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For deep learning based speech segregation to have translational significance as a noise-reduction

tool, it must perform in a wide variety of acoustic environments. In the current study, performance

was examined when target speech was subjected to interference from a single talker and room rever-

beration. Conditions were compared in which an algorithm was trained to remove both reverberation

and interfering speech, or only interfering speech. A recurrent neural network incorporating bidirec-

tional long short-term memory was trained to estimate the ideal ratio mask corresponding to target

speech. Substantial intelligibility improvements were found for hearing-impaired (HI) and normal-

hearing (NH) listeners across a range of target-to-interferer ratios (TIRs). HI listeners performed bet-

ter with reverberation removed, whereas NH listeners demonstrated no difference. Algorithm benefit

averaged 56 percentage points for the HI listeners at the least-favorable TIR, allowing these listeners

to perform numerically better than young NH listeners without processing. The current study high-

lights the difficulty associated with perceiving speech in reverberant-noisy environments, and it

extends the range of environments in which deep learning based speech segregation can be effec-

tively applied. This increasingly wide array of environments includes not only a variety of back-

ground noises and interfering speech, but also room reverberation.
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I. INTRODUCTION

The acoustic environments encountered by listeners

vary widely, and so speech must be understood in the pres-

ence of a wide variety of different background interferences.

This places enormous demands on speech-segregation or

noise-reduction technology. The task is perhaps simplest

when the background consists of only non-speech noise,

especially when that noise is steady. Under these conditions,

the target speech and the background noise form distinct

classes, which can be exploited by noise-reduction algo-

rithms. The task is more challenging when the background

consists of the babble of multiple talkers, because the dis-

tinctiveness between target and background is reduced. Also

challenging are more ecologically valid backgrounds that

contain a variety of different noise types, including concur-

rent speech and non-speech sounds (e.g., recordings from a

busy cafeteria). Although the magnitude of the challenge

associated with these situations varies, the task is the same—

target speech must be extracted from a background, allowing

intelligibility to be increased.

Fortunately, deep learning algorithms based on time-

frequency (T-F) masking have been successful at improving

intelligibility under these varied conditions, and particularly

for the population of greatest need—those with sensorineural

hearing loss who wear hearing aids. Intelligibility improve-

ments have been observed for backgrounds consisting of

steady-state noise (Healy et al., 2013; Healy et al., 2014;

Monaghan et al., 2017; Zhao et al., 2018), speech babble

(Healy et al., 2013; Healy et al., 2014; Healy et al., 2015;

Chen et al., 2016; Monaghan et al., 2017; Bentsen et al.,
2018; Zhao et al., 2018), and cafeteria-noise recordings

(Healy et al., 2015; Chen et al., 2016; Zhao et al., 2018).

The task is somewhat different when the background

consists of speech from an interfering talker (speaker separa-

tion).1 This is particularly true when the competing speech

itself is fully intelligible. In the human auditory system, this

type of segregation likely relies on different mechanisms.a)Electronic mail: healy.66@osu.edu
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But deep learning has again provided substantial intelligibil-

ity improvements for hearing-impaired (HI) listeners under

these conditions (Healy et al., 2017; Bramsløw et al., 2018).

Another fundamental aspect that characterizes the every-

day acoustic environment involves room reverberation.

Reverberation often occurs along with background noise/inter-

ference,2 making it important that hearing technology be able

to address these concurrent corruptions. But the two types of

distortion disrupt the acoustic speech signal in different ways,

leading to different effects on speech perception (producing for

example different patterns of vowel-perception errors in human

listeners, N�ab�elek and Dagenais, 1986). Likely due to the con-

siderable challenge associated with addressing these concurrent

distortions, only recently reported is the first demonstration of

intelligibility improvement resulting from a single-microphone

(monaural) algorithm in reverberant-noisy conditions (Zhao

et al., 2018). In this report, deep learning was used to estimate

T-F masks for sentences corrupted by reverberation plus

speech-shaped noise or reverberation plus multi-talker babble.

Substantial intelligibility improvements were observed follow-

ing processing for HI listeners, which allowed their perfor-

mance to approach or match that of young normal-hearing

(NH) listeners without processing.

When speech enhancement or speaker separation is per-

formed on reverberant-noisy speech, a decision must be made

with regard to what signal should be segregated from the cor-

rupted speech. Said differently, what signal should the algo-

rithm be trained to extract? In Zhao et al. (2018), the decision

was made to remove both reverberation and noise, and aim for

reverberation-free, noise-free speech. This method, which can

be referred to as the direct-sound (DS) target, is one of two

processing strategies employed in the current study. But alter-

native approaches exist. These alternatives involve removing

just background interference, while preserving some or all of

the reverberation corresponding to the speech of interest

(Roman and Woodruff, 2013; Li et al., 2015).

The alternative approach assessed currently involved

the removal of interfering speech but no attempt to remove

reverberation from the speech of interest. This may be

referred to as the reverberant (R) target. The motivation for

this approach is twofold. First, when background interfer-

ence is absent, human listeners can tolerate a substantial

amount of reverberation. This is particularly true for NH lis-

teners, but also to some extent for those with hearing loss or

cochlear implants (see the brief discussion by Zhao et al.,
2018). Second, the computational challenge associated with

accurately estimating the R target is likely reduced relative

to that associated with accurately estimating the DS target,

because de-reverberation of the speech of interest is not per-

formed in the former and the output sound more closely

resembles the original input sound. Said differently, it might

be easier to accurately estimate the R target than the DS tar-

get (see Zhao et al., 2014).

