
A two-stage deep learning algorithm for talker-independent
speaker separation in reverberant conditions

Masood Delfarah,a) Yuzhou Liu,b) and DeLiang Wangc)

Department of Computer Science and Engineering, The Ohio State University, Columbus, Ohio 43210, USA

ABSTRACT:
Speaker separation is a special case of speech separation, in which the mixture signal comprises two or more

speakers. Many talker-independent speaker separation methods have been introduced in recent years to address this

problem in anechoic conditions. To consider more realistic environments, this paper investigates talker-independent

speaker separation in reverberant conditions. To effectively deal with speaker separation and speech dereverberation,

extending the deep computational auditory scene analysis (CASA) approach to a two-stage system is proposed. In

this method, reverberant utterances are first separated and separated utterances are then dereverberated. The pro-

posed two-stage deep CASA system significantly outperforms a baseline one-stage deep CASA method in real rever-

berant conditions. The proposed system has superior separation performance at the frame level and higher accuracy

in assigning separated frames to individual speakers. The proposed system successfully generalizes to an unseen

speech corpus and exhibits similar performance to a talker-dependent system. VC 2020 Acoustical Society of America.
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I. INTRODUCTION

Speech perception by human listeners is affected by the

presence of competing speakers (Brungart, 2001; Miller,

1947). In realistic scenarios, room reverberation corrupts the

spectro-temporal structure of the speech signal and degrades

speech intelligibility (Helfer and Wilber, 1990). Competing

speech and room reverberation have a confounding effect on

speech perception (Culling et al., 2003; Festen and Plomp,

1990; Moore, 2007). These effects can be mitigated by

enhancing target speech and separating it from interfering

sources. Effective speech separation especially benefits peo-

ple with hearing impairment because these listeners have a

particular difficulty dealing with competing talkers and

room reverberation.

Traditional speaker separation is based on statistical

models, such as hidden Markov models (HMMs; Weiss and

Ellis, 2010) and nonnegative matrix factorization (NMF;

Smaragdis, 2006). Recent studies utilize deep neural net-

works (DNNs) following their use in speech separation

(Wang and Wang, 2013). In DNN-based speech separation,

a DNN is typically trained to learn a mapping function from

noisy speech features to some training target. At the infer-

ence time, the DNN is fed with mixture features to estimate

the training target, from which the enhanced speech signal is

constructed. This approach works well for separating two

trained speakers in anechoic conditions (Du et al., 2014;

Huang et al., 2014, 2015; Zhang and Wang, 2016), a case of

talker-dependent speaker separation (Wang and Chen,

2018). DNN-based speaker separation yields significant

speech intelligibility improvements for both normal-hearing

and hearing-impaired listeners (Healy et al., 2017). More

general speaker separation includes target-dependent and

gender-dependent methods. In target-dependent separation a

trained target speaker can be separated from an untrained

speaker (Du et al., 2014; Zhang and Wang, 2016), and

gender-dependent separation aims to separate any female

speaker from any male speaker (Tan and Wang, 2018).

The most general form is talker-independent speaker

separation, in which test speakers cannot be seen during

training. It is not straightforward to extend the DNN-based

speech separation framework to the talker-independent situ-

ation, in which the permutation problem arises during DNN

training, as the output layers cannot be uniquely assigned to

individual speakers (Kolbæk et al., 2017). Deep clustering

(Hershey et al., 2016) and permutation invariant training

(PIT; Kolbæk et al., 2017) have been proposed to address

this problem. Deep clustering learns a mapping from time-

frequency (T-F) units to embedding vectors. Clustering

these embeddings yields an estimate of the ideal binary

mask (IBM; Wang, 2005), which is utilized to reconstruct

separated speech. PIT evaluates all possible losses associ-

ated with speaker-output assignments and then optimizes

the neural network using the minimum of the losses. One

version of this algorithm, known as frame-level permutation

invariant training (tPIT; Yu et al., 2017), aims to separate

speakers at the frame level without addressing the speaker

tracking problem, the issue of tracking the same speaker

across consecutive frames. To address the tracking problem,

utterance-level permutation invariant training (uPIT;

Kolbæk et al., 2017) calculates the loss over the entire mix-

ture signal instead of individual frames. This forces the
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frames for each speaker to correspond to the same output

layer for the whole utterance, eliminating the need for

speaker tracking. However, evaluations show that uPIT sig-

nificantly underperforms tPIT when an optimal speaker

tracker is used for tPIT (Kolbæk et al., 2017).

Following deep clustering and PIT, other talker-

independent separation systems are proposed with impres-

sive performance in anechoic conditions. For example,

Conv-TasNet (Luo and Mesgarani, 2019) and FurcaNeXt

(Shi et al., 2019) report more than 15 dB signal-to-distortion

ratio improvement (DSDR; Vincent et al., 2006), even sur-

passing the oracle results of the ideal ratio mask (IRM;

Wang et al., 2014). Another state-of-the-art approach is

deep computational auditory scene analysis (CASA; Liu and

Wang, 2019), in which a two-talker mixture is first separated

at the frame level, and then the separated frames are grouped

sequentially into individual speakers. This algorithm is

inspired by CASA (Wang and Brown, 2006), which per-

forms a simultaneous grouping of T-F segments overlapping

in time, followed by sequential organization that groups

simultaneous streams to sound sources.

To our knowledge, talker-independent speaker separa-

tion has been limited to anechoic conditions, except for

Wang and Wang (2018) and Wang et al. (2018), in which a

single-channel scenario is evaluated as a baseline for multi-

channel talker-independent speaker separation. In this paper,

we address the monaural talker-independent speaker separa-

tion in reverberant conditions. To this end, we adopt deep

CASA as a baseline and extend it to a two-stage method. In

the proposed method, the first stage separates reverberant

speech signals, and in the second stage, the separated utter-

ances are further dereverberated. We find it advantageous to

address speaker separation and speech dereverberation in

two different stages. The idea of two-stage processing has

been successfully used in other studies (Grais et al., 2017;

Wang et al., 2017; Zhao et al., 2019), including our study

on talker-dependent reverberant speaker separation

(Delfarah and Wang, 2019).

