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Deep Learning for Talker-Dependent Reverberant
Speaker Separation: An Empirical Study

Masood Delfarah

Abstract—Speaker separation refers to the problem of sepa-
rating speech signals from a mixture of simultaneous speakers.
Previous studies are limited to addressing the speaker separation
problem in anechoic conditions. This paper addresses the problem
of talker-dependent speaker separation in reverberant conditions,
which are characteristic of real-world environments. We employ
recurrent neural networks with bidirectional long short-term mem-
ory (BLSTM) to separate and dereverberate the target speech
signal. We propose two-stage networks to effectively deal with both
speaker separation and speech dereverberation. In the two-stage
model, the first stage separates and dereverberates two-talker mix-
tures and the second stage further enhances the separated target
signal. We have extensively evaluated the two-stage architecture,
and our empirical results demonstrate large improvements over
unprocessed mixtures and clear performance gain over single-stage
networks in a wide range of target-to-interferer ratios and rever-
beration times in simulated as well as recorded rooms. Moreover,
we show that time-frequency masking yields better performance
than spectral mapping for reverberant speaker separation.

Index Terms—Cochannel speech separation, two-stage network,
deep neural networks, speech dereverberation.

I. INTRODUCTION

OUNDS recorded in real acoustic scenes are usually dis-
S torted by room reverberation. These distortions, which are
a result of the sound reflections from surrounding walls and ob-
jects, cause a challenge to human listeners and speech processing
systems alike. A more severe kind of distortion occurs when
target speech signal is also corrupted by the presence of other
sound sources. Perceptual studies on speech intelligibility report
that human listeners, particularly those with hearing impairment,
have trouble understanding speech in noisy and reverberant
conditions [3], [8], [13].

Monaural speech separation aims at separating a target speech
signal from a single-microphone recording that contains addi-
tive and convolutive interference. Due to its wide applicabil-
ity, monaural speech separation has been studied for decades.
Traditional methods include speech enhancement [24], such as
spectral subtraction, and computational auditory scene analysis
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[32], such as pitch-based separation of voiced speech. In recent
years, supervised learning techniques, particularly deep learn-
ing algorithms, have elevated speech separation performance
by large margins [33]. In these studies, deep neural networks
(DNNG5) are typically used to learn a mapping from a mixture
signal to the clean signal or its ideal time-frequency (T-F) mask.
For instance, the first such study by Wang and Wang [36] used
a deep feedforward network (DFN) to estimate the ideal binary
mask for speech separation. Subsequent studies demonstrated
that DNN based monaural separation improves human speech
intelligibility in noisy environments [9], [12].

One kind of speech separation is speaker separation, where the
interference is one or multiple competing talkers. Deep learn-
ing methods have also been employed to address the speaker
separation problem. Previous studies [6], [16], [17], [41] trained
DNN models to separate two-talker mixtures in anechoic envi-
ronments. Recently, we showed that a DNN produces significant
speech intelligibility benefits for human listeners [11]. These
studies can be categorized as talker-dependent speaker separa-
tion as the speakers to be separated are the same as those used in
training. Other kinds of speaker separation are target-dependent
and talker-independent [33]. In target-dependent speaker separa-
tion [6], [41] the target speaker is assumed to be known and used
during training, while interfering speakers can be unknown and
untrained. In talker-independent separation, test speakers can be
all untrained. Significant advances have been achieved recently
on such a task [14], [23], [25], [30], [37]. Although talker-
independent speaker separation is least constrained in terms
of applicability, there are application scenarios where talker-
dependent or target-dependent separation is a natural choice.
One such scenario is when speaker separation is applied to a
small number of registered speakers, as in the case of Alibaba’s
Tmall Genie, an Echo-like voice assistant, that features speaker
recognition. Our study focuses on talker-dependent speaker
separation. We will also compare with target-dependent and
talker-independent models, demonstrating that broader speaker
separation may come at the expense of performance loss.

Although DNNs have been used to enhance noisy and re-
verberant speech [42], no previous study, to our knowledge,
has addressed the reverberant speaker separation problem in
monaural recordings except for [38] where a single-channel
scenario is evaluated as a baseline for multi-channel talker-
independent speaker separation. In this paper, we investigate
this problem by using recurrent neural networks (RNNs) with
BLSTM [15]. As room reverberation exhibits strong temporal
structure, RNNs should be more suited than DFNs for speech
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dereverberation. This is indeed what is found in our study. Mo-
tivated by a recent two-stage model for speech dereverberation
and denoising [42], we propose two-stage networks to tackle
the challenge of reverberant speaker separation. We find that
two-stage networks outperform single-stage DNNs. In addition,
our empirical investigation shows that T-F masking yields better
results than spectral mapping. Other studies have also used
two-stage networks for the separation problem. The study in
[10] addresses speech-music separation where the first stage
separates speech and music, and the second stage enhances each
of the sources. Another study [34] performs speaker separation
using a gender-mixture detection network followed by a sepa-
ration network. Unlike [42], reverberation is not considered in
these studies.

