of distinctions between the systems: Narayanan’s

system fully trains the masking model jointly with the ASR, while our

system includes sMBR discriminative training. Future work will look

to isolate differences between these approaches.
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