A preliminary version of this work is presented in

Delfarah et al. (2020). Compared to the conference version,

this paper conducts a much wider range of evaluations. We

also discuss how the simultaneous grouping and sequential

organization modules each affect the overall system perfor-

mance. In addition, this paper includes a talker-dependent

system as a strong baseline and investigates cross-corpus

generalization. The rest of this paper is organized as follows.

Section II describes the background of this study including

the problem formulation and the deep CASA baseline. In

Sec. III, we present the proposed two-stage deep CASA

algorithm. Evaluation results and comparisons are presented

in Sec. IV. Section V concludes the paper.

II. BACKGROUND

In a reverberant room, a source signal travels in differ-

ent directions and bounces off of the surrounding surfaces.

The reflected signals can be viewed as attenuated and time-

delayed copies of the original signal, and these reflected sig-

nals combine at the microphone location. As a result, the

reverberant signal appears temporally and spectrally

smeared compared to the source signal. A room impulse

response (RIR) characterizes the reverberation and converts

an anechoic source signal to the reverberant received signal.

In a reverberant room with two simultaneous talkers, the

two-speaker mixture y(t) can be described monaurally as:

yðtÞ ¼ sr1
ðtÞ þ sr2

ðtÞ ¼ s1ðtÞ � h1ðtÞ þ s2ðtÞ � h2ðtÞ;
(1)

where s1 and s2 are the anechoic speech signals, h1 and h2

are their corresponding RIRs, sr1
and sr2

are the reverberant

speech signals, and “�” denotes the convolution operator. In

this study, we aim at extracting s1 and s2 from y. In other

words, the end goal is to obtain separated and dereverber-

ated speech signals. An alternative goal would be separating

reverberant signals sr1
and sr2

. The current study extracts s1

and s2 as hearing-impaired listeners show higher speech

intelligibility when presented with separated and derever-

berated signals compared to separated reverberant signals

(Healy et al., 2019).

The speaker separation problem formulated in Eq. (1)

has a special case of speaker separation in anechoic condi-

tions, i.e.,

h1ðtÞ ¼ h2ðtÞ ¼ dðtÞ; (2)

where d is the Dirac delta function. The deep CASA

approach (Liu and Wang, 2019) addresses anechoic talker-

independent speaker separation by first separating the speak-

ers at the frame level and then predicting the correct

speaker-frame assignments to sequentially organize the sep-

arated frames over the entire mixture to generate separated

speaker signals. In deep CASA, these two modules corre-

spond to simultaneous grouping and sequential organization

in CASA (Wang and Brown, 2006). The simultaneous

grouping module is a Dense-Unet (Huang et al., 2017;

Ronneberger et al., 2015), which is trained using a tPIT cri-

terion (Yu et al., 2017). The sequential grouping module uti-

lizes a temporal convolutional network (TCN; Bai et al.,
2018; Lea et al., 2016) to predict embeddings followed by a

k-means algorithm to cluster the embeddings to produce

frame-speaker assignments.

A straightforward way to extend deep CASA to rever-

berant conditions is as follows. The simultaneous grouping

module predicts anechoic speech signals at the frame level,

and the sequential grouping module organizes the separated

frames to yield s1 and s2 estimates. Since this baseline

method produces anechoic signals at the output of simulta-

neous grouping, it performs speaker separation and speech

dereverberation in one stage.

We note that speaker separation and speech dereverber-

ation are intrinsically different tasks, and using a single

stage to accomplish both tasks may require a mapping from

mixture features to a training target that is too complicated
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for a single DNN to learn effectively. In Sec. III, we propose

a two-stage deep CASA algorithm that performs separation

and dereverberation separately, reminiscent of the divide

and conquer strategy of CASA.

III. TWO-STAGE DEEP CASA FOR SPEAKER
SEPARATION IN REVERBERANT CONDITIONS

The algorithm overview is shown in Fig. 1. Given a

reverberant two-talker mixture, a simultaneous grouping

module is trained to perform frame-level separation of the

reverberant speech signals. Then, the sequential grouping

module learns to organize those separated reverberant

frames over time to form two reverberant streams, each cor-

responding to one speaker. The simultaneous and sequential

grouping modules form the proposed first stage. In the pro-

posed second stage, two separated streams are individually

fed into a dereverberation module, which is trained to yield

the anechoic source signals. Our system builds upon the

deep CASA framework (Liu and Wang, 2019) and is

described as follows.

A. Simultaneous grouping

An overview of the simultaneous grouping module is

depicted in Fig. 2. Given the mixture signal y, the real and

imaginary short-time Fourier transform (STFT) features, Y,

are extracted and fed into a DNN, which produces two com-

plex ratio masks cRM1 and cRM2 (Williamson et al., 2016).

These ratio masks, along with Y, produce two STFT features

Ŝu1
and Ŝu2

:

Ŝu1
ðm; f Þ ¼ cRM1ðm; f Þ � Yðm; f Þ; (3)

Ŝu2
ðm; f Þ ¼ cRM2ðm; f Þ � Yðm; f Þ; (4)

where m is the time frame index, f is the frequency index,

and � denotes pointwise matrix multiplication. Ŝu1
and Ŝu2

are the estimated frame-level reverberant speaker signals,

yet, to be organized over time. Using the tPIT loss function

(Yu et al., 2017), these frames are reorganized into Ŝo1
and

Ŝo2
, which correctly represent the speaker signals.