A preliminary version of this paper has appeared in [5].
Compared to the previous conference version, this paper in-
troduces the second stage DNN for further enhancement of
the separated target signal. In addition, more comprehensive
experiments are conducted and new comparisons are made with
speaker-independent and target-dependent methods.

The rest of the paper is organized as follows. In Section II
we describe the baseline single-stage model and the proposed
two-stage system. Section III presents experimental results. We
conclude the paper in Section IV.

II. PROPOSED METHOD

Let us define the anechoic target speech signal as s1 (¢) and the
anechoic interfering speech signal as s (). We assume that s1 (¢)
and so(t) are convolved with different room impulse responses
(RIRs) hi(t) and ho(t), respectively. Then, the reverberant
mixture signal y(¢) can be described as:

y(t) = ha(t) * 51(2) + ha(t) * s2(t) (D

where symbol * denotes convolution.

We study different DNN architectures to separate the direct
sound s (t) from y(¢). The goal of our separation is to improve
the speech intelligibility and quality for human listeners. In
other words, we intend to separate the target speaker from
the interferer and, at the same time, dereverberate the target
utterance since interfering speech and room reverberation both
adversely affect speech perception [3], [28].

A. Feature Extraction

The mixture signal y(¢) is sampled at 16 kHz and windowed
into 20-ms frames with 10-ms frame shift. In each time frame
we extract 31-dimensional (31-D) power-normalized cepstral
coefficients (PNCC) [21], 31-D gammatone frequency cepstral
coefficients (GFCC) [29], and 40-D log-mel filterbank (LOG-
MEL) features. These feature choices are made on the basis of
our recent feature study for reverberant speech separation [4],
where a detailed description for each of these features can be
found. This feature study concludes that PNCC, GFCC, and
LOG-MEL form a complementary feature set.

Let F'(m) represent the 102-D input feature vector, where
m is the time frame index. From the entire training set, mean
() and standard deviation (o r) is calculated in each feature
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dimension. Then, the zero-mean and unit-variance normalized
feature vector, F'(m), is obtained as follows:

F‘(m) = m (2)
oF

The same p 5 and o r values are used for feature normalization

during the cross-validation and the test phase. To encode tem-

poral information in the input signal we concatenate frames to

form the following feature vector:

Fo.y(m)=[F(m—-a),....,F(m),...,F(m+b)] (3

where a and b denote the number of the past and future frames
with respect to the current frame.

B. Training Targets

Applying short-time Fourier transform (STFT) to s1 (), s2(t),
and y(t) results in the complex STFT representations as Sy,
So, and Y, respectively. In this study, we aim at obtaining the
magnitude spectrogram of the anechoic target signal |.S;|. Then
the obtained magnitude spectrogram along with the mixture
phase produces the separated target signal using the overlap-add
method [1].

Our study considers two different training targets. The first
is simply the log-magnitude spectrograms of the two sources
[log|Si],log|S2|]. Such a training target is commonly known as
mapping-based [6]. An alternative target is the ideal ratio mask
(IRM) [35]:

151 |52
|S1] + Y — Sl|7 [Sa] + Y — S|

IRM = “)
In this case, a DNN generates an estimated ratio mask, and the
separated magnitude spectrograms, |S;| and | S5/, are obtained
by point-wise multiplication of the mixture magnitude spectro-
gram and each of the estimated ratio masks. This training target
is masking-based as used in [16], [17], [39].

In [41], the mapping-based and masking-based DNNs were
studied for speaker separation and it was reported that the two
kinds of training targets have relative advantages in different
conditions. We will compare those training objective functions
for speaker separation in reverberant conditions.

C. Baseline One-Stage Networks

The one-stage system is illustrated in Fig. 1(a). In this study,
RNNs with BLSTM are used due to their strong representational
capacity, particularly for temporal patterns.

Our RNN consists of 4 BLSTM layers with 500 units in each
layer (250 units per direction). An output layer is stacked on
top of the BLSTM layers. The activation function for the units
in the output layer is linear for mapping-based target. Since the
IRM ranges in [0,1], we use the sigmoid function as the output
layer activation for the masking-based target. During training,
the network is unrolled for 100 time frames to perform the
truncated backpropagation through time (BPTT) [40] and update
the weights. To predict one output frame, the BLSTM network is
fed by one feature frame, i.e. F (.), without using neighboring
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Fig. 1. Tllustration of reverberant speaker separation. (a) Diagram of a baseline one-stage system and (b) diagram of the proposed two-stage system.

frames, because the memory cells in the RNN contain the past
and future contextual information.

