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We study locally coupled networks of relaxation oscillators with excita-
tory connections and conduction delays and propose a mechanism for
achieving zero phase-lag synchrony. Our mechanism is based on the ob-
servation that different rates of motion along different nullclines of the
system can lead to synchrony in the presence of conduction delays. We
analyze the system of two coupled oscillators and derive phase compres-
sion rates. This analysis indicates how to choose nullclines for individual
relaxation oscillators in order to induce rapid synchrony. The numerical
simulations demonstrate that our analytical results extend to locally cou-
pled networks with conduction delays and that these networks can attain
rapid synchrony with appropriately chosen nullclines and initial condi-
tions. The robustness of the proposed mechanism is veri�ed with respect
to different nullclines, variations in parameter values, and initial condi-
tions.

1 Introduction

Synchronous neural activity has been observed in many parts of the brain
and across the two hemispheres (Singer & Gray, 1995; Phillips & Singer,
1997; Keil, Mueller, Ray, Gruber, & Elbert, 1999). Neural synchrony arises
quickly, within one to two periods of stimulus onset. It is often precise, with
zero or at most a few milliseconds difference in �ring times, and is observed
over a considerable distance of the cortex (e.g., 14 mm in the primate motor
cortex). This is quite remarkable given that signi�cant delays occur during
nerve conduction; for instance, the conduction speed in local cortical circuits
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is less than 1 m/sec (Kandel, Schwartz, & Jessell, 1991; Murakoshi, Guo, &
Ichinose, 1993). With the commonly reported 40 Hz oscillation frequency,
such a conduction speed implies that connected neurons that are 1 mm apart
have a time delay of more than 4% of the period of oscillation.

Extensive experimental �ndings of neural synchrony have stimulated
much research in understanding how populations of oscillators can achieve
synchrony. Such studies reveal that locally coupled oscillator networks with
excitatory coupling and no conduction delay can reach global synchrony
across the network. In particular, relaxation oscillators, which link directly
to neuronal models of spike generation (FitzHugh, 1961;Nagumo, Arimoto,
& Yoshizawa, 1962; Morris & Lecar, 1981), have been shown to synchronize
rapidly with local coupling (Somers & Kopell, 1993; Terman & Wang, 1995).

A number of studies have examined the effects of time delays in oscil-
lator networks and reveal a diverse and interesting range of behaviors. For
example, in a network of identical phase oscillators with local excitatory
coupling, the inclusion of a time delay in the interactions decreases the
frequency (Niebur, Schuster, & Kammen, 1991). Analysis of pulse-coupled
oscillators indicates that time delays together with excitatory coupling do
not lead to synchronization in a pair of oscillators; however, if the coupling
is inhibitory, a pair of oscillators can be synchronous (van Vreeswijk, Ab-
bott, & Ermentrout, 1994; Ernst, Pawelzik, & Geisel, 1995). Ernst et al. (1995)
also examined, through computer simulations, networks of pulse-coupled
oscillators with all-to-all connections and time delays. They found that if
the coupling is excitatory, then groups of synchronous oscillators sponta-
neously arise and decay; if the coupling is inhibitory, several clusters of sta-
ble synchronous oscillators can form. Campbell and Wang (1998) found that
a network of locally coupled relaxation oscillators with delayed excitatory
coupling exhibits loose synchrony, whereby the oscillators that are directly
coupled converge to a phase separation less than or equal to the time delay.

More biologically realistic models of neural oscillators also exhibit syn-
chrony when coupled with time delays. König and Schillen (1991) reported
that a system of Wilson-Cowan oscillators becomes synchronous, and time
delays are important for the synchronous behavior. Traub, Whittington,
Stanford, and Jefferys (1996) described a model of cortical circuitry in which
synchrony in a network of neurons is observed with time-delay coupling
and the synchronous behavior is linked to a speci�c �ring pattern of inter-
neurons—the so-called spike doublets. Their numerical �ndings have in-
spired Ermentrout and Kopell (1998) to analyze a similar but simpli�ed
system with a pair of local circuits, each consisting of one excitatory unit
(E) and one inhibitory unit (I). They showed, by using E ! I and I ! E
connections, that the model, due to the presence of doublets in inhibitory
units, can synchronize with signi�cant time delays.