Another alternative was also considered, which involved

keeping the early reverberation reflections, typically defined

as those occurring within 50 ms, of the direct sound (Roman

and Woodruff, 2013; Li et al., 2015). A computational inves-

tigation, however, showed that the segregation performance

of this alternative lies between those of the DS and R targets.

So the effects of different targets, if present, should be revealed

by comparing the DS and R targets. Therefore, the current

study does not evaluate this early-reverberant alternative.

The implementation of any of these training targets (DS,

early reverberation, or R) is straightforward in a deep learn-

ing context. During a training phase, the algorithm receives

acoustic features extracted from the corrupted speech. In the

current study, this corruption involved reverberation plus an

interfering talker. Because the learning is supervised, the

algorithm also receives the desired outcome, which in our

work has involved the ideal T-F mask for each particular tar-

get sentence. These masks are ideal because they employ

knowledge of the separate speech and interference signals as

well as their reverberations, i.e., they are oracle masks. The

different training targets are implemented simply by provid-

ing the deep learning network with the desired mask. In the

case of the DS target, the mask provided during training

involves the reverberation-free, interference-free speech of

interest. In the case of the R target, the mask provided during

training involves the fully reverberant but interference-free

speech of interest. Had the choice been made to implement

an early-reverberant target, then the mask provided during

training would have involved the speech of interest contain-

ing only early reflections but no interference. Through many

training trials, the network learns to estimate the mask that it

is trained on. Once trained, it can estimate that mask when

provided with only features extracted from novel (unseen

during training) corrupted speech, with no knowledge of the

separate target or interfering signals or their reverberation

components. It is important to recognize that network train-

ing is completed prior to operation, and so training duration

is unrelated to operational efficiency.

Some literature exists regarding intelligibility produced

by DS versus R masks when implemented as binary and

ideal, and presented to NH listeners (Roman and Woodruff,

2011; Roman and Woodruff, 2013). Some literature also

exists regarding these masks, including algorithm-estimated

versions, when assessed using objective metrics on a

speaker-identification task (Zhao et al., 2014). But the results

of these studies suggest no simple relationship between DS

and R masks. Instead, factors including noise-rejection

threshold and algorithm-estimation accuracy play roles.

Zhao et al. (2018) demonstrated that a deep learning algo-

rithm based on the ideal ratio mask (IRM, Srinivasan et al.,
2006; Narayanan and Wang, 2013; Wang et al., 2014) and

trained to estimate the DS target can effectively remove con-

current reverberation and noise to improve intelligibility for

HI listeners. But the relative performance of human listeners,

particularly HI, on algorithms trained to estimate DS versus

R targets is not known, and direct assessment is important.

In the current study, a single-microphone deep learning

algorithm based on T-F masking was employed to improve

the intelligibility of a target talker in the presence of rever-

beration and a single interfering talker. Likely because this

interference situation poses a substantial computational chal-

lenge, it has not yet been addressed. To compare the relative

intelligibilities resulting from two training targets, a deep

neural network was trained to estimate either the DS or R

target. Both HI and NH listeners were employed in this
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study. Unlike previous studies that used feedforward neural

networks (Healy et al., 2017; Zhao et al., 2018), the current

study employed a recurrent neural network (RNN) with bidi-

rectional long short-term memory (BLSTM) to estimate the

IRM. Such an RNN encodes temporal contexts via memory

cells, capturing information from a much wider context over

a sentence. This property makes RNNs capable of modeling

the temporal correlations intrinsic to reverberant speech.

II. METHOD

A. Subjects

A first group of listeners was composed of ten individu-

als with bilateral sensorineural hearing loss of likely

cochlear origin. All were bilateral hearing-aid wearers

recruited from The Ohio State University Speech-Language-

Hearing Clinic. These listeners were selected to represent

typical HI patients. The age range was 51 to 73 yr (mean-

¼ 68), and five were female. Prior diagnoses were confirmed

on day of test using otoscopy, tympanometry (ANSI, 1987),

and pure-tone audiometry (ANSI, 2004, 2010). Otoscopy

was unremarkable, and middle-ear pressures were within

normal limits for all listeners. Bone-conduction audiometry

helped establish the cochlear site of lesion. Figure 1 displays

audiograms for each of these listeners, who are numbered in

ascending order of pure-tone average audiometric thresholds

(PTAs; means across thresholds at 500, 1000, and 2000 Hz

and ears). In accord with our desire to recruit listeners repre-

sentative of typical patients, the degree of hearing loss varied

across listeners and frequencies, but less so across ears.

Seven of the listeners had audiometric thresholds within nor-

mal limits [20 dB hearing level (HL) or lower] for at least

one frequency. But all listeners had elevated thresholds (in at

least one ear) for at least half of the audiometric frequencies.

These degrees of hearing losses ranged from mild to pro-

found. PTAs ranged from 19 to 72 dB HL with an average of

34 dB HL. The primary configuration of hearing loss was

sloping (gently to precipitously).

A second group of listeners was composed of ten indi-

viduals with NH, defined by audiometric thresholds of 20 dB

HL or below at octave frequencies from 250 to 8000 Hz

(ANSI, 2004, 2010). The exceptions were two listeners

(NH1 and NH5) who had thresholds of 25 dB HL at 250 Hz

in the right ear. These individuals were recruited from under-

graduate courses at The Ohio State University. Their ages

ranged from 18 to 21 yr (mean¼ 19.8), and all were female.