Our BLSTM makes a prediction after observing the whole
utterance, which is non-casual. We also evaluate a casual RNN
with unidirectional LSTMs which proceeds from the past to
the current frame. To have a fair comparison with BLSTM,
we provide the LSTM with the feature vector F 7(.), which
includes 7 future frames. The same network hyperparameters
used in BLSTM are used in LSTM.

To contrast feedforward and recurrent networks, we also
generate a baseline with DFNs. A DFEN layer has less trainable
parameters than an LSTM layer with the same number of units,
and for a fair comparison a DFN with more units is required.
We use DFNs with 4 hidden layers, each consisting of 2000
rectified linear units (ReLLU) [26]. Input features used in this
case are F'7 7(.).

In each network, the IRM or log-spectrograms are predicted
frame by frame. The mean square error (MSE) loss function £
is:

L(D(m,):; ©) =

Ql

C
> (D(m,c) = G(F(m))* (5
c=1

where D is the desired target (i.e. the IRM or log-magnitude
spectrogram), C' is the number of frequency channels, ® repre-
sents the DNN parameters, and G(.) represents the neural net-
work operation. The Adam optimizer [22] with the learning rate
of 3 x 10~*is used to minimize £. In each network, the learning
algorithm is run for 50 epochs, and ® with the least MSE on the
validation set is chosen and used during the test phase.

D. Two-Stage Networks

Zhao et al. [42] recently proposed a two-stage network to
address the problem of noisy-reverberant speech separation.
Their first stage is a masking-based DFN that separates additive
noise from reverberant speech signal. The denoised signal is fed
into the second stage which is a mapping-based DFN to perform
dereverberation. Each DFN is trained separately, and then the
two networks are trained jointly. During the test phase, the
network performs speech denoising and dereverberation given

only anoisy-reverberant signal. One potential drawback of Zhao
et al.’s architecture is that the second stage is provided with only
the output from the first stage and does not directly operate on
the input signal. The first-stage output is itself distorted and the
discriminative power of the original acoustic features lost in
the first stage would not be recovered by the second network.
For speaker separation in reverberant conditions, we attempted
to extend their approach so that the first stage is trained to
separate the two reverberant speakers and the second is trained
to dereverberate the target speaker. However, such an extension
did not achieve satisfactory performance. Instead, we propose a
different two-stage network for this problem.

The proposed two-stage system is depicted in Fig. 1(b). In the
first stage, a DNN is trained to separate and dereverberate the
target and interferer signals. This stage can be mapping-based
or masking-based. The network output corresponding to the
target speaker is converted to the log-magnitude spectrogram
feature and normalized to zero mean and unit variance. This
is concatenated to the mixture feature and used to train the
second-stage network. The purpose of the second stage is further
dereverberation of the initially separated and dereverberated
target speaker. Because of the difficulty of combined separation
and dereverberation, it is unlikely that a single DNN can achieve
a high level of performance. With the output of the first stage, as
well as the original mixture feature, the learning task of the sec-
ond DNN is more focused. Hence the second stage is expected
to attenuate or remove residual reverberation in the first-stage
output. The second-stage network can also be mapping-based or
masking-based DNN. The training targets for the target speaker
are the same in both stages. Finally, the two networks are jointly
trained for further fine tuning.

Four different two-stage networks can be constructed by com-
bining the masking-based and mapping-based methods. Table I
shows how the final output is calculated in each combination. We
train each of four two-stage architectures using DFNs, LSTMs,
and BLSTMs. Each stage network is basically the same as its
corresponding single-stage network i.e. four LSTM, BLSTM,
or DFEN layers. Each stage network is first trained separately
with the learning rate of 3 x 10~* and then the two networks
are jointly trained with the learning rate of 3 x 1077,
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TABLE I
CALCULATION OF THE ESTIMATED TARGET SPECTROGRAM IN DIFFERENT TWO-STAGE NETWORKS. G(1) (.)AND G 2 (.) DENOTE THE FIRST AND SECOND STAGE
DNN. p1,,, AND 0, DENOTE NORMALIZATION PARAMETERS FOR THE OUTPUT OF THE FIRST STAGE, AND ft,,, AND 0, THE PARAMETERS FOR
THE SECOND STAGE

Combination

DNN formula

Mapping+Mapping

Mapping+Masking

Masking+Mapping

el
|51] = 6™ <{

G (F(m))—po; =
G RPN

G (F(m)) —po, ’F(m)D e

Toq

Masking+Masking

18] = exp<g(2) ([log(g(l)(F(M))Xh/)ﬂol ,F‘(m):|> % o, +“02>

O'Ol

151 = 6@ ([’Dg(g“)(ﬂm))“y)“ﬁ ’F(W)D x Y]

0‘01

In the two-stage BLSTM no neighboring frames are used in
the input or the output. To train the two-stage LSTMs, F 7(.)
is fed to the first-stage network to predict the output for the
current and the 3 future frames. This output is concatenated with
17’0, 3(.) and passed to the second-stage to predict a single output
frame. On the other hand, the two-stage DFNs use F7 7(.) in
the first stage to predict 7 consecutive output frames, centered at
the current frame. Then the second-stage network concatenates
F33(.) with the first-stage output to predict a single output
frame.