Accordingly, two possible loss functions ‘1 and ‘2 are calcu-

lated per time frame as

‘1ðmÞ ¼ Rf jŜu1
ðm; f Þ � Sr1

ðm; f Þj þ Rf jŜu2
ðm; f Þ

� Sr2
ðm; f Þj; (5)

‘2ðmÞ ¼ Rf jŜu1
ðm; f Þ � Sr2

ðm; f Þj þ Rf jŜu2
ðm; f Þ

� Sr1
ðm; f Þj; (6)

where Sr1
and Sr2

are the complex STFT features sr1
and sr1

,

accordingly. Then, optimal speaker tracking is performed as

follows:

Ŝo1
ðm; f Þ; Ŝo2

ðm; f Þ

¼ Ŝu1
ðm; f Þ; Ŝu2

ðm; f Þ; if ‘1ðmÞ � ‘2ðmÞ;
Ŝu2
ðm; f Þ; Ŝu1

ðm; f Þ; otherwise:

(
(7)

Next, inverse STFT converts Ŝo1
and Ŝo2

into time domain

signals ŝo1
and ŝo2

, which are the predicted reverberant sig-

nals using optimal speaker tracking. Finally, the module is

FIG. 1. Overview of the proposed two-stage deep CASA algorithm for speaker separation in reverberant conditions.

FIG. 2. Overview of the simultaneous grouping module in the proposed

two-stage deep CASA algorithm, which separates speakers at the frame

level and organizes the time frames with an optimal speaker tracker. cRM

refers to a complex ratio mask.
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optimized to minimize the signal-to-noise ratio (SNR) loss

function JtPIT�SNR,

JtPIT�SNR ¼ �10
X
i¼1;2

log
RtsiðtÞ2

Rt siðtÞ � ŝoi
ðtÞ

� �2 : (8)

A Dense-Unet architecture was used for simultaneous

grouping in deep CASA (Liu and Wang, 2019), which con-

sists of a series of upsampling layers, downsampling layers,

and dense convolutional blocks. The network can be divided

into two halves. In the first half, dense convolutional blocks

and downsampling layers are alternated to encode the input

T-F feature map into a higher level of abstraction. Each

dense convolutional block is composed of five densely con-

nected convolutional layers with each layer connected to

every other layer in a feedforward fashion. The middle layer

in a dense block is a special frequency-mapping layer,

which alleviates the inconsistency between different fre-

quencies by reorganizing them in a new space. In the second

half of the network, dense blocks and upsampling layers are

alternated to project the encoded information back to the

original T-F resolution. Skip connections are added to link

the dense blocks at the same hierarchical level in the two

halves so that the fine-grain details in the mixture are

preserved.

B. Sequential grouping

As seen in Eqs. (5)–(8), the training of the simultaneous

grouping module uses premixed reverberant mixtures sr1

and sr2
to optimize the neural network with the optimal

frame-speaker assignments. These signals are not available

at test time, and for this reason, a sequential grouping mod-

ule is trained to predict a temporal organization.

Figure 3 illustrates the sequential organization module.

For an M-frame mixture the training target A is an M � 2

matrix,

AðmÞ ¼
1; 0½ �; if ‘1ðmÞ � ‘2ðmÞ;
0; 1½ �; otherwise;

(
(9)

where 1 � m � M. One can see that A optimally organizes

Ŝu1
and Ŝu2

as follows:

Ŝo1

Ŝo2

" #
¼

A

1� A

" #
Ŝu1

Ŝu2

" #
: (10)

As input features, this module uses the magnitude spec-

trograms jYj, along with the unorganized signals jŜu1
j and

jŜu2
j, produced from Eqs. (3) and (4). The network predicts

the embedding matrix V 2 RM�D, where D is the embed-

ding dimension. V encodes the information of the optimal

output-speaker pairing. Finally, we optimize the loss func-

tion JDC (Hershey et al., 2016),

JDC ¼ kW1=2ðVVT � AATÞW1=2k2
F; (11)

where k � kF is the Frobenius norm and

W ¼ diag
jl1 � l2j

Rcjl1 � l2j

� �
; (12)

in which l1 and l2 are obtained from Eqs. (5) and (6).

At test time, a sequential grouping predicts the embed-

ding V and then a k-means algorithm clusters VðmÞ vectors,

i.e., assigning labels âðmÞ ¼ f0; 1g. Then, the predicted

sequential organization matrix Â is obtained:

Â ¼ â; 1� â½ �; (13)

which is used as in Eq. (9) to generate the estimated com-

plex domain reverberant signals Ŝr1
and Ŝr2

.

A TCN (Bai et al., 2018; Lea et al., 2016) is adopted as

the sequence model in this module. In the TCN, input fea-

tures are first fed to eight consecutive dilated convolutional

blocks with an exponentially increasing dilation factor F
(F ¼ 20,2,1,…,27). Each dilated convolutional block is com-

posed of three convolutional layers. The first layer extends

the number of feature maps in the input. The second depth-

wise dilated layer links the current frame with feature maps,

whicch are D frames away, greatly expanding the temporal

context. The last layer projects the feature maps back to the

input dimension and combines it with the input to form the

output of the block. To further expand the receptive field,

the eight blocks are repeated three times before embedding

the estimation. During the training of the TCN, a

dropDilation (Liu and Wang, 2019) technique is utilized to

overcome the overfitting problem.

FIG. 3. Overview of the sequential organization module, which assigns the

simultaneously separated frames to individual speakers using k-means

clustering.
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C. Speech dereverberation

In this stage, the estimated reverberant signals are indi-

vidually dereverberated using a DNN with the same archi-

tecture as the Dense-Unet used in the simultaneous grouping

module except that the tPIT loss function is not used. Ŝr1
(or

Ŝr2
) is fed to the network, and a complex ratio mask is gen-

erated to produce the complex domain STFT Ŝ1 (or Ŝ2).