All listeners received a monetary incentive or course credit

for participating. As in our previous studies, age matching

between HI and NH listeners was not performed because the

goal was to assess the performance of typical (older) HI lis-

teners relative to the ideal performance of young NH listen-

ers. No listeners in either group had any prior exposure to

the sentence materials employed.

B. Stimuli

The stimuli were drawn from the Institute of Electrical

and Electronics Engineers (IEEE) revised list of phonetically

balanced sentences (IEEE, 1969). This set is composed of

720 grammatically and semantically correct sentences, each

having five scoring keywords. The stimuli used for current

human-subjects testing consisted of 153 target sentences,

each mixed with a single interfering sentence. There was no

overlap between the set of target sentences and the set of

interfering sentences. All target sentences were spoken by

the same male talker, and all interfering sentences were spo-

ken by the same female talker. The 44.1 kHz, 16-bit sentence

recordings were down-sampled to 16 kHz for processing and

presentation.

Each target and interfering sentence was convolved with

a different room impulse response (RIR). The image method

(Allen and Berkley, 1979) was used to generate the RIRs.3 A

simulated room having a reverberation time (T60) of 600 ms

FIG. 1. Pure-tone air-conduction audiometric thresholds for the listeners with hearing impairment. Listeners are numbered in order of increasing degree of

hearing loss. Right ears are represented by circles and left ears are represented by X’s. Arrows indicate thresholds exceeding audiometer limits. The normal-

hearing limit of 20 dB HL is represented by a horizontal dotted line in each panel. Subject numbers, listener ages in years, and genders are also provided.
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and dimensions of 6 m� 7 m� 3 m (L�W�H) was

employed. The microphone was placed at a fixed position

within the room at (3.5, 4, 1.7) m. The target-talker position

was chosen randomly from a set of 36 positions uniformly

spaced on a 1-m radius circle centered on the microphone, at

the same elevation. The interfering talker was placed on one

of 36 uniformly spaced positions on a circle having a 2-m dis-

tance from the microphone, also at the same elevation. These

room characteristics and dimensions were chosen to represent

a large living room having a relatively high reverberation

time, and the positions of the talkers and listener were chosen

to represent a conversation taking place in the room. It is note-

worthy that, unlike Zhao et al. (2018), reverberation was

applied to both the target speech and the interference.

After convolution, test signals were generated by mixing

the reverberant target and interfering signals into pairs at one

of the following target-to-interferer ratios (TIRs): �6, �3, 0,

3, and 6 dB; the TIR definition used the reverberant target as

the reference signal. Target and interfering sentences were

paired such that each was approximately equal in duration.

No duration difference between members of a pair exceeded

0.01 s. Target and interfering sentences were mixed so that

their onsets aligned, and target signals tended to be slightly

longer in duration.

C. Algorithm description

The general operation of the algorithm is depicted in

Fig. 2. A complementary set of acoustic features was

extracted from the concurrent reverberant sentences and

delivered to a neural network (an RNN with BLSTM).

During training, the network received these features from a

given sentence pair, along with the IRM for that pair. The

IRM consists of a time-frequency matrix of values, ranging

from 0 to 1. These values can be considered attenuation val-

ues, where values closer to 1 represent T-F units corre-

sponding primarily to the desired signal and values closer

to 0 represent units corresponding primarily to the unde-

sired signal. The IRM provided during training was that

representing either the DS or R signal. So the desired signal

was either the DS speech of interest or that speech plus its

reverberation. Following training with many such exam-

ples, the algorithm entered a test (operation) phase. During

this phase, the network again received features derived

from a sentence pair, but it output the estimated IRM

directly from these features. The network was trained sepa-

rately to estimate the IRM for the DS signal and the IRM

for the R signal.

Of the remaining 567 sentences from each talker (720

total minus 153 used for algorithm testing), 537 were used

for training and 30 were used for cross validation. Thus, the

test stimuli were not used during algorithm training or vali-

dation. The same method used to generate the test stimuli

was used to generate each training mixture, except that the

RIRs corresponded to different sets of 36 points on the same

circles, and these points were interleaved with those used to

create the test signals (i.e., with 5-deg separation). Training

TIRs were selected from the range �12.5 to 12.5 dB with a

step size of 1 dB. Note that no RIR or TIR was the same

between the test and training utterances. To obtain utterance

pairs for training that fully overlapped in time, the interfer-

ence sentence was repeated if needed for each mixture until

it matched the duration of the target sentence. The training

set consisted of 100 000 such mixtures (approximately 74 h

of audio material) and the cross validation set consisted of

500 mixtures (approximately 21 min of audio material).

The acoustic features delivered to the RNN were gener-

ated by dividing each signal in the training set into 20-ms

frames with 10-ms frame shift. In each time frame, a combi-

nation of features was extracted, consisting of a 40-

dimensional (40-D) log-mel filterbank, a 31-D gammatone

frequency cepstral coefficient (GFCC, Shao and Wang,

2008), and a 31-D power-normalized cepstral coefficient

(PNCC, Kim and Stern, 2016). These together formed a 102-

D feature vector. This combination of features has been

shown to form a complementary set and outperform other

feature combinations (Delfarah and Wang, 2017). The mean

(l) and standard deviation (r) of the feature vectors were

computed across the entire training set. Then, every feature

vector F was normalized as follows:

~F ¼ F� l
r

; (1)

FIG. 2. (Color online) Schematic diagram of the speech-separation frame-

work. Est.¼ network-estimated, IRM¼ ideal ratio mask, RNN¼ recurrent

neural network, BLSTM¼ bidirectional long short-term memory.
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where ~F is the normalized 102-D feature vector. This nor-

malization has been shown to facilitate deep neural network

training (Delfarah and Wang, 2017).