In order to evaluate the potential speech intelligibility benefits
of separated speech, we use the Extended Short-time Objective
Intelligibility (ESTOI) [20] metric, which is shown to strongly
correlate with human intelligibility scores. ESTOI is a number
mainly between O and 1 and a higher score indicates better intelli-
gibility. We use Perceptual Evaluation of Speech Quality (PESQ)
[27] to evaluate the quality of the separated target signals. PESQ
score is a number between —0.5 and 4.5 and higher score
indicates better speech quality. We also use signal-to-distortion
ratio improvement, or ASDR, which is another widely used
speech separation evaluation metric [31]. The anechoic target
is used as the reference signal in these evaluations.

III. EVALUATION RESULTS AND COMPARISONS

A. Experimental Setup

The speech corpus used in this empirical study consists of
1440 IEEE sentences [19] uttered by a male and a female
speaker. In the experiments, we arbitrarily designate the male
speaker as the target and the female as the interferer. From this
set, we randomly choose and set aside 120 female and 120 male
utterances for testing and the rest are used for training. To gen-
erate the training mixtures, one male utterance and one female
utterance are randomly picked. In the case that the interfering
signal is shorter, it is repeated until it covers the whole target
sentence. We use the image method [2] to generate simulated
RIRs in aroom with the dimensions of (6.5, 8.5, 3) m, by placing
a microphone at (3, 4, 1.5) m. The reverberation time (7§q) is
sampled from the continuous range [0.3, 1.0] s. The male speaker
is randomly placed at 1 m and the interferer at 2 m distance from
the microphone at the same elevation. Then the reverberant male

TABLE I
AVERAGE DRR VALUES (DB) IN DIFFERENT ROOM CONDITIONS

Recorded room
047  0.68

Simulated room

Tso (s) 0.3 0.6 0.9
Target DRR 33 -14 37
Interferer DRR | -2.7 -74 9.7

0.32 0.89

6.1 5.3 8.8 6.1

and female signals are mixed at a random target-to-interferer
energy ratio (TIR) sampled from the continuous range [—12,
12] dB.

In total, 100,000 mixtures are generated for training and 1000
mixtures for validation. To train the single-stage networks, the
entire training set is used. In the two-stage cases, the first stage
is trained with half of the training set. Then, the second half is
passed through the first stage and used to train the second stage.
Finally, the joint training is done using the whole training set.

To generate simulated reverberant test mixtures, we use a
different simulated room with the dimensions of (6, 8, 3) m,
where the microphone position is set to (3.5, 2.5, 1.2) m. Target
speaker is randomly placed at a I m distance and the interferer
at a 2 m distance from the microphone. Note that since the test
room is different from the training room, no RIRs are common
between the test and training sets. Test 1§ is chosen from {0.3,
0.6, 0.9} s and test TIR from {—12, —6} dB. In each condition,
the networks are tested using 2000 mixtures and average scores
are reported.

In order to further evaluate the generalization of the systems
to real room conditions, we also perform experiments using
recorded RIRs. For this purpose, we use the recorded RIRs from
[18], which consist of recordings from four rooms with Ty =
{0.32,0.47,0.68, 0.89} s. Aside from T, direct-to-reverberant
energy ratio (DRR) is an important characteristic of areverberant
signal. In general, a lower DRR entails a more challenging
processing condition. Table II shows DRRs for our simulated
and recorded test rooms.

B. Single-Stage Reverberant Speaker Separation

To provide a baseline for reverberant speaker separation we
first present results in anechoic conditions. Table III shows
ESTOI, PESQ, and SDR scores with DNNs trained and tested in
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TABLE III
ESTOI, PESQ, AND ASDR SCORES FOR SPEAKER SEPARATION IN ANECHOIC CONDITIONS. SINGLE-STAGE NETWORKS ARE TRAINED WITH ANECHOIC DATA.
BOLDFACE HIGHLIGHTS THE BEST RESULT IN EACH CONDITION

ESTOI (%) PESQ ASDR (dB)
TIR (dB) -12 -6 Average -12 -6 Average -12 -6 Average
Unprocessed 246 364 30.5 1.35  1.58 1.46
DEN Mapping | 624 73.6 68.0 235 265 2.50 14.15  10.77 12.46
Masking | 63.7 76.2 69.9 240 275 2.57 1583 1294 14.28
LSTM Mapping | 67.9 77.3 72.6 247 276 2.61 14.60 11.14 12.87
Masking | 69.1  79.7 74.4 252 2.86 2.69 16.26  13.32 14.79
BLSTM Mapping | 71.6  79.9 75.7 261 287 2.74 1524 11.70 13.47
Masking | 72.0 81.5 76.7 2.62 294 2.78 16.77 13.58 15.17