This is then converted to the time-domain signal ŝ1 (or ŝ2)

and the network is optimized as follows:

JSNR ¼ �10 log
RtsiðtÞ2

Rt siðtÞ � ŝiðtÞ½ �2
; i ¼ 1; 2: (14)

At the inference time, the reverberant two-talker mix-

ture is passed through the simultaneous grouping module to

form the frame-level separated reverberant speaker signals.

Then, the sequential grouping module uses the k-means

algorithm to predict an across-frame organization sequence.

This predicted sequence is used to form the two reverberant

speech streams. Finally, each of the streams undergoes

speech dereverberation to yield the predicted anechoic

speaker signals.

IV. EVALUATIONS AND COMPARISONS

A. Experimental setup

The utterances used in this study are sampled at 16 kHz.

Spectrograms are generated by dividing the waveform sig-

nals into 32-ms frames with a frame shift of 8 ms and apply-

ing a 512-point discrete Fourier transform (DFT).

We use the WSJ0 dataset (Garofolo et al., 1993) to gen-

erate the two-talker mixtures.1 To produce the training data,

two different speakers from the folder si_tr_s are randomly

picked each time to produce a pair. First, these anechoic sig-

nals are equalized to the same root-mean-square (RMS)

level. In the case of speaker pairs with utterances of differ-

ent lengths, the longer utterance is trimmed to the length

of the shorter one. We use the image method to simulate

reverberant room conditions. To this end, for each speaker

pair, a simulated room with random dimensions of L 2 ½6; 7�
m, W 2 ½8; 9� m, and H 2 ½2:5; 3:5� m is picked. Next, a

T60 2 ½0:3; 1:0� s is chosen for the reverberation time. A

microphone is placed in this room at a random position of

x 2 ½2:5; 3:5� m, y 2 ½3:5; 4:5� m, and z 2 ½1; 2� m, with x, y,

and z corresponding to the length, width, and height, respec-

tively. Then, each of the two speakers is placed in the room

at different locations with a random distance of d 2 ½0:5; 3�
m from the microphone. The speakers and the microphone

have the same elevation within the room. A RIR generator

toolbox2 is used to generate a RIR for each speaker. Then,

the reverberant two-talker mixtures are generated as in Eq.

(1). The direct-path signals are used as the training targets.

These signals can be obtained by convolving the anechoic

source signal with a RIR that is generated by retaining only

the largest peak in the original RIR. The process of mixture

generation is repeated to obtain 201 000 training mixture

signals, from which 1000 mixtures are set aside for cross-

validation.

One set of experiments involves using speakers from

the WSJ0 corpus that were not used during training. For this

purpose, speakers are picked from the folders si_dt_05 and

si_et_05, and mixture signals are generated using simulated

and recorded RIRs. Three simulated rooms are obtained

with T60 ¼ 0.3, 0.6, and 0.9 s. Test room dimensions are

(6.5, 8.5, 3) m, and the microphone is fixed at the position of

[3, 4, 1.5] m. The same speaker-microphone distances are

used as in the training, and all test mixtures have 0 dB tar-

get-to-interferer ratio (TIR). To generate mixtures with real

room conditions, recorded RIRs from four rooms are chosen

with T60 ¼ 0.32, 0.47, 0.68, and 0.89 s. These RIRs are

adopted from Hummersone et al. (2010), where detailed

room configurations can be found. In each condition, 3000

test mixtures are generated and average results are reported.

Our test set comprises 1603 male-female, 530 female-

female, and 867 male-male mixtures.

We perform cross-corpus evaluations without retraining

using 120 male and 120 female utterances from two

Institute of Electrical and Electronics Engineers (IEEE)

speakers (IEEE, 1969). For this purpose, 1000 male-female

mixtures were generated by randomly selecting and mixing

two of those utterances at a time. Furthermore, we evaluate

using the LibriSpeech corpus (Panayotov et al., 2015),

which is extracted from audiobooks read and recorded by

many volunteer speakers. As a result, some level of rever-

beration would exist in speech signals. We generate 1000

mixtures by randomly selecting utterances from the test-
clean set of LibriSpeech. In our IEEE and LibriSpeech

evaluations, room configurations were the same as those

used in the WSJ0 test set, and two speakers were mixed at

0 dB TIR. Note that the sentences and speakers are different

in all three corpora.

The networks in all modules were trained using the

Adam optimizer (Kingma and Ba, 2015). First, the simulta-

neous grouping module was trained and then the outputs of

this module were used to train the sequential grouping mod-

ule. The dereverberation network was first trained to dere-

verberate single-speaker signals and then was connected to

the outputs of the simultaneous grouping module and further

trained. This step is done to fine-tune the dereverberation

module and, therefore, the parameters in the speaker separa-

tion stage are not updated. This implies that speaker separa-

tion and speech dereverberation are trained successively.

We observed slight performance degradation with joint

training of the two stages, probably because of the different

natures of dereverberation and speaker separation.

Throughout algorithm training, the learning rates were

adjusted based on the loss on the validation set, and the

DNNs with the smallest errors in the validation set were

used to train the consecutive modules and at inference time.

Standard performance metrics used for algorithm evalua-

tions are ESTOI (Jensen and Taal, 2016), PESQ (Rix et al.,
2001), and DSDR (dB) (Vincent et al., 2006). ESTOI mea-

sures speech intelligibility and produces a number typically
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in the range of [0, 1]. It is an extended version of STOI

(Taal et al., 2011) and produces higher correlation with

human intelligibility than STOI for modulated noises. Here,

we report ESTOI in percent. PESQ is a number in the range

of [�0.5 4.5] and measures speech quality. In all three met-

rics, higher scores indicate better results. The reference sig-

nals in the evaluations are the direct-path speech signals,

and in each test condition, the average scores of the test

mixtures are reported.