Let the IRM corresponding to the reverberation-free,

interference-free target speech be IRMDS, and the IRM cor-

responding to the fully reverberant, interference-free target

speech be IRMR. These IRMs served as the training targets

in the current study (see Wang et al., 2014). Let x1 and x2

represent the direct target and interferer signals, respectively.

The reverberant mixture signal yðtÞ can be described as

yðtÞ ¼ ~x1ðtÞ þ ~x2ðtÞ ¼ x1ðtÞ � h1ðtÞ þ x2ðtÞ � h2ðtÞ; (2)

where h1ðtÞ and h2ðtÞ represent the RIR for each speaker, the

symbol � denotes convolution, and ~x1ðtÞ and ~x2ðtÞ denote the

reverberant signals. These two versions of the IRM (see

Wang et al., 2014; Huang et al., 2015) are

IRMDS ¼
S x1ð Þ

S x1ð Þ þ S y� x1ð Þ
;

S x2ð Þ
S x2ð Þ þ S y� x2ð Þ

" #
; (3)

IRMR ¼
S ~x1ð Þ

S ~x1ð Þ þ S ~x2ð Þ
;

S ~x2ð Þ
S ~x1ð Þ þ S ~x2ð Þ

� �
; (4)

where Sð:Þ represents the magnitude short-time Fourier

transform (STFT) of a signal. A fast Fourier transform on

frames of length 20 ms with 10-ms overlap, aligned with

acoustic-feature extraction, was applied to generate the 161-

D STFT representation of the signals.

The goal of masking-based speech segregation involves

a function G that maps features ~F to the IRM (see Wang

et al., 2014). In the current algorithm, G was the RNN con-

sisting of four hidden layers with BLSTM (Hochreiter and

Schmidhuber, 1997). A BLSTM layer consisted of one long

short-term memory (LSTM) that processed feature frames

from the beginning to end of the sentence, and another

LSTM operating in the reverse direction. The use of memory

cells in the RNN with BLSTM eliminated the need for fea-

tures in the neighboring frames to predict a frame of the

IRM, as commonly done in feedforward networks (e.g., Zhao

et al., 2018). There were 600 hidden neurons in each layer

(300 neurons per direction). The last hidden layer was con-

nected to a feedforward output layer having 322 units (corre-

sponding to the dimensions of one target IRM frame and one

interferer IRM frame) and the sigmoidal activation function.

The network therefore contained approximately 7.6� 106

trainable parameters. The Adam optimizer (Kingma and Ba,

2014) was used to minimize the following mean square error

(MSE) loss function:

LðIRM; HÞ ¼ ðIRM � GHð ~FÞÞ2; (5)

where H represents network parameters.

During training for the IRMDS and IRMR targets, the

RNN was unrolled over 100 time frames, and the data were

processed in batches of size 32 samples. The learning rate

was initially set to 0.0003 for 30 epochs. At the completion

of training, the GH having the least error on the validation

set was chosen and used in the test phase. For the IRMDS

target, GH was obtained after 16 h of training on a single

graphics processing unit (GPU), and for the IRMR target,

GH was obtained after 19 h of training on the same GPU.

During the test phase, features were extracted directly

from each sentence-pair mixture, normalized by l and r as

given in Eq. (1), and passed through the RNN to generate the

estimated IRM (either DS or R) for that mixture. The esti-

mated IRM for the mixture was then point-wise multiplied

by SðyÞ for that mixture to generate the estimated magnitude

STFT for that target speech. Finally, the time-domain signal

was resynthesized using this estimated target magnitude, the

mixture-signal phase, and the overlap-add method. The algo-

rithm trained to estimate the IRMDS will be referred to as the

DS algorithm, and the algorithm trained to estimate the

IRMR will be referred to as the R algorithm.

Figure 3 displays spectrograms of a sentence-pair mix-

ture at each of several processing stages. Panel (a) shows the

target sentence, and panel (b) displays the interfering sen-

tence, both without reverberation. Panels (c) and (d) show

these same utterances following the application of reverbera-

tion, and panel (e) shows these reverberant sentences mixed

at �6 dB TIR. Panel (f) shows the IRMDS, and panel (g)

shows the algorithm-estimated IRMDS. Panel (h) shows the

result of applying the estimated IRMDS in panel (g) to the

mixture in panel (e). Panel (i) shows the IRMR, and panel (j)

shows the algorithm-estimated IRMR. Finally, panel (k)

shows the result of applying the estimated IRMR in panel (j)

to the mixture in panel (e). The accuracy of the algorithm-

estimated IRM relative to its ideal counterpart can be

assessed by comparing panels (f) versus (g), and (i) versus

(j). How veridically the output of the algorithm represents

the original target speech can be assessed by comparing pan-

els (a) versus (h), and (c) versus (k).

D. Procedure

Each listener heard nine conditions (3 processing con-

ditions� 3 TIRs). The processing conditions included (1)

unprocessed reverberant concurrent sentences, (2) reverberant

concurrent sentences processed by the DS algorithm, and (3)

reverberant concurrent sentences processed by the R algo-

rithm. The TIRs for HI listeners were 0, 3, and 6 dB, and those

for the NH listeners were �6, �3, and 0 dB. Each listener

heard 17 pairs of concurrent sentences in each condition.