1 Unprocessed XY Mapping-DFN

EEFl Masking-DFN

¥Z4 Mapping-LSTM
E==5 Masking-LSTM

XA Mapping-BLSTM
Il Masking-BLSTM

PESQ

Fig. 2.

v NN

(d)

Separation performance in reverberant environments for single-stage mapping-based and masking-based DFN, LSTM, and BLSTM. Test results are

shown for different Tgq values with TIR, = —12 dB. (a) ESTOI scores in simulated RIR conditions, (b) ESTOI scores in recorded RIR conditions, (¢c) PESQ scores

in simulated RIR conditions, and (d) PESQ scores in recorded RIR conditions.

anechoic conditions. The results indicate that the masking-based
systems perform better than the mapping-based systems. In
addition, BLSTM and LSTM outperform DFN, showing that
recurrent networks can better separate the speakers. A masking-
based BLSTM achieves the best intelligibility and quality scores.

We train single-stage mapping and masking-based DFNs,
LSTMs, and BLSTMs to perform speaker separation and speech
dereverberation. Objective scores for simulated and recorded
RIR conditions for TIR of -12 dB are presented in Figure 2.
Similar to anechoic conditions, BLSTMs outperform LSTMs
and DFNs, and T-F masking outperforms spectral mapping.
These observations are consistent across simulated and real
room conditions, and the amounts of improvement are also
comparable between simulated and real room conditions. Note
that the systems are trained using only simulated RIRs, and
the substantial improvements in the real rooms suggest that the
trained DNNs are capable of generalizing to different reverber-
ant conditions.

From Fig. 2, we observe that the scores decrease with the
increase of Tgg. This trend is most evident when comparing
with the performance in anechoic conditions in Table III. For
example, the masking-based BLSTM achieves 47.4% ESTOI
improvement in the anechoic condition with TIR = —12 dB,
and this improvement is reduced to 36.3% at Tso = 0.3 s with
the same TIR. This indicates that separation in reverberant
conditions is in general more challenging.

C. Two-Stage Reverberant Speaker Separation

We train the four combinations of masking-based and
mapping-based networks shown in Table 1. Table IV gives
ESTOI scores using two-stage DNNs in simulated reverberant
test conditions. The results from single-stage networks are also
included in this table for reference. As seen in the table, two-
stage networks in general outperform single-stage networks.
Our experiments demonstrate that using two masking-based
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TABLE IV
ESTOI (%) SCORES FOR DIFFERENT TWO-STAGE AND SINGLE-STAGE DFNs, LSTMs AND BLSTMS IN SIMULATED REVERBERANT CONDITIONS. IN EACH
TWO-STAGE DNN, * INDICATES THAT THE SCORE IS SIGNIFICANTLY BETTER THAN THE MASKING-BASED SINGLE-STAGE DNN BASELINE SCORE
(WITH THE SIGNIFICANCE LEVEL OF p < 0.0005)

Teo (s) 0.3 0.6 0.9

TIR (dB) -12 -6 -12 -6 -12 -6 Average

Unprocessed 21.7 33.3 14.2 23.5 10.0 17.8 20.1
Single-stage Mapping ~ 41.9 549 323 46.4 255 38.5 39.9
Single-stage Masking 49.5 62.8 37.6 515 29.6 43.1 45.7
Mapping+Mapping 44.8 57.7 34.1 47.6 26.6 39.6 41.7

DFN Mapping+Masking 494 62.7 37.1 50.9 29.0 422 45.2
Masking+Mapping 49.6 62.0 37.5 51.2 29.2 429 454
Masking+Masking 53.1%  66.2* 40.0*  53.9* 31.3*  45.0* 48.2%
Single-stage Mapping ~ 48.2 60.0 37.2 50.5 29.3 42.5 44.6
Single-stage Masking 54.1 66.3 41.5 55.2 32.8 46.7 49.4
Mapping+Mapping 49.5 60.8 37.5 50.6 29.2 42.4 45.0

LSTM Mapping+Masking 53.1 65.1 404 53.6 31.9 45.1 48.2
Masking+Mapping 53.2 64.4 40.2 532 314 44.6 47.8
Masking+Masking 55.5%  67.6* 422%  55.6* 33.3%  46.8* 50.2*
Single-stage Mapping 52.9 64.5 41.6 54.8 32.8 46.8 48.9
Single-stage Masking 56.1 68.0 44.9 58.4 354 50.1 52.1
Mapping+Mapping 53.7 64.3 40.5 54.6 30.4 45.4 48.1