B. Comparison systems

We compare the performance of the proposed two-stage

deep CASA algorithm with several strong baselines.

1. One-stage deep CASA

This system (Liu and Wang, 2019) represents the direct

extension of deep CASA from anechoic to reverberant con-

ditions and is implemented as described in Sec. II.

2. One-stage uPIT Dense-Unet

The Dense-Unet structure of the simultaneous grouping

module in deep CASA is trained with the uPIT loss func-

tion. This system pulls together the separated frames for

each speaker throughout a reverberant mixture and, there-

fore, does not need sequential organization.

3. Two-stage uPIT Dense-Unet

To further evaluate the proposed two-stage strategy, we

also create a two-stage baseline for uPIT Dense-Unet. The

first stage uses uPIT Dense-Unet to predict reverberant com-

plex STFT features for each speaker in the mixture. The out-

puts of this stage are fed to a dereverberation stage to

predict direct-path signals. This baseline is similar to two-

stage deep CASA except that uPIT Dense-Unet is used as

the first stage.

4. One-stage fully convolutional time-domain audio
separation network (one-stage Conv-TasNet)

Conv-TasNet (Luo and Mesgarani, 2019) performs

uPIT (Kolbæk et al., 2017) in the time domain and demon-

strates very good results separating speakers in anechoic

conditions. Our implementation of Conv-TasNet uses a

TCN structure and predicts frames of length 2 ms with a

1 ms frame shift. It minimizes an utterance-level SNR loss

function [Eq. (8)] to predict two direct-path speaker signals

from a reverberant mixture in the time domain.

5. Two-stage Conv-TasNet

Similarly, we create a two-stage Conv-TasNet baseline.

Conv-TasNet is used in the first stage to predict reverberant

speakers, each of which is converted to the complex spectral

domain. In the second stage, each signal undergoes dere-

verberation as done in two-stage deep CASA.

6. IRM

We report the results for signals reconstructed by the

IRM defined as (Wang et al., 2014)

IRMi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
i ðm; f Þ

S2
r1
ðm; f Þ þ S2

r2
ðm; f Þ

s
; i ¼ 1; 2: (15)

Note that this system is not trained and the IRM is directly

calculated from premixed signals. The overlap-add method

uses IRMi � jYj and /Y to resynthesize time-domain

signals.

TABLE I. DSDR, ESTOI (%), and PESQ scores for speaker separation in simulated reverberant conditions using WSJ0 test mixtures. Boldface indicates the

best separation score in each condition, and italic indicates the oracle results with the IRM.

Metrics
DSDR (dB) ESTOI (%) PESQ

T60 (s) Sequential grouping 0.3 0.6 0.9 Avgerage 0.3 0.6 0.9 Avgerage 0.3 0.6 0.9 Avgerage

Unprocessed — 0.0 0.0 0.0 0.0 43.2 31.1 23.0 32.5 1.70 1.48 1.37 1.52

IRM — 10.0 8.8 8.6 9.1 81.3 76.5 73.1 76.9 3.10 2.85 2.68 2.88

One-stage uPIT Dense-Unet Optimal 7.8 7.6 7.5 7.6 73.6 64.2 55.2 64.3 2.62 2.33 2.06 2.34

Default 7.6 7.4 7.3 7.4 72.6 63.0 54.0 63.2 2.60 2.31 2.07 2.32

Two-stage uPIT Dense-Unet Default 9.2 8.3 8.3 8.6 80.7 70.9 63.2 71.6 2.84 2.47 2.24 2.52

One-stage Conv-TasNet Default 7.9 7.4 7.0 7.4 73.2 62.3 52.4 62.6 2.59 2.28 2.02 2.30

Two-stage Conv-TasNet Default 8.7 8.1 8.1 8.3 78.7 68.5 60.6 69.3 2.69 2.34 2.11 2.38

One-stage deep CASA Optimal 10.0 9.3 8.9 9.4 80.5 71.6 63.0 71.7 2.90 2.57 2.30 2.59

Learned 9.7 9.0 8.6 9.1 79.6 70.3 61.2 70.4 2.84 2.49 2.21 2.51

Two-stage deep CASA Optimal 10.1 9.4 9.1 9.6 83.0 75.0 66.9 75.0 3.03 2.65 2.35 2.68

Learned 9.5 8.8 8.4 8.9 81.2 72.5 63.5 72.4 2.91 2.52 2.18 2.54
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7. Talker-dependent speaker separation

A talker-dependent system is trained to separate a known

female IEEE speaker and a known male IEEE speaker. To

train this system, 100 000 IEEE mixtures are generated using

600 male and 600 female sentences that were not used in test-

ing, and the experimental setup described in Sec. IV A is fol-

lowed. This system uses a Dense-Unet similar to the

simultaneous grouping module of deep CASA without a tPIT

criterion. Since the talker-dependent system is specifically

designed to separate the two IEEE speakers, it is excluded

from the experiments with the WSJ0 corpus.

C. Experimental results using WSJ0 mixtures

In this section, we evaluate and compare the systems

using the WSJ0 test speakers. Table I shows DSDR, ESTOI (%),

and PESQ scores in simulated reverberant room conditions.

Considering how frames are sequentially organized, two

sets of results are presented for the deep CASA and uPIT

Dense-Unet systems. Optimal sequential grouping refers to

the ideal organization of Eq. (10), whereas learned sequen-

tial organization uses the output of the sequential grouping

module [Eq. (13)]. For systems that organize and separate

the speakers in a single module at the utterance level,

default sequential organization is used in which

ÂðmÞ ¼ ½0; 1�, 8m 2 M.

