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ABSTRACT

Speaker separation refers to the task of separating a mixture
signal comprising two or more speakers. Impressive advances
have been made recently in deep learning based talker-independent
speaker separation. But such advances are achieved in anechoic
conditions. We address talker-independent speaker separation in
reverberant conditions by exploring a recently proposed deep CASA
approach. To effectively deal with speaker separation and speech
dereverberation, we propose a two-stage strategy where reverberant
utterances are first separated and then dereverberated. The two-stage
deep CASA method outperforms other talker-independent separa-
tion methods. In addition, the deep CASA algorithm produces
substantial speech intelligibility improvements for human listeners,
with a particularly large benefit for hearing-impaired listeners.

Index Terms— Talker-independent speaker separation, speech
dereverberation, computational auditory scene analysis, deep CASA

1. INTRODUCTION

Room reverberation and competing speakers degrade speech percep-
tion of human listeners [1–3]. Enhancing the target speech and sepa-
rating it from interfering speakers can mitigate these adverse effects.
In particular hearing-impaired listeners have difficulty in reverber-
ant and multi-talker conditions. Hearing-aids with effective speaker
separation capabilities can remove this disability.

Hidden Markov models (HMMs) [4] and non-negative matrix
factorization (NMF) [