BLSTM Mapping+Masking 54.2 65.4 41.8 55.4 322 46.9 49.3
Masking+Mapping 57.4*  68.6* 44.8 58.5 34.5 49.4 52.2
Masking+Masking 58.0*  69.8* 45.5*  59.3* 36.0©  50.8* 53.2*

TABLE V

PESQ SCORES FOR DIFFERENT TWO-STAGE AND SINGLE-STAGE DFNS, LSTMS AND BLSTMS IN SIMULATED REVERBERANT CONDITIONS

Teo (s) 0.3 0.6 0.9

TIR (dB) -12 -6 -12 -6 -12 -6 Average

Unprocessed 1.40 1.51 1.49 1.51 1.56 1.56 1.50
Single-stage Mapping 1.77 2.07 1.59 1.91 1.46 1.77 1.76
Single-stage Masking 1.97 2.29 1.76 2.07 1.62 1.91 1.94
Mapping+Mapping 1.84 2.15 1.65 1.95 1.52 1.80 1.82

DFN Mapping+Masking 1.95 2.28 1.75 2.04 1.62 1.89 1.92
Masking+Mapping 1.96 2.27 1.73 2.04 1.58 1.87 1.91
Masking+Masking 2.06%  2.40* 1.82%  2.14* 1.67*  1.97* 2.01*
Single-stage Mapping 1.97 2.23 1.77 2.04 1.63 1.90 1.92
Single-stage Masking 2.12 242 1.88 2.18 1.73 2.02 2.06
Mapping+Mapping 1.97 2.23 1.76 2.04 1.63 1.90 1.92

LSTM Mapping+Masking 2.08 2.37 1.85 2.13 1.70 1.97 2.02
Masking+Mapping 2.05 2.33 1.81 2.09 1.66 1.94 1.98
Masking+Masking 2.14  2.46* 1.88 2.19 1.72 2.02 2.07
Single-stage Mapping 2.05 2.31 1.85 2.13 1.71 1.99 2.01
Single-stage Masking 2.18 2.47 1.97 2.26 1.81 2.10 2.13
Mapping+Mapping 2.14 2.42 1.89 2.18 1.68 1.99 2.05
Mapping+Masking 2.17 2.48 1.93 2.23 1.74 2.06 2.10

BLSTM Masking+Mapping 222 2.48 1.94 2.24 1.76 2.06 2.12
Masking+Masking 2.26* 2.57 2.00*  2.31* 1.82%  2.14* 2.18*

systems is the best combination. Among DFNs, LSTMs, and
BLSTMs, we observe that the BLSTMs provide the smallest
advantage by using a two-stage system. On the other hand, the
combination of two masking-based BLSTMs achieves the best
performance among all the DNNs evaluated. We also observe
that using a mapping-based network either in the first stage or
the second stage does not perform as well as a masking-based
network. Table V shows the corresponding PESQ results, which
exhibit a trend similar to that of ESTOI results. Again, the
best results are achieved by the masking+masking BLSTM
system.

As mentioned earlier, in a two-stage system, two single-stage
networks are first trained separately and then jointly. The results
indicate that the two-stage masking+mapping system outper-
forms single-stage mapping. To see how much improvement is
due to joint training, Figure 3 compares a masking+mapping
DFN with and without joint training as well as a single-stage
DEN. A simulated room condition with 759 = 0.9 s and TIR =
—6 dB is used for this comparison. As seen in the figure, the
performance gain of the two-stage network is mostly because
of joint training. We have also observed this in other DNN
architectures.
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TABLE VI
ESTOI (%) SCORES FOR DIFFERENT TWO-STAGE AND SINGLE-STAGE DFNs, LSTMs AND BLSTMS IN RECORDED REVERBERANT CONDITIONS

Teo (s) 0.32 0.47 0.68 0.89

TIR (dB) -12 -6 -12 -6 -12 -6 -12 -6 Average

Unprocessed 222 33.0 17.4 27.2 20.9 32.1 16.3 26.7 245
Single-stage Mapping 394 50.3 33.5 44.7 38.2 49.7 28.6 39.7 40.5
Single-stage Masking 475 59.8 40.0 522 46.3 59.1 35.5 48.2 48.6
Mapping+Mapping 41.3 51.8 35.7 46.6 414 52.9 30.8 41.6 42.8

DEN Mapping+Masking 472 59.2 39.8 51.7 46.3 59.0 35.1 47.6 48.2
Masking+Mapping 449 55.0 39.0 49.7 453 56.3 33.1 44.0 459
Masking+Masking 50.1%  62.0* 423*  54.1* 49.4*  61.8* 36.8%  49.5% 50.7*
Single-stage Mapping ~ 44.1 53.8 38.2 49.0 44.6 55.3 33.1 43.8 452
Single-stage Masking 50.9 62.6 43.7 55.6 50.4 62.7 383 51.1 51.9
Mapping+Mapping 442 53.8 38.6 493 45.1 56.0 33.6 443 45.6