The results in Table I show that one-stage deep CASA

produces slightly higher DSDR scores than two-stage deep

CASA, whereas the two-stage deep CASA algorithm yields

slightly higher ESTOI and PESQ scores. The IRM has sig-

nificantly better ESTOI and PESQ results than the deep

CASA systems, but on DSDR, the deep CASA systems have

comparable performance to the IRM. From Table I, we also

TABLE II. DSDR, ESTOI (%), and PESQ scores for speaker separation in recorded reverberant conditions using WSJ0 test mixtures.

Metrics
DSDR (dB) ESTOI (%) PESQ

T60 (s) Sequential grouping 0.32 0.47 0.68 0.89 Avgerage 0.32 0.47 0.68 0.89 Avgerage 0.32 0.47 0.68 0.89 Avgerage

Unprocessed — 0.0 0.0 0.0 0.0 0.0 41.9 37.9 44.1 33.5 39.4 1.68 1.64 1.76 1.53 1.65

IRM — 10.7 10.4 10.6 10.2 10.5 82.4 81.0 84.6 81.4 82.4 3.25 3.22 3.26 3.15 3.22

One-stage uPIT Dense-Unet Optimal 8.7 8.8 9.5 9.7 9.2 72.2 68.3 73.7 65.9 70.0 2.61 2.53 2.66 2.40 2.55

Default 7.6 7.6 8.5 8.4 8.0 69.9 65.3 71.0 62.9 67.3 2.49 2.39 2.54 2.27 2.42

Two-stage uPIT Dense-Unet Default 8.8 8.6 9.9 9.4 9.2 76.6 72.3 77.6 69.8 74.1 2.67 2.56 2.71 2.40 2.58

One-stage Conv-TasNet Default 6.3 6.5 7.4 7.7 7.0 64.8 61.2 66.6 58.6 62.8 2.28 2.23 2.39 2.13 2.26

Two-stage Conv-TasNet Default 7.7 7.5 8.5 8.5 8.1 70.8 66.5 72.2 65.8 68.8 2.47 2.38 2.53 2.25 2.41

One-stage deep CASA Optimal 10.4 10.4 11.2 11.1 10.8 76.8 72.9 77.6 70.9 74.6 2.77 2.71 2.80 2.55 2.71

Learned 9.4 9.4 10.2 10.1 9.8 74.7 70.5 75.3 68.2 72.2 2.62 2.55 2.67 2.40 2.56

Two-stage deep CASA Optimal 11.1 11.3 12.1 11.8 11.6 79.5 76.9 81.4 75.7 78.4 2.89 2.82 2.95 2.63 2.82

Learned 10.0 10.2 11.1 10.6 10.5 76.8 74.0 78.7 71.9 75.3 2.71 2.64 2.80 2.43 2.64

TABLE III. DSDR, ESTOI (%), and PESQ scores for same- and different-gender pairs using WSJ0 test mixtures. Average results in recorded and simulated

room conditions are presented. Same genders include both male-male and female-female mixtures and different genders include male-female mixtures.

Metrics
DSDR (dB) ESTOI (%) PESQ

mixture genders Sequential grouping Same Different Same Different Same Different

Unprocessed — 0.0 0.0 36.1 35.8 1.58 1.55

IRM — 9.8 9.8 79.7 79.7 3.04 3.03

One-stage uPIT Dense-Unet Optimal 8.1 9.2 65.7 70.1 2.39 2.55

Default 6.6 8.9 61.7 69.5 2.21 2.53

Two-stage uPIT Dense-Unet Default 8.6 10.1 70.5 75.7 2.40 2.68

One-stage Conv-TasNet Default 6.7 7.7 60.8 64.7 2.20 2.34

Two-stage Conv-TasNet Default 8.3 9.4 70.7 75.0 2.28 2.55

One-stage deep CASA Optimal 10.0 10.2 73.0 73.5 2.64 2.65

Learned 8.8 10.0 69.6 72.9 2.44 2.61

Two-stage deep CASA Optimal 10.5 10.6 76.4 77.1 2.74 2.76

Learned 8.8 10.4 71.1 76.3 2.45 2.71
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observe that for uPIT Dense-Unet and Conv-TasNet, the

two-stage versions have uniformly better scores than the

one-stage versions. Overall, deep CASA works better than

Conv-TasNet and uPIT Dense-Unet. This observation is

consistent with speaker separation results in anechoic condi-

tions (Liu and Wang, 2019).

Table II evaluates and compares the systems under the

conditions of real RIRs. Note that the training set only con-

tains simulated RIRs. Two-stage systems perform uniformly

better than their one-stage counterparts. In particular, two-

stage deep CASA has the best performance across all

recorded RIR conditions and significantly outperforms the

one-stage deep CASA. The average difference in perfor-

mance is 0.7 dB signal-to-distortion ratio (SDR), 3.1%

ESTOI, and 0.08 PESQ points. These results suggest that

addressing speech dereverberation and speaker separation in

two different stages results in better generalization to

unseen, real room conditions. In this case, two-stage deep

CASA is able to match the SDR performance of the IRM;

however, it underperforms the IRM by 7.1% ESTOI and

0.58 PESQ.

Table III breaks the DSDR, ESTOI, and PESQ scores

for each system into same and opposite gender conditions.

The results indicate that when used with optimal sequential

organization, the deep CASA systems can separate the same

gender mixtures as well as the different gender mixtures. On

the other hand, in one-stage and two-stage deep CASA with

learned sequential organization, different gender mixtures

yield significantly better results, which is not surprising.