Despite the studies on time delays in oscillator networks, it remains an
interesting problem how synchrony with zero phase lag can be achieved
ef�ciently in locally coupled networks with time delays. In this article we
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propose a different mechanism for achieving rapid synchrony in locally
coupled relaxation oscillators. The key idea is that this can be accomplished
by choosing the nullclines of individual oscillators appropriately. We study
the case of two-coupled oscillators approximately analytically in the next
section; this enables us to derive a formula that shows how an appropriate
choice of the nullclines can be made and allows us to estimate the speed
of convergence to synchrony. We have veri�ed the analytical approxima-
tions by numerical simulations of the two-oscillator system. To establish
the viability of our mechanism, we have studied one-dimensional (1D) and
two-dimensional (2D) arrays of oscillators numerically. For time delays,
on the order of 10% of the period of the single uncoupled oscillator and
a spread of initial phases synchrony is achieved in a few periods in most
cases. To demonstrate the wider applicability of this mechanism, different
choices for the nullclines (linear, cubic, exponential, etc.) have been tested;
provided the parameters are chosen according to the condition derived in
the two-oscillator case, our mechanism is operative. In the case of the step
function, there is no synchrony, as was shown earlier (Campbell & Wang,
1998), and the sigmoid function is not effective. We also discuss the effect of
different initial conditions and offer some remarks in the case of inhomoge-
neous time delays with a spread. Thus, we provide a different mechanism
for achieving synchrony in locally coupled oscillators with time delays; the
models inspired by Traub et al. (1996) exploit an adjustment of timing struc-
ture via doublets using additional circuitry, while we use the choice of the
intrinsic nullclines to accomplish the same result.

We describe our oscillator system in the next section and then analyze
a pair of oscillators. Subsequently, we compare our analytical results with
numerical simulations and examine synchrony in 1D and 2D oscillator net-
works. Further discussions are given in the last section.

2 Model De�nition

For our study, we use relaxation oscillators similar to those de�ned by Ter-
man and Wang (1995). Each oscillator i is described by the following equa-
tion,

Pxi D 3xi ¡ x3
i ¡ yi C Si (2.1a)

Pyi D e( f (xi ) ¡ yi), (2.1b)

where xi is the excitatory variable, yi is the inhibitory variable, and S is an
excitatory coupling term. When e is chosen small and there is no coupling,
the equation corresponds to a standard relaxation oscillator (Wang, 1999).
The x-nullcline of the oscillator is a cubic (see Figure 1). In the singular
limit (e ! 0), the orbit of the oscillator is determined by this nullcline. The
oscillator rapidly alternates between the active phase of high x activity and
the silent phase of low x activity (see Figure 1).
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Figure 1: Loose synchrony with a step function y-nullcline. The two oscillators
are indicated by a circle dot and a square dot, respectively, at four time instants.
The oscillators move on the lower cubic when coupling is not activated. When
an excitation takes effect, the oscillators move along the upper cubic. LLB, lower
left branch; LRB, lower right branch; ULB, upper left branch; URB, upper right
branch. Other notations are described in the text.

When the coupling is activated, the cubic is moved up vertically by an
amount equal to the couplingstrength (Somers& Kopell,1993). An oscillator
moves along the lower cubic unless it receives an excitation from a neigh-
boring oscillator; in this case, it moves along a higher cubic (see Figure 1).
The speed with which the oscillator moves along its cubic is determined
by its distance to the y-nullcline, given by f (x). By choosing the form of
f (x), one can control not only the dynamics of the oscillator but also the
synchronizing behavior of an oscillator system. This observation leads to
our mechanism for achieving synchrony in a locally coupled network with
conduction delays.

We study 1D or2D locallycouplednetworks, where each oscillator is cou-
pled only with its nearest neighbors. The coupling term S in equation 2.1a
is given by

Si D
X

k

WikS1(xk(t ¡ t )) (2.2)

S1 D 1/ (1 C exp[¡K(x ¡h )]), (2.3)
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where t is the conduction delay for a signal to travel from one oscillator
to its neighbors, K is a parameter for the sigmoid function S1, and h is a
threshold an oscillator needs to reach in order to in�uence the activity of its
neighbors. Wik is the strength of the synaptic coupling from oscillator k to
oscillator i. The coupling is local; thus, Wik is zero unless i and k are adjacent.
To eliminate boundary effects, we normalize the connection weights to each
oscillator so that Wik D a/Ni , where Ni is the number of neighbors coupled
to i and a is a constant (see Wang, 1995). In this article, Ni can be one, two,
three, or four depending on the location of i and the dimensionality (1D or
2D) of the network.