Condition order was blocked by TIR to allow unprocessed,

DS, and R conditions to appear juxtaposed for each TIR. The

order of TIRs, as well as for processing condition within each

TIR, was pseudorandomized for each listener. The sentence

pairs were presented to each listener in the same order to allow

a pseudorandom correspondence between sentence pair and

condition. No sentence was repeated for any listener (either as

a target sentence or as an interfering sentence).

The signals were converted to analog form using Echo

Digital Audio Gina 3 G digital-to-analog converters (Santa

Barbara, CA), routed through a Mackie 1202-VLZ mixer

(Woodinville, WA), and presented diotically over Sennheiser

HD 280 Pro headphones (Wedemark, Germany). The overall

root-mean-square (RMS) level of each stimulus was set to 65

dBA in each ear for the NH listeners using a sound-level meter
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and flat-plate coupler (Larson Davis models 824 and AEC

101, Depew, NY). The same 65 dBA level was used for the HI

listeners, plus frequency-specific gains as prescribed by the

NAL-RP hearing-aid fitting formula (Byrne et al., 1990).

Gains were determined separately for each HI listener and

implemented using a RANE DEQ 60 L digital equalizer

(Mukilteo, WA), as described in Healy et al. (2015). The

NAL-RP formula does not provide prescription gains at 125 or

8000 Hz, and so the gains applied to 250 and 6000 Hz (respec-

tively) were also applied to these two most extreme frequen-

cies. In accord with the use of hearing-aid amplification for

individual HI listeners, these listeners were tested with their

actual hearing aids removed.

Immediately prior to formal testing, listeners participated

in a brief familiarization involving seven reverberation-free

sentences spoken by the male target talker. This was followed

by 21 pairs of concurrent sentences from the male target talker

and the female interfering talker, seven as DS-algorithm proc-

essed stimuli, seven as R-algorithm processed stimuli, then

seven as unprocessed reverberant mixtures. These familiariza-

tion sentences were all drawn from the pool of sentences used

for algorithm training. The TIR employed in familiarization

was 3 dB higher than the most favorable TIR employed for

each group in testing. During familiarization, the HI listeners

were asked if the signal was uncomfortably loud. Two (HI8

and HI10) reported that the signal was loud, and so the overall

level was reduced by 5 dB. After adjustment, both of these lis-

teners indicated that the signal was comfortable. Overall total

RMS presentation levels for the HI listeners with NAL-RP

amplification and adjustment ranged from 72.5 to 94.6 dBA

(mean¼ 78.2 dBA).

After familiarization, listeners heard the nine blocks of

experimental conditions. They were seated with the experi-

menter in a double-walled sound booth, instructed to repeat

back each sentence spoken by the male talker, and to guess

if unsure. The experimenter controlled stimulus presentation

and scored keywords correctly reported.

III. RESULTS AND DISCUSSION

A. Human performance

Sentence intelligibility was based on percentage of sen-

tence keywords reported. Figure 4 displays these intelligibil-

ity scores produced by each individual HI listener in each

condition, and Fig. 5 displays the corresponding data for the

NH listeners. Figure 6 displays group-mean scores and stan-

dard errors of the mean in each condition. In each of these

figures, the HI and NH listeners are plotted separately. Also

in each figure, the processing conditions are represented by

different columns, and the TIRs are displayed in separate

panels.

FIG. 3. (Color online) Spectrogram images of a single target and a single interfering sentence at each of several processing stages. Panel (a) direct-sound target

sentence, panel (b) direct-sound interfering sentence, panel (c) reverberant target sentence, panel (d) reverberant interfering sentence, panel (e) mixture of

reverberant target and interfering sentences at �6 dB, panel (f) direct-sound IRM, panel (g) algorithm-estimated direct-sound IRM, panel (h) direct-sound tar-

get sentence segregated from mixture (e) using algorithm-estimated IRM (g), panel (i) reverberant IRM, panel (j) algorithm-estimated reverberant IRM, panel

(k) reverberant target sentence segregated from mixture (e) using algorithm-estimated reverberant IRM (j).
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1. HI listeners

Apparent in each panel of Fig. 4 is the result of plotting

the HI listeners in order of increasing degree of hearing loss

(increasing PTA). Scores tend to decline from left to right.

The amount of algorithm benefit is largely a function of the

scores in the unprocessed condition. Accordingly, benefit

was largest at the least favorable TIR, where unprocessed

scores were lowest. At the TIR of 0 dB, mean unprocessed

scores averaged 17.3% (see Fig. 6). This value increased to

73.1% and 64.7% for the DS and R algorithms, respectively,

producing mean algorithm benefits of 55.8 and 47.4 percent-

age points. As the TIR improved to 3 dB, mean unprocessed

scores reached 36.0%. But scores were considerably higher in

the DS- and R-algorithm conditions, and mean benefit was

46.5 and 33.5 percentage points. Finally, at a TIR of 6 dB, the

mean unprocessed score reached 51.3%, and DS- and R-

algorithm benefit averaged 29.3 and 16.2 percentage points.

The more-favorable TIRs highlight another important

aspect of algorithm performance, namely that the processing

does not degrade performance in conditions where benefit is not

needed. This is apparent in the middle and bottom panels of Fig.