LSTM Mapping+Masking 49.9 61.2 42.8 54.5 49.6 61.9 38.0 50.4 51.0
Masking+Mapping 472 57.0 41.6 522 47.9 58.6 355 46.4 48.3
Masking+Masking 51.7 63.3 44.5 56.3 51.3*  63.6* 39.0 515 52.6
Single-stage Mapping 48.1 57.8 42.0 52.7 47.5 58.6 36.1 47.3 48.8
Single-stage Masking 52.5 64.0 452 57.0 50.8 63.1 40.1 52.9 532
Mapping+Mapping 49.7 59.8 43.1 54.1 49.3 60.5 35.6 49.1 50.1

BLSTM Mapping+Masking 50.6 62.1 43.4 55.0 50.1 61.9 37.8 52.1 51.6
Masking+Mapping 51.1 61.2 44.7 55.8 50.8 61.9 37.6 49.4 51.6
Masking+Masking 532 64.7* 46.0  57.8* 52.8%  64.9* 39.9 53.0 54.0*

[ Unprocessed
Single-stage

ERXA Two-stage without joint training

Bl Two-stage with joint training

(a)

(b)

Fig. 3. A single-stage mapping-based DFN is compared with a two-stage
masking+mapping DFN with and without joint training. The test condition is a
simulated room with Tgg = 0.9 s and TIR = —6 dB.

Fig. 4 illustrates IRM prediction from a mixture signal from a
reverberant male and female utterance. Broadly speaking, both
single-stage masking and two-stage masking+masking networks
are able to estimate the IRM well. On the other hand, the two-
stage network is better at recovering finer spectrogram structures
in the IRM and this explains the superior performance of the
two-stage approach.

Next, we present separation results with recorded RIRs. It
is worth emphasizing that no recorded RIR is used in training.
Table VI shows ESTOI results for real room conditions. Simi-
lar to simulated reverberant conditions, the two-stage BLSTM
system achieves the best results. Again, the masking+masking
BLSTM system outperforms other DNN architectures. In
Table VII, we present PESQ results for these conditions. The
trend of the PESQ scores is similar to that of ESTOI scores in
Table VI.

D. Comparisons with Talker-Independent and
Target-Dependent Separation

Our model is trained and tested using a fixed pair of speakers
whose utterances have been used during training. Such speaker
separation is talker-dependent. Deep learning models have been
recently developed to perform talker-independent speaker sepa-
ration, i.e. test speakers can be different from training speakers.
One prominent method is utterance-level permutation invari-
ant training (uPIT)[23]. This algorithm calculates the train-
ing loss by accounting for speaker permutations across time
frames and then optimizes the network using the minimum
loss of different permutations. To get an idea on whether our
talker-dependent separation yields an expected improvement
over talker-independent separation, we train a uPIT model and
compare with our two-stage network. To this end, we use the
WSJO corpus [7] to generate reverberant mixtures for uPIT.
All signals are downsampled to 16 kHz and frame size is
set to 20 ms with the frame shift of 10 m. Experiments are
performed as described in Section III-A. The uPIT network
with BLSTM is optimized to estimate the IRM for each of
the two anechoic utterances via minimizing the utterance-level
loss.

A target-dependent speaker separation model aims to separate
a trained target speaker from an open set of interfering speakers
[6], [41]. To train a target-dependent model we use the IEEE
male speaker as the target and WSJO speakers as interferers. A
BLSTM network is trained to predict the IRM for the anechoic
target utterances via the loss function in (5).

The results are shown in Fig. 5. As expected, in both simulated
and recorded RIR conditions, our two-stage talker-dependent
model outperforms the target-dependent model, which in turn
outperforms uPIT. Furthermore, uPIT improves both ESTOI and
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Fig. 4. IRM prediction for reverberant speaker separation using BLSTMs. The test condition is for a simulated room with 79 = 0.3 s and TIR = —6 dB. Each
panel is indicated by its corresponding label.