3 Analysis

To illustrate better how the y-nullcline controls the dynamics of the network,
we analyze the two-oscillator case in the singular limit. Let us �rst consider
a special case with the y-nullcline being a step function, which helps to
explain several terms and the consequences of introducing time delays.
This case has been extensively analyzed by Campbell and Wang (1998), who
conclude that such a system will reach only loose synchrony (see section 1).
Figure 1 illustrates such a scenario with only two cubics to consider, one
above the other by a constant a. LLB and LRB stand for the lower left
branch and the lower right branch, respectively, and ULB and URB the
upper left branch and the upper right branch, respectively. In Figure 1, the
two oscillators are denoted by a circular dot (leading one) and square dot
(trailing one), and the trajectory of the leading one is denoted by a thin,
solid curve and that of the trailing one by a thick, dashed curve. Let the
two oscillators start on LLB at t0, when the leading oscillator is just ready to
jump to LRB. Let C be the initial phase separation, or the time the trailing
oscillator takes to catch up to the leading one if the latter is held stationary.
Note that C does not change when both oscillators are on the same branch
(Somers & Kopell, 1993), because when the oscillators remain on the same
cubic, both traverse the same path. Assume that C < t . In this case, the
trailing oscillator jumps to LRB at t1, before the delayed excitation from the
leading one takes effect. As a result, at t1, the phase separation between
the two oscillators is still C . Both oscillators travel on LRB until t2, when
the delayed excitation from the leading oscillator takes effect, which makes
the trailing one hop to URB (see Figure 1). Note that because of the step
y-nullcline, two oscillators of the same y value, one on URB and another
on LRB, move with the same speed in the y direction. At t3, the delayed
excitation from the trailing oscillator to the leading one takes effect and
makes the leading oscillator hop to URB. Now both oscillators are on URB,
and their phase separation is still C because of the step y-nullcline. Indeed,
their phase separation remains C throughout the entire limitcycle (Campbell
& Wang, 1998). Thus, phase compression—the reduction of initial phase
separation—does not occur when C < t .
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This example clearly shows that time delays introduce a major change in
the behavior of the system, since it is well known that two-coupled relax-
ation oscillators with a step y-nullcline rapidly synchronize to zero-phase
separation (Somers & Kopell, 1993; Terman & Wang, 1995). Without a time
delay, the leading oscillator, when it jumps to the right branch, induces the
trailing one to jump immediately, provided that C is not too large (see Fig-
ure 1). Phase compression occurs during the simultaneous jumping process,
because the phase separation after both jump to the right branch is smaller
compared to before the jumping, when both are on the left branch.

Since a step function has zero slope, the analysis also illustrates that
the y-nullcline must have some slope in order to achieve exact synchrony.
Then the oscillators with the same y value have different speeds on different
cubics. The following analysis provides an idea of precisely what slope is
necessary for fast synchronization.

For this analysis, we make two assumptions. First, the y-nullcline is
lower than both cubics along their left branches and higher along their
right branches, so that any intersections between the two nullclines occur
only along the middle branches of the cubics. Second, the two oscillators
are initially on LLB.

We follow the technique used by Somers and Kopell (1993) and Mirollo
and Strogatz (1990) to �nd a return map for C , that is, the phase separation
of the two oscillators after one complete period as a function of the initial
phase separation. To �nd this return map, we �rst determine C 0 , the phase
separation after both have just jumped from LLB to URB.

Denote time t D 0 when the leading one has just reached the left knee of
LLB (see Figure 2). At time t D C , the trailing one jumps from LLB to LRB.
Next, at t D t , the delayed excitation from the leading oscillator reaches the
trailing one, causing it to hop from b on LRB to b0 on URB (see Figure 2).
Note that the trailing oscillator has traveled for a time t ¡C on LRB. Finally,
at time t D t C C , the delayed excitation from the trailing oscillator reaches
the leading one, causing it to hop from a on LRB to a0 on URB. At time t C C ,
the phase separation between the two oscillators is denoted by C 0 . To �nd
C 0 , we �rst note that the trailing oscillator has spent a time C on URB before
the cubic of the leading oscillator is raised at point a. During this time, the
trailing oscillator has moved from b0 to a point denoted by a square dot in
Figure 2. Clearly, C 0 is the time it takes for the oscillator to move from this
point to a0 . Thus, we can write