4—no reductions were observed from unprocessed to processed

scores in any condition for any listener, despite that unprocessed

scores exceeded 70% in six cases and were as high as 92%.

The primary statistical approach involved a linear mixed

effects model (on RAU-transformed scores, Studebaker, 1985),

using planned pairwise comparisons to assess differences across

the conditions.4 This approach was employed to address the

effect of the algorithms at various TIR levels while controlling

for within-subject variability. The standardized mean differ-

ences (differences between z-scores) from the model are shown

in Table I, which presents the differences between unprocessed

and algorithm scores across TIR levels and at each TIR level.

These comparisons indicated that algorithm benefit was large

(in terms of effect size) and significant for the HI listeners in all

conditions for both algorithms. DS-algorithm scores were signif-

icantly greater than unprocessed scores across TIR levels

(p< 0.001) and at each TIR (p< 0.001). R-algorithm scores

were also significantly greater than unprocessed scores across

TIR levels (p< 0.001) and at each TIR (p< 0.001).

With regard to the comparison between the DS and R

algorithms, scores were higher on average in the DS condi-

tions for the HI listeners, with differences averaging 8.4,

FIG. 4. Sentence-intelligibility scores for each individual hearing-impaired

listener in the presence of reverberation and a single interfering talker. The

one unprocessed and two algorithm-processed conditions are represented by

different columns. Algorithm processing targeted the reverberation-free,

interference-free target speech (direct-sound algorithm) or the reverberant

interference-free target speech (reverberant algorithm). The three target-to-

interferer ratios are displayed in separate panels.

FIG. 5. As Fig. 4, but for the normal-hearing listeners.
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12.9, and 13.1 percentage points at 0, 3, and 6 dB TIR,

respectively. The DS score exceeded the R score in 24 of 30

cases for these HI listeners (10 listeners�3 TIRs). The linear

mixed effects model indicated that these differences were

significant across the levels of TIR (p¼ 0.002). At 3 and

6 dB (but not at 0 dB), the DS-algorithm scores were moder-

ately (effect sizes �0.4) and significantly (p< 0.02) higher

than the R algorithm scores. When the a priori DS-R com-

parison was examined using planned comparison as a sup-

plement to the linear mixed effects model (two-tailed,

uncorrected, paired t test), the DS-R difference at 0 dB was

also significant [t(9)¼ 3.0, p< 0.02].

2. NH listeners

As with the HI listeners, algorithm benefit was observed

for the NH listeners at each TIR, and this benefit was largest at

the least-favorable TIR (see Figs. 5 and 6). At the TIR of

�6 dB, the unprocessed score averaged 22.5%, which increased

to 60.4% and 65.8% for the DS and R algorithms, respectively,

resulting in algorithm benefits of 37.9 and 43.3 percentage

points. From an unprocessed mean of 44.7% (TIR¼�3 dB),

DS and R benefits were 30.1 and 32.5 percentage points. And

from an unprocessed mean of 64.0% (TIR¼ 0 dB), DS and R

benefits were 21.3 and 20.0 percentage points.

Also as found for the HI listeners, NH algorithm benefit

was significant in every condition (see Table I). DS-

algorithm scores were significantly higher than unprocessed

scores across TIR levels (p< 0.001) and at each of the three

TIRs (p< 0.001). The same was true for R-algorithm scores

relative to unprocessed scores (across TIRs, p< 0.001; at

each TIR, p< 0.001). Again as for the HI listeners, algo-

rithm processing did not produce a reduction in scores for

any listener in any condition.

Unlike the HI listeners, the NH listeners did not display

a substantial difference between DS- and R-algorithm

scores. The DS score exceeded the R score in only 13 of the

30 cases, which is approximately expected by chance. The

differences in mean scores (DS rel. to R) were �5.4, �2.4,

and 1.3 percentage points at �6, �3, and 0 dB, respectively.

These differences had small standardized mean differences

(effect sizes� 0.26) and none were significant.

Another comparison of interest involves the performance

of HI listeners having access to the algorithm versus NH lis-

teners without the algorithm, in conditions of identical back-

ground interference. As shown in Fig. 6, the TIR of 0 dB was

common to both listener groups. In this interference condi-

tion, the NH unprocessed mean was 64.0%, whereas the HI

listeners averaged 73.1% for the DS algorithm and 64.7% for

the R algorithm. Pairwise comparisons indicated that, whereas

the HI listeners achieved numerically higher scores than the

NH listeners when using either algorithm, these NH versus HI

comparisons did not differ significantly (p> 0.43).

B. Objective measures of intelligibility and sound
quality

This subsection evaluates the RNN with BLSTM using

objective metrics, which should help the interested reader

who intends to replicate the reported segregation results.

1. Intelligibility

Short-time objective intelligibility (STOI, Taal et al.,
2011) was calculated based on all 153 sentence-pair stimuli

FIG. 6. Group-mean sentence-intelligibility scores and standard errors of the mean for each condition. The unprocessed, direct-sound-algorithm, and

reverberant-algorithm conditions are represented by separate columns, as in Figs. 4 and 5. Means for the normal-hearing (NH) and hearing-impaired (HI) lis-

teners are presented separately. Note the different target-to-interferer ratios required across the two listener groups. ns¼ nonsignificant, (*) p< 0.05, (**)

p< 0.01, (***) p< 0.001.