TABLE VII
PESQ SCORES FOR DIFFERENT TWO-STAGE AND SINGLE-STAGE DENS, LSTMS AND BLSTMS IN RECORDED REVERBERANT CONDITIONS

Teo (s) 0.32 0.47 0.68 0.89

TIR (dB) -12 -6 -12 -6 -12 -6 -12 -6 Average

Unprocessed 1.37 1.55 1.35 1.46 1.37 1.52 1.45 1.54 1.45
Single-stage Mapping 1.77 2.04 1.69 1.98 1.68 1.95 1.62 1.87 1.82
Single-stage Masking 1.98 2.31 1.86 2.18 1.87 2.20 1.76 2.05 2.03
Mapping+Mapping 1.82 2.07 1.76 2.03 1.76 2.04 1.67 1.92 1.88

DEN Mapping+Masking 1.99 2.30 1.87 2.17 1.88 2.20 1.78 2.05 2.03
Masking+Mapping 1.90 2.16 1.83 2.12 1.86 2.14 1.76 2.00 1.97
Masking+Masking 2.06%  2.38* 1.93*  2.25* 1.96*  2.30* 1.82% 211" 2.10*
Single-stage Mapping 1.91 2.14 1.87 2.12 1.90 2.14 1.80 2.03 1.99
Single-stage Masking 2.12 2.42 2.01 2.32 2.04 2.35 1.91 2.19 2.17
Mapping+Mapping 1.89 2.11 1.85 2.11 1.89 2.14 1.80 2.01 1.97

LSTM Mapping+Masking 2.08 2.37 1.97 227 2.01 2.31 1.89 2.16 2.13
Masking+Mapping 1.96 2.20 1.92 2.19 1.95 2.21 1.84 2.07 2.04
Masking+Masking 2.14 2.45 203 2.35* 206  2.38* 1.93 222 2.19
Single-stage Mapping 2.01 222 1.96 2.21 1.97 2.21 1.86 2.09 2.07
Single-stage Masking 2.19 2.48 2.08 2.37 2.09 2.38 1.98 2.26 2.23
Mapping+Mapping 2.03 2.27 1.97 2.24 1.97 2.27 1.86 2.08 2.09

BLSTM Mapping+Masking 2,16 2.49* 205  2.39* 2,10  2.42* 1.95 2.24 222
Masking+Mapping 2.13 2.36 2.05 2.32 2.07 2.34 1.94 2.18 2.17
Masking+Masking 2.23*  2.53* 2.12%  2.43* 2.15%  2.46* 201 2.29* 2.28*

PESQ scores of unprocessed mixtures. All these improvements models further suggest that interferer information also plays a
are statistically significant (p < 0.0005). These consistent re-  role in separation performance.

sults suggest that speaker-specific information, when available, Our evaluation so far is on a pair of male-female speakers.
contributes to speaker separation performance. The comparative =~ We expect a similar pattern of results for same-gender pairs,
results between the speaker-dependent and target-dependent although the results are expected to be a little worse. To verify
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Fig. 5.

Comparison of the proposed two-stage network with target-dependent and talker-independent speaker separation. All networks use BLSTM and test TIR

is —12 dB. (a) ESTOI scores in simulated RIR conditions, (b) ESTOI scores in recorded RIR conditions, (c) PESQ scores in simulated RIR conditions, (d) PESQ
scores in recorded RIR conditions, (e) ASDR scores in simulated RIR conditions, and (f) ASDR scores in recorded RIR conditions. Error bars depict the standard

deviation.

TABLE VIIT
SEPARATION RESULTS AND COMPARISONS FOR A PAIR OF MALE-MALE
SPEAKERS. RESULTS ARE SHOWN AT TIR = —6 dB, AVERAGED OVER
ALL Tgo CONDITIONS

Metric ESTOI PESQ ASDR
Unprocessed 239 1.21 0.00
Talker-independent 36.4 1.56 3.19
Target-dependent 39.2 1.77 3.41
One-stage talker-dependent 49.5 2.00 5.26
Two-stage talker-dependent 50.1* 2.02 5.40%

this, we choose a new pair of male speakers, both uttering the
IEEE corpus, with one of them designated as the target speaker.
This evaluation is conducted in simulated reverberant conditions
at three Tyos (0.3, 0.6, 0.9 s) and recorded reverberant rooms
at four Tggs (0.32, 0.47, 0.68, 0.89 s) with one TIR (—6 dB).
The same-gender results and comparisons are presented in Ta-
ble VIII. Like the male-female results, talker-dependent speaker
separation outperforms target-dependent separation, which in
turn yields better results than talker-independent separation.

Furthermore, the two-stage network performs better than the
single-stage network.

IV. CONCLUDING REMARKS

In this paper, we have proposed two-stage deep neural net-
works for the speaker separation in reverberant conditions.
We have compared the performances of BLSTMs, LSTMs,
and DFNs, and our experimental results show that recur-
rent networks outperform feedforward networks in a wide
range of conditions, with BLSTMs performing the best. We
have also shown that masking-based separation outperforms
mapping-based separation. Our empirical study shows that
talker-dependent speaker separation in reverberant conditions
yields better results than target-dependent models, which in turn
perform better than talker-independent separation. This obser-
vation is expected as talker-dependent models operate in more
constrained conditions. To our knowledge, this is the first study
to address monaural speaker separation in reverberant conditions
using RNNss. In the future we plan to extend the current system
to speech separation conditions with both background noise and
interfering speakers.
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