C 0 C C D tb0¡a0 , (3.1)

where tb0 ¡a0 is the time it takes an oscillator to move from b0 to a0 along URB.
If we go through similar arguments for the jumps from the active phase to
the silent phase that bring the oscillators back to LLB, we �nd

C 00 C C 0 D tB¡A. (3.2)
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Figure 2: The two-oscillator case. Each pair of circle and square dots repre-
sents the locations of the two oscillators at a speci�c time. The lower-left pair
represents the initial phase separation (C), the right pair represents the phase
separation (C 0) after one jump, and the upper-left pair represents the phase sep-
aration (C 00) after two jumps (one up and one down). Other labels are described
in the text.

Here tB¡A is the time it takes an oscillator to move from point B to A (see
Figure 2), where the trailing and the leading oscillators hop down from ULB
to LLB, respectively.

Finally, the return map can be rewritten as

C 00 D C ¡ (tb0 ¡a0 ¡ tB¡A), (3.3)

and writing the times tb0 ¡a0 and tB¡A as integrals, we have

C 00 D C ¡
ÁZ a0

b0

dy
Py ¡

Z A

B

dy

Py

!
, (3.4)

where the lower bar in y indicates the lower cubic.
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Now, let hR(y) and hL(y) denote the x coordinates of LRB and LLB. Then,
hR(y ¡a) and hL(y ¡a) correspond to those of URB and ULB. Thus, we have

C 00 D C ¡
ÁZ a0

b0

dy

e
¡

f (hR(y ¡ a)) ¡ y
¢ ¡

Z A

B

dy

e
¡

f (hL(y)) ¡ y
¢
!

. (3.5)

Note that in the singular limit, the y coordinates of points a0 , b0 , A0 , and B0

are the same as those of points a, b, A, and B, respectively. In the limit cycle,
let t D 0 denote the origin in time when the leading oscillator is at the lowest
point on LRB and its y coordinate is thus y(t D 0). As discussed earlier, at b0 ,
the trailing oscillator has traveled for a time t ¡ C on LRB, and hence, its y
coordinate is y(t ¡C ). At a, when the leading oscillator receives an excitatory
signal from the trailing one, it has traveled for time t C C starting from the
lowest point, and thus, the y coordinate of a0 is simply y(t C C ). This allows
us to rewrite the limits of the �rst integral in equation 3.5. We can similarly
start the clockat the highest point of ULB and let its y coordinate be denoted
by y(t D 0) and rewrite the limits of the second integral. Hence, we have

C 00 D C ¡
0
@Z y(t CC )

y(t ¡C )

dy

e
±

f ( PhR(y¡a))¡y
² ¡

Z y(t CC 0 )

y(t ¡C 0 )

dy

e
±

f (hL(y))¡y
²

1
A . (3.6)

Finally, we expand both integrals for the case C < t and C 0 < t using the
formula for differentiating an integral with respect to a parameter (Courant,
1988). If

G(x) ´
Z f2 (x)

f1 (x)
F(y, x)dy,

then

dG(x)
dx

D
Z f2 (x)

f1 (x)

@F(y, x)
@x

dy C df2(x)
dx

F( f2(x), x) ¡ df1(x)
dx

F( f1(x), x).

Using this for C 0 given by

C 0 D ¡C C
Z y(t CC)

y(t ¡C)

dy
e( f (hR(y ¡ a)) ¡ y)

,

and expanding we obtain to leading order in C ,

C 0 ¼ C (¡1 C 2R/Ra),

where we de�ne

R D [ f (hR(y)) ¡ y]|tDt

Ra D [ f (hR(y ¡ a)) ¡ y]|tDt .
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Similarly, we obtain

C 00 ¼ C 0 (¡1 C 2La/L)

with

L D [ f (hL(y)) ¡ y]| tDt

La D [ f (hL(y ¡ a)) ¡ y]| tDt .

Together they lead to the following key equation:

C 00 ¼ C (1 ¡ 2R/Ra)(1 ¡ 2La/L). (3.7)

Thus, to eliminate the �rst-order term in the expansion of C 00 in powers
of C , we need R, the vertical distance from the y-nullcline to the point y(t )
on LRB, to be one-half of Ra, the distance from the y-nullcline to the point
on URB corresponding to the same y value; or a similar condition must hold
on the left branches. If f (x) is such that this 1/2 ratio holds for a larger and
larger region around y(t ), then more and more terms in the expansion of
C 00 drop out. If the ratio holds for the entire right (or left) branch, C 00 goes
immediately to zero after only one jump to the active phase. A symmetric y-
nullcline produces equal compression for both left-to-right and right-to-left
jumps. These observations provide a guide to the choice of the nullclines
for ef�cient synchronization.