TABLE I. Linear mixed effects model standardized mean differences for

various comparisons. p-values are based on Satterthwaite approximation to

degrees of freedom. The p-values have been adjusted for family-wise com-

parisons using Tukey HSD. (*) p< 0.05, (**) p< 0.01, (***) p< 0.001.

Across
At specific TIR

Pairwise comparison TIRs �6 dB �3 dB 0 dB 3 dB 6 dB

Hearing impaired

DS—unprocessed 1.45*** — — 1.87***1.52***0.97***

R—unprocessed 1.08*** — — 1.60***1.08***0.57***

DS—R 0.37** — — 0.27 0.44* 0.40**

Normal hearing

DS—unprocessed 1.37*** 1.71*** 1.34***1.05*** — —

R—unprocessed 1.48*** 1.98*** 1.47***1.00*** — —

DS—R � 0.12 �0.26 �0.13 0.05 — —
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used for human-subjects testing. STOI is a widely used

objective measure of speech intelligibility, which is based on

the acoustic signals and correlates well to NH human perfor-

mance. It essentially represents a correlation between the

amplitude envelopes of unaltered target speech and cor-

rupted target speech following processing. Accordingly, its

scale typically ranges from 0.0 to 1.0 (or 0% to 100%).

Table II displays STOI values for the unprocessed mix-

tures and for the sentence pairs processed by the DS algo-

rithm, at each TIR employed for both listener groups. The

direct-sound target speech was used as the reference in these

calculations. Values for unprocessed mixtures averaged

55.7%, which increased to 83.0% following algorithm proc-

essing, representing a benefit of 27.3 percentage points. The

benefits formed a monotonic function ranging from 33.1 to

21.2 percentage points as TIR increased from �6 to 6 dB.

Table III displays the corresponding values for the R

algorithm. Here, the reverberant target speech was used as

the reference. These STOI values are similar—unprocessed

mixtures averaged 59.4%, which increased to 86.1% follow-

ing algorithm processing, representing a gain of 26.7 points.

These benefits also formed a monotonic function ranging

from 36.9 to 15.6 points across TIRs of �6 to 6 dB. An

examination of the STOI benefit values across DS and R

algorithms reveals that the range across TIRs was larger for

the R algorithm, but the mean benefit across TIRs was within

1 percentage point.

2. Sound quality

To gain insight into potential sound-quality benefits of

the current algorithm, the perceptual evaluation of speech

quality (PESQ; Rix et al., 2001) was also calculated across

the same 153 sentence pairs used for human subjects. Like

STOI, PESQ reflects a comparison between unaltered target

speech and corrupted speech following processing. It is a

standard measure of speech sound quality based on acoustic

measurement, having a scale ranging from �0.5 to 4.5.

Table II displays the PESQ values for the unprocessed

mixtures and for the sentence pairs processed by the DS

algorithm, at each TIR employed. Values for unprocessed

mixtures averaged 1.7, which increased to 2.5 following

algorithm processing. This amount of benefit was similar

across the TIRs employed. Table III displays the correspond-

ing values for the R algorithm. These values for unprocessed

mixtures averaged 2.0, which increased to 3.0 following

algorithm processing. These benefits were also similar across

TIRs. An examination across DS and R algorithms reveals

that mean PESQ benefit across TIRs was somewhat larger

for the R than for the DS algorithm.

IV. GENERAL DISCUSSION

Consistent with previous work (N�ab�elek and Mason,

1981; George et al., 2010; Hazrati and Loizou, 2012) the

current study highlights the challenge that concurrent rever-

beration and background interference can present for the

human perception of speech. When these same IEEE senten-

ces were assessed under conditions in which reverberation

was absent but the single-talker interference was the same

(Healy et al., 2017), TIR values had to be 9 dB less favorable

than employed currently for the HI listeners and 6 dB less

favorable for the NH listeners in order to obtain unprocessed

scores relatively free of floor and ceiling effects. There were

no overlapping conditions across studies for the HI listeners.

There was, however, one such condition for NH listeners

(�6 dB TIR). Under essentially identical single competing-

talker conditions, NH listeners scored close to 90% when

reverberation was absent (Healy et al., 2017), but below

25% when concurrent reverberation was present (current

study). So the substantial disruption produced by these con-

current corruptions is not restricted to only HI listeners and

instead impacts NH listeners quite substantially. The addi-

tion of reverberation to single-talker interference appears to

be particularly disruptive for both listener types, as the

TABLE II. Objective scores based on acoustic signals for direct-sound (DS) algorithm performance. Direct-sound target speech was used as the reference.

Input TIR Unprocessed STOI (%) Processed STOI (%) Benefit STOI Unprocessed PESQ Processed PESQ Benefit PESQ

�6 dB 45.56 78.69 33.13 1.54 2.30 0.76

�3 dB 50.83 81.43 30.60 1.60 2.41 0.81

0 dB 56.09 83.56 27.47 1.66 2.50 0.84

3 dB 61.00 85.15 24.15 1.76 2.58 0.82

6 dB 65.11 86.27 21.16 1.88 2.67 0.79

Mean 55.72 83.02 27.30 1.69 2.49 0.80

TABLE III. Objective scores based on acoustic signals for reverberant (R) algorithm performance. Reverberant target speech was used as the reference.