To examine the quality of sequential organization in the

deep CASA systems, Fig. 4 plots the rate of the incorrect

frame-speaker assignments for these systems in simulated

and recorded room conditions. To measure these error rates,

we count the total number of different elements between

vectors A from Eq. (10) and Â from Eq. (13), and then

divide this number by the total number of frames in the

utterance. To eliminate the effects of silent and low-energy

frames, this examination considers only frames that have an

energy ratio of at least �20 dB relative to the frame with the

maximum energy in the mixture. The results indicate that in

simulated reverberant conditions, the sequential grouping

modules in one-stage and two-stage deep CASA have com-

parable performances, whereas in recorded room conditions,

the two-stage system produces fewer frame organization

errors. We think that this is because the output frames from

the simultaneous grouping module in two-stage deep CASA

are better separated (and, hence, less similar), thus, facilitat-

ing sequential organization.

To summarize, the deep CASA algorithms perform

much better than Conv-TasNet and uPIT Dense-Unet in

simulated and real reverberant conditions. In recorded rever-

berant conditions, the simultaneous grouping module of

two-stage deep CASA appears to outperform this module in

one-stage deep CASA, leading to fewer frame-speaker

assignment errors. The results show better generalization of

the two-stage deep CASA algorithm to real acoustic condi-

tions than were shown for the one-stage CASA algorithm.

FIG. 4. Percentage of incorrect frame-speaker assignments in deep CASA

systems for separating WSJ0 test mixtures. The horizontal axis represents

T60 values.

TABLE IV. DSDR, ESTOI (%), and PESQ scores for speaker separation in simulated reverberant conditions using the IEEE male-female mixtures.

Metrics
DSDR (dB) ESTOI (%) PESQ

T60 (s) Sequential grouping 0.3 0.6 0.9 Avgerage 0.3 0.6 0.9 Avgerage 0.3 0.6 0.9 Avgerage

Unprocessed — 0.0 0.0 0.0 0.0 39.9 29.3 22.2 30.5 1.51 1.30 1.19 1.33

IRM — 10.4 9.1 8.8 9.4 81.9 77.4 74.4 77.9 2.98 2.68 2.50 2.72

Talker-dependent Default 11.0 10.1 9.7 10.2 82.1 74.5 66.9 74.5 3.02 2.71 2.45 2.72

One-stage uPIT Dense-Unet Optimal 9.3 8.7 8.4 8.8 75.9 66.7 57.6 66.7 2.76 2.43 2.14 2.44

Default 9.2 8.6 8.3 8.7 75.6 66.4 57.3 66.4 2.74 2.42 2.13 2.43

Two-stage uPIT Dense-Unet Default 9.7 8.7 8.1 8.9 78.4 69.0 58.9 68.8 2.84 2.49 2.18 2.50

One-stage Conv-TasNet Default 6.0 5.6 5.5 5.7 65.6 53.7 44.3 54.6 2.34 2.02 1.77 2.05

Two-stage Conv-TasNet Default 8.4 7.7 7.2 7.8 72.8 62.9 52.2 62.6 2.57 2.23 1.92 2.24

One-stage deep CASA Optimal 10.4 9.6 9.0 9.7 79.4 70.7 62.1 70.8 2.89 2.55 2.27 2.57

Learned 10.3 9.5 8.9 9.6 79.0 70.2 61.3 70.2 2.86 2.53 2.24 2.54

Two-stage deep CASA Optimal 10.7 9.8 9.3 9.9 81.9 73.8 65.7 73.8 3.02 2.65 2.34 2.67

Learned 10.6 9.7 9.1 9.8 81.3 73.1 64.5 72.9 2.98 2.61 2.29 2.62
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D. Cross-corpus generalization

To further investigate the generalization of reverberant

speaker separation, we present evaluation results using the

IEEE corpus. The objective scores in simulated reverberant

conditions are shown in Table IV. Comparing the results in

Table IV with the results in Table I indicates that the pro-

posed two-stage deep CASA algorithm generalizes very

well to an unseen speech corpus. Our two-stage algorithm

performs better than the one-stage deep CASA system as

expected (see Delfarah and Wang, 2019). Comparing the

results of one-stage and two-stage uPIT Dense-Unet on

WSJ0 and IEEE corpora indicates that these systems also

generalize well to the unseen IEEE corpus. A large perfor-

mance drop is observed for one-stage Conv-TasNet when

tested with the IEEE speakers; however, the two-stage ver-

sion performs substantially better. Table IV also presents

the oracle results using the IRM, and the two deep CASA

and talker-dependent systems achieve higher SDR scores

than the IRM. The talker-dependent system matches the

PESQ performance of the IRM. This shows the strong

representational capacity of the Dense-Unet structure and

complex ratio masking used in this study.

More challenging are the mixtures of reverberant IEEE

speakers using recorded RIRs. Table V shows the perfor-

mance of different systems in such a condition. The results

are consistent with the simulated room results in Table IV.

In recorded RIR conditions, two-stage deep CASA performs

better than the baseline one-stage system with an average

improvement of 0.8 dB SDR, 3.2% ESTOI, and 0.13 PESQ

scores. Interestingly, the proposed two-stage deep CASA

system approaches the performance of the talker-dependent

system—the gold standard for talker-independent speaker

separation—with even a slightly 0.2 dB higher SDR score.

In Tables IV and V, we observe that two deep CASA

systems exhibit similar performances using optimal or

learned sequential organization. These systems make very

few errors in organizing separated frames over time, which

is expected for different-gender speakers. This effect is illus-

trated in Fig. 5, where we present the frame-speaker assign-

ment errors in sequential grouping for separating the IEEE

mixtures in both simulated and recorded room conditions.

Figure 5 shows that two-stage deep CASA makes fewer

errors than one-stage deep CASA in both simulated and

recorded rooms.