We note that this �rst-order result agrees with the �ndings of Campbell
and Wang (1998) in the case that f (x) is a step function; the ratio of vertical
distances to the y-nullcline is one across the entire branch, yielding C 00 D C ,
or no compression once C is less than t . Equation 3.7 is clearly useful for
establishing the stability of a synchronous solution, as well as for estimat-
ing the speed of convergence to synchrony once a particular y-nullcline is
chosen.

We can also employ this analysis to determine the effects of asymmetric
time delays. That is, the conduction delay from one oscillator to the other
differs by an amount d from that in the opposite direction. In this case,
the system will not reach zero-phase synchrony. One can show that for a
symmetric y-nullcline chosen such that the �rst-order term in equation 3.7
is negligible, the system will reach a stable phase difference equal to d/2, a
result that we have con�rmed numerically. In order to draw a comparison,
we have extended the analysis of Ermentrout and Kopell (1998). If we let
the delay from circuit 1 to circuit 2 be d, and let the delay from circuit 2 to
circuit 1 be d Cd0 , then one can choose parameters so that the system reaches
a stable �xed point with a phase differenced0 /2. Thus, our model with fewer
parameters produces similar results.

One can �nd an expression similar to equation 3.6 for the return map if
C and C 0 are larger than t . However, this map appears more dif�cult to an-
alyze, and we content ourselves with a numerical study in the next section.
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Finally, we note that in some cases, we can provide an explicit expression
of a y-nullcline that produces synchronization after only one jump from the
silent phase to the active phase. Let us denote by d the mean difference
in x values (hR(y ¡ a) ¡ hR(y) in our earlier notation) between LRB and
URB for the relevant range of y coordinates. We note that for the cubic x-
nullcline considered in this article, this difference does not vary much. In
such cases the y-nullcline given by an exponential function f (x) D C �2x/d

for a constant C produces a 1/2 ratio between the y-coordinate of the y-
nullcline for a point on LRB and that of the corresponding point on URB
with the same y value. Because for a given x along the right branches, the
y-coordinate of the y-nullcline is much greater than that of the x-nullcline,
the latter can be ignored in the calculations of R and Ra. Thus, this choice of
f (x) approximately satis�es the 1/2 ratio between R and Ra, and produces
essentially immediate synchronization after one jump.

4 Numerical Simulation

The second part of our study consists of numerical simulations. We relate
our numerical results for the two-oscillator case to our analytical results.
The bulk of the section describes our results for 1D and 2D networks. We
discuss various types of y-nullclines that can produce fast synchrony and
the robustness of this mechanism.

We use the fourth-order Runge-Kutta method (Press, Teukolsky, Vet-
terling, & Flannery, 1992) adapted to time delays to solve our equations,
typically with a time step of 0.01; smaller time steps have been used to
verify our numerical results. A �fth-order Lagrange interpolation formula
(Abramowitz & Stegun, 1964) is used to determine the required intermedi-
ate values of x. Unless otherwise noted, the results discussed in this section
are obtained using the following set of parameters: e D 0.02, t D 2.0, a D
6.0, K D 50.0, andh D ¡0.5. This value of t is about 10% of the oscillationpe-
riod for an uncoupled oscillator. For the y-nullcline, we used f (x) D 8x3 C 5
(see Figure 6).

4.1 Two-Coupled Oscillators. We �rst describe the two-oscillator case.
With the above parameter values, using numerically obtained values for
x(t ) and y(t ), we �nd that the coef�cient in the �rst-order expansion for
C 00 in equation 3.7 is approximately 0.0116. In Figure 3A, we show a graph
of C 00 (C ) obtained both numerically and analytically. Note that for C < 1,
the analytical approximation is reasonably accurate. For C larger than 1, the
higher-order terms begin to dominate, and the �rst-order approximation is
no longer good. The asymptotic slope for the numerically obtained data is
about 0.013. This agrees with the predicted result to about 12%. We have
obtained comparable or better agreement for other values of e.