Input TIR Unprocessed STOI (%) Processed STOI (%) Benefit STOI Unprocessed PESQ Processed PESQ Benefit PESQ

�6 dB 41.51 78.43 36.92 1.59 2.57 0.98

�3 dB 50.42 83.00 32.58 1.73 2.77 1.04

0 dB 59.74 86.83 27.09 1.94 2.97 1.03

3 dB 68.70 89.93 21.23 2.16 3.16 1.00

6 dB 76.66 92.28 15.62 2.41 3.36 0.95

Mean 59.41 86.09 26.69 1.97 2.97 1.00
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addition of reverberation to multi-talker babble (compare

Healy et al., 2015 to Zhao et al., 2018) had a smaller effect.

The current deep learning algorithm was found to be

effective at improving intelligibility for both listener groups.

These benefits were largest at the least-favorable TIRs,

where unprocessed scores were lowest and room to improve

was largest. Algorithm benefit was considerably larger for

the HI listeners, as has been consistently observed previ-

ously. Over half of the HI listeners received a benefit of 58

percentage points or better from the current DS algorithm at

the least-favorable TIR. Finally, both algorithms allowed HI

performance to numerically exceed that of young NH listen-

ers under identical interference conditions (0 dB TIR plus

reverberation). This final comparison is an important one,

because it simulates a listening situation in which a typical

HI individual is with a young NH listener in a difficult listen-

ing environment. Consider perhaps an older individual with

hearing loss together with a young-adult relative or interact-

ing with a young-adult staff member in a noisy restaurant. If

the HI individual had access to a comparable algorithm

implemented in a hearing aid, then their performance could

rival or even exceed that of their young NH conversation

partner.

It was found that an algorithm trained to extract the

reverberation-free, interference-free speech of interest (DS)

performed better for the HI listeners than one trained to tar-

get the reverberant, interference-free speech of interest (R).

But mean NH-listener scores were similar across these two

conditions. This highlights the greater negative effects of

reverberation on HI listeners compared to NH listeners. The

implementation of these DS and R algorithms was highly

similar. But the performance of the DS algorithm indicates

that the deep learning framework can perform simultaneous

de-reverberation and segregation with effectiveness suffi-

cient to produce substantial intelligibility improvements.

Most of our focus has been on the performance of HI lis-

teners, who are challenged most by speech interference and

room reverberation. But the performance of NH listeners

observed currently suggests that there might be a need for

algorithms like the current one to be implemented into tech-

nology targeted toward NH individuals.

The decision regarding which algorithm (DS or R) would

be preferable to deploy in hearing technology is impacted by

both the target audience and implementation constraints. For the

more obvious target audience, which involves HI listeners (e.g.,

hearing aids and cochlear implants), then the superior perfor-

mance of the DS algorithm may warrant its likely greater com-

putational challenge. However, if the target audience were to be

NH listeners (e.g., cellular telephones), then the current results

suggest that the R algorithm is sufficient to realize maximum

performance, at least for the current interference conditions.

With regard to sound quality, the PESQ scores indicate

that the current algorithm also improved this aspect of speech.

This is important, particularly for HI listeners—poor sound

quality can lead to poor device satisfaction and compliance

(e.g., Ng and Loke, 2015). Although the increase in predicted

sound quality was found to be larger for the R than for the DS

algorithm, the reference signals are different. This is, the refer-

ence for the R algorithm was selected to be reverberant target

speech, whereas that for the DS algorithm was anechoic target

speech. But regardless of the difference between algorithms,

the PESQ increase associated with both is clear.

Given the considerable challenge associated with

improving intelligibility in conditions of concurrent degrada-

tion, focus has been placed on performance. The current

study serves as a demonstration that deep learning can be

effective in these conditions. Once demonstrated, attention

can begin to turn toward implementation into auditory devi-

ces. BLSTM, used currently, involves both the forward and

backward directions across each sentence pair and is there-

fore not causal. Future work will make such algorithms

causal, e.g., by employing unidirectional LSTM.

The current study expands the scope of listening situa-

tions in which deep learning based algorithms are effective. In

addition to their ability to improve intelligibility in the pres-

ence of various background interferences, they are able to

effectively address combined reverberation and interference.

The current conditions expand this scope to include interfer-

ence from a single talker plus concurrent reverberation

applied to both the target and interfering speech, which repre-

sents a particular challenge for both humans and machines.

To our knowledge, the current study represents the first dem-

onstration of a single-microphone (monaural) algorithm capa-

ble of producing speech-intelligibility improvements in both

competing speech and room reverberation.

V. CONCLUSIONS

(1) A recurrent neural network incorporating bidirectional

long short-term memory, trained to estimate the ideal

ratio mask, was capable of producing substantial

sentence-intelligibility improvements for speech cor-

rupted by reverberation and a single interfering talker,

for both HI and NH listeners, across a range of target-to-

interferer ratios. Group-mean algorithm benefit for the

HI listeners was 56 percentage points at the least-

favorable target-to-interferer ratio. Intelligibility scores

for the HI listeners having access to the algorithm

numerically exceeded those of young NH listeners with-

out the algorithm, in identical conditions.

(2) A comparison was made between deep learning algo-

rithms trained to output either reverberation-free, inter-

ference-free target speech (direct-sound algorithm, DS)

or interference-free but reverberant target speech (rever-

berant algorithm, R). HI listeners displayed significantly

higher intelligibility for the DS algorithm than for the R

algorithm, but the NH listeners displayed similar scores

across conditions.

(3) A deep learning algorithm based on T-F masking can pro-

duce substantial intelligibility improvements for speech

corrupted by reverberation and interference from another

talker. The neural network was able to effectively perform

simultaneous de-reverberation and segregation.
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