Figure 6 illustrates the separation of a male and a

female utterance from the IEEE corpus using the proposed

two-stage deep CASA system. Figure 6 shows the sepa-

rated utterances at the frame level and the sequential orga-

nization results. The dereverberated and separated

utterances resemble the direct-path premixed speech

signals.

Finally, we evaluate on the LibriSpeech corpus.

Table VI presents the results using the test speakers from

the LibriSpeech corpus. Both same-gender and different-

gender cases exist in these mixtures, and recorded RIRs

TABLE V. DSDR, ESTOI (%), and PESQ scores for speaker separation in recorded reverberant conditions using the IEEE male-female mixtures.

Metrics
DSDR (dB) ESTOI (%) PESQ

T60 (s) Sequential grouping 0.32 0.47 0.68 0.89 Avgerage 0.32 0.47 0.68 0.89 Avgerage 0.32 0.47 0.68 0.89 Avgerage

Unprocessed — 0.0 0.0 0.0 0.0 0.0 40.1 36.5 42.3 32.3 37.8 1.5 1.46 1.57 1.34 1.47

IRM — 10.9 10.4 10.6 10.1 10.5 83.5 81.9 85.8 82.2 83.3 3.12 3.07 3.14 2.96 3.07

Talker-dependent Default 11.2 11.2 12.2 11.9 11.6 81.1 78.0 82.0 75.6 79.2 2.94 2.87 2.98 2.71 2.87

One-stage uPIT Dense-Unet Optimal 9.9 10.0 10.6 10.7 10.3 75.5 71.6 76.3 68.2 72.9 2.72 2.64 2.75 2.46 2.64

Default 9.8 9.8 10.5 10.5 10.2 75.4 71.4 76.2 67.9 72.7 2.71 2.62 2.74 2.44 2.63

Two-stage uPIT Dense-Unet Default 9.1 9.5 9.8 10.0 9.6 76.3 73.1 76.2 69.8 73.8 2.76 2.70 2.75 2.50 2.68

One-stage Conv-TasNet Default 5.5 5.2 6.4 6.5 5.9 63.2 57.5 64.5 54.4 59.9 2.22 2.06 2.25 1.96 2.12

Two-stage Conv-TasNet Default 8.2 8.5 9.0 9.4 8.8 70.9 67.7 71.0 64.4 68.5 2.53 2.49 2.57 2.30 2.47

One-stage deep CASA Optimal 10.9 10.8 11.4 11.5 11.1 77.1 73.4 77.6 71.1 74.8 2.78 2.69 2.80 2.53 2.70

Learned 10.8 10.7 11.3 11.3 11.0 76.9 73.0 77.1 70.5 74.4 2.75 2.66 2.77 2.50 2.67

Two-stage deep CASA Optimal 11.6 11.6 12.2 12.2 11.9 79.7 76.7 80.8 75.4 78.2 2.92 2.83 2.96 2.66 2.84

Learned 11.5 11.4 12.1 12.0 11.8 79.4 76.1 80.3 74.5 77.6 2.89 2.79 2.93 2.60 2.80

FIG. 5. Percentage of incorrect frame-speaker assignments in deep CASA

systems for separating IEEE male-female mixtures.
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are used in generating reverberant mixtures. Similar to ear-

lier results, all three algorithms benefit from two-stage

processing with the smallest gain for Conv-TasNet. The

two-stage deep CASA system achieves the best perfor-

mance. Compared to the results in Table V, there are larger

gaps between learned and optimal sequential organization,

indicating higher frame-assignment errors. This is likely

due to the presence of same-gender mixtures in Table VI.

V. CONCLUDING REMARKS

In this paper, we have extended the deep CASA frame-

work to address talker-independent speaker separation in

reverberant conditions. We have proposed a two-stage deep

CASA algorithm and showed that this algorithm outper-

forms a baseline deep CASA algorithm in real room rever-

berant conditions. We have also evaluated an unseen speech

FIG. 6. (Color online) Separating an

IEEE male speaker from an IEEE

female speaker using the proposed

two-stage deep CASA algorithm. The

algorithm is trained using mixtures

from the WSJ0 speech corpus. Real

RIRs from a room with T60 ¼ 0:89 s

were used and mixture TIR was 0 dB.

The male sentence was “Leave now

and you will arrive on time,” and the

female sentence was “A whiff of it will

cure the most stubborn cold.”

1166 J. Acoust. Soc. Am. 148 (3), September 2020 Delfarah et al.

https://doi.org/10.1121/10.0001779

https://doi.org/10.1121/10.0001779


corpus and found that the two-stage system has a superior

separation performance.

We have trained Conv-TasNet and uPIT Dense-Unet

algorithms in reverberant conditions and compared their

performances with the deep CASA algorithms. Deep CASA

is shown to have a stronger capacity in generalizing to real-

world conditions with unseen room acoustics and speech

corpora. A major difference between deep CASA and these

comparison systems is their frame organization mecha-

nisms. uPIT ties speaker frames to an output layer through-

out a mixture signal, which limits the flexibility of uPIT

Dense-Unet and Conv-TasNet. Deep CASA uses tPIT with

a strong sequential organization module that predicts the

underlying speaker-frame assignments with high accuracy.

The goal of this study is separating and dereverberating

two-talker mixtures. Given the same input signal, an alterna-

tive goal would be separating reverberant utterances without

dereverberation, corresponding to the first stage of our

model (see Fig. 1). Based on the first stage evaluation

results, deep CASA is equally adept at this task, achieving

similar levels of performance. This is to be expected as the

separation task is carried out by the first stage.

It is remarkable that our two-stage deep CASA algo-

rithm performs comparably to oracle speaker separation

with the IRM as well as talker-dependent speaker separa-

tion. In the future, we plan to extend two-stage deep CASA

to speaker separation involving more than two speakers and

in noisy-reverberant conditions.
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