Figure 3B shows the numerically obtained return map for C , ranging
from zero to a value equal to the time needed to traverse the entire LLB. In
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A

B

Figure 3: Return maps for the two-oscillator case, with t D 2.0. (A) Numerical
and analytical return maps for C < t . The dots are numerically obtained data
points, and the line is the analytical approximation. Note that for C small, the
numerical return map is approximately linear and agrees well with the analytical
map. (B) Numerically obtained return map for a large range of C.

this and all the following cases, when we refer to positions on a particular
branch, they are limited to the portion of the branch within the limit cycle
of the oscillation (see Figure 2). Note the dramatic change in the return map
for C > t . Although we do not have an analytical calculation for the general
case, a qualitative understanding follows from the analysis of Campbell and
Wang (1998) done in a similar situation (see also Somers& Kopell, 1993). If C
is larger than t , then after the leading oscillator jumps to the active phase, the
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Figure 4: Synchronization of two-coupled oscillators. The oscillators start at the
two ends of LLB with x1 D ¡2 and x2 D ¡1.

trailing oscillator still spends some time in the silent phase after it receives
excitation from the leading one and hops to ULB. Thus, the two oscillators
travel in opposite directions on the different nullclines during this time,
resulting in dramatic compression of their phase separation. The return
map indicates that the two-oscillator case always converges to synchrony.

Figure 4 illustrates the synchronization process in the two-oscillator case.
The two oscillators start at the two extreme ends on LLB. Also, for purposes
of illustration, the coupling strength a is much reduced to 1.0 so that syn-
chrony does not occur as fast.

4.2 One-Dimensional Arrays. We now describe our numerical results
for 1D arrays. Table 1 shows the average time to synchrony in terms of
the number of periods for several array sizes. The results are obtained by
averaging over 25 trials. To determine initial conditions, we randomly select
y values between the highest pointon LLB (y D 2) and a pointon LLB chosen
so that the spread of initial conditions is 43% of the total time to traverse
LLB (we explain this choice below). We de�ne a network as synchronized if
the maximum phase separation between any two oscillators is less than 3%
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Table 1: Average Rates of Synchrony in 1D Arrays.

Array Size

2 4 8 16 32

Average periods to synchrony 1.0 1.08 3.24 6.16 8.36

of the total period of an oscillator. For smaller arrays, synchrony is always
quite fast. For larger arrays (larger than 10), we �nd that certain initial
conditions lead to very slow synchrony. After studying these cases more
carefully, we �nd that slow synchrony is due to the presence of two or
more domains, or blocks of connected oscillators within each of which all
have nearly the same phase. These domains result from the topology of 1D
nearest-neighbor coupling. If the relative phase between two such domains
is large, slow synchrony results because of the limited connectivity of the
network. As we discuss below, the domain effects in 2D arrays are much
less severe due to increased network connectivity; longer-range couplings
are also expected to suppress domain effects and accelerate synchrony.

We have explored in greater detail cases with limited spread of randomly
chosen initial conditions. We start all the oscillators in a simulation in a
region of LLB. This region represents a spread of initial phases equal to 43%
of the total time to traverse LLB. The speci�c percentage (43%) is empirically
obtained so that the narrowing of the initial phase spread eliminates most of
the slow synchrony cases. However, even for these initial conditions, about 1
in25 trialshas time to synchrony greater than 20periodsforarrays of size 8 or
larger. As one further limits the range of initial conditions, the initial degree
of synchrony is higher and higher. Thus, the time to synchrony can become
arbitrarily small. Figure 5 shows a typical simulation with 20 oscillators,
whose initial phases spread over the time to traverse LLB subtracted by
t . In this �gure a dot in the ith row represents the time at which the ith
oscillator jumps to the active phase.

To test the robustness of our model, we conducted simulations with dif-
ferent choices fory-nullclines. As shown in Figure 6, we have tested sigmoid,
linear, cubic, exponential, and hyperbolic sine functions (some curves in
Figure 6 are shifted vertically when used in simulations). We �nd that all
of these functions except the sigmoid can yield rapid synchrony for ap-
propriately chosen parameters. In fact, this is predicted by equation 3.7.
According to the equation, to produce fast synchrony, the distance to a y-
nullcline from the right-most point on LRB should be roughly half that from
the corresponding point on URB with the same y-coordinate (see Figure 2).
Thus, one expects that functions with smaller slopes, such as sigmoids,
synchronize with a slower rate than functions with greater slopes, such as
cubics. Also, equation 3.7 shows that nullclines that are symmetric about the



1016 J. J. Fox, C. Jayaprakash, D. Wang, and S. R. Campbell

Figure 5: Synchronization in a 1D array of 20 oscillators. The horizontal axis
represents time, and the vertical axis oscillator positions in the array.

origin produce convergence to synchrony for both jumping up and jumping
down. Thus, we predict that symmetric functions, such as hyperbolic sines,
synchronize with a faster rate than asymmetric ones, such as exponential
functions. This is indeed what we have observed in simulations.

With the y-nullcline �xed to a cubic function, we have also checked for
robustness with respect to parameter changes. We �nd that varying the
time delay t by 20% has little effect on the behavior of the system. Similarly,
changing the parameters of a cubic y-nullcline does not affect the network
behavior. Finally, we test how the network responds to inhomogeneous time
delays. To do this, we vary the delays between oscillators by a random vari-
able up to 5% width of the time delay; large inhomogeneities in conduction
delays prevent synchronization, as expected. Note that in this case, the time
delay from oscillator i to j is generally different from that from j to i. We �nd
that the system does not converge to zero phase-lag synchrony with such an
inhomogeneity. However, the inhomogeneous system does converge to sat-
isfy the 3% synchrony condition discussed earlier, with a rate similar to that
of the corresponding homogeneous system. Other networks, such as those
that make use of spike doublets in inhibitory units (Ermentrout & Kopell,
1998), are also unable to reach zero phase-lag synchrony in the presence of
such inhomogeneity.
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Figure 6: Plot of several y-nullclines that have been studied, where a is an ex-
ponential curve ( f (x) D 4�22x ¡4), b is a sigmoid curve ( f (x) D 13 �tanh(0.7x)),
c is a cubic curve ( f (x) D 8x3 ), d is a linear curve ( f (x) D 20x), and e is a sinh
curve ( f (x) D 8 sinh(x �ln 4)).

4.3 Two-Dimensional Networks. In the 2D case, each oscillator is con-
nected with its four nearest neighbors with open boundaries. As mentioned
earlier, synchronization in 2D networks with random initial conditions is
less susceptible to domain effects. We have studied 10 £ 10 networks be-
cause the maximum distance between any two oscillators is the same as in
a 1D 20-oscillator array. With the same initial conditions used to produce
Table 1, the average time to synchrony over 25 trials in the 20 oscillator ar-
ray is 6.52 periods. For a 10 £ 10 network, using the same spread of initial
conditions, the average time to synchrony over the same number of trials is
3.36 periods. In these trials, the longest time to synchrony is 9 periods.

We have also studied other initial conditions. We �rst split the network
into two 5 £10 blocks of oscillators: one block with all the oscillators begin-
ning at the top of LLB and the other with all the oscillators near the bottom
of LLB. This condition causes very slow synchrony (greater than 40 peri-
ods). However, the condition represents a worst case due to its similarity to
1D arrays. In another condition, we start all the oscillators in a 4 £ 4 square
at the center of the network at one extreme of the left branch, and all other
oscillators at the other extreme. This initial condition yields synchrony in 12
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Figure 7: Synchronization in a 20 £ 20 2D network. The horizontal axis repre-
sents time, and the vertical axis x activity. The activity of all 400 oscillators is
superimposed.

periods. We expect that networks with greater connectivity, such as those
in which connectivity is gaussian rather than nearest neighbor, show even
faster synchrony.

Finally, we have tested a 20£20 network where each oscillator randomly
starts in a rectangle that just bounds the limit cycles of all the oscillators (see
Figure 2); in other words, each oscillator has an equal chance of falling into
the silent phase or the active phase. In this case, the network still converges
to synchrony, although the time to synchrony is generally greater than 20
periods.

Because of increased connectivity in 2D networks, we can use a spread
of initial conditions over 71% of the time to traverse LLB. Note that the
71% initial spread is the maximum spread on LLB after the time delay is
considered, which is about 29% of the time to traverse LLB. For a 20£20array
with these initial conditions, we �nd that an average time to synchrony is
12.36 periods,with the maximum time(outof 25 trials)of 23 periods. Figure 7
shows the synchronization process of a 20 £ 20 network. The network in
this case synchronizes after about 5 periods; the maximum phase separation
between any two oscillators is less than the 3% period criterion.

5 Discussion

Our analysis shows that the synchronous solution can be stable for a pair of
relaxation oscillators in the presence of conduction delays. We have derived
an approximation for the rate of synchrony. This analysis indicates how to
choose y-nullclines for relaxation oscillators to induce rapid synchrony. We
have also examined asymmetric conduction delays between two oscillators.
We �nd that small differences lead to a solution in which the phase separa-
tion between the oscillators is approximately half the difference of the two
time delays; in other words, the system is nearly synchronous. Further, we
have conducted numerical simulations in 1D and 2D oscillator networks.
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Our simulations indicate that synchrony also occurs in these systems for
a range of y-nullclines, initial conditions, parameters, and time delays. We
have studied large phase separation in the initial conditions of the oscillators
(40% of the time to traverse the left branch) and time delays up to 12% of the
period of an uncoupled oscillator and �nd that our mechanism works for
the given set of parameters. These systems also become nearly synchronous
with inhomogeneous delays, analogous to the two-oscillator case. We have
not studied much larger values of t , particularly in cases where the sum of
the time delay and the largest phase separation exceeds the time taken to
traverse one of the branches.

Our study provides insights into the dynamics of relaxation oscillator
systems with time delays. Fast synchronization does not depend on the ex-
act form of a y-nullcline; it results as long as the 1/2 ratio approximately
holds between the rates of motionon LRB and URB.A reasonably symmetric
y-nullcline speeds up the process of synchronization further. We have de-
scribed what initial conditions are appropriate to achieve rapid synchrony,
as some special initial conditions can result in slower synchronization than
others.

The set of y-nullclines displayed in Figure 6 includes the linear function
used in the FitzHugh-Nagumo oscillator (FitzHugh, 1961; Nagumo et al.,
1962) and the sigmoid function used in the Morris-Lecar oscillator (Morris
& Lecar, 1981); both are relaxation oscillators and have been widely used
as models of neuronal activity. How well networks of these oscillators syn-
chronize with time-delay coupling depends on speci�c linear and sigmoid
functions used. Qualitatively speaking, our analysis suggests that in the
presence of conduction delays, linear y-nullclines should result in faster
synchronization than sigmoid y-nullclines.

Previous studies examined coupled integrate-and-�re oscillators and
found that synchrony can arise in the presence of time delays (van Vreeswijk
et al., 1994;Ernst et al., 1995). These studies found that inhibitoryconnections
are needed for synchronous solutions in the presence of time delays. Our
mechanism for achieving synchronization in relaxation oscillators is quite
different. Synchrony in our model relies on the fact that there are different
rates of motion along the different nullclines of the system. Integrate-and-
�re oscillatorsdo not possess separate nullclines and thus cannot accommo-
date a mechanism like ours. In our system, the interaction is still excitatory,
and the synchronous solution remains stable as time delays are introduced
into the system, which does not occur in integrate-and-�re oscillator net-
works.

As analyzed by Ermentrout and Kopell (1998), oscillator models with
delicate timing structure (i.e. spike doublets; see Traub et al., 1996) can
also exhibit synchrony with time delays. Our model achieves a similar
objective in a very different way. We do not use another circuitry to deal
with time delays; the y-nullcline is an intrinsic part of a relaxation os-
cillator. As a result, our mechanism is simpler. On the other hand, our
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mechanism is not as directly motivated biologically as that of Ermentrout
and Kopell.

We conclude that synchrony exists in systems of locally coupled relax-
ation oscillators in the presence of conduction delays and with excitatory
coupling. Our analysis reveals that y-nullclines can play an important role
in synchronizing a locally coupled network of relaxation oscillators with
conduction delays. A variety of y-nullclines have been tested and shown to
yield rapid synchrony. Moreover, our result allows one to predict whether
and how quickly a given y-nullcline produces synchrony. Given that re-
laxation oscillators have direct linkage to neuronal models, our analysis
may help in understanding how synchrony arises in neural systems, where
conduction delays are inevitable. Our insights into how to create appro-
priate conditions to achieve zero phase-lag synchrony may also be very
useful in constructing and analyzing physical systems (Cosp, Madrenas,
& Cabestany, 1999). Some opto-electronic systems and devices that op-
erate at extremely high frequencies (Wirkus & Rand, 1997; Young et al.,
1988) are modeled as coupled relaxation oscillators, and in these systems
conduction delays can become a signi�cant percentage of the oscillation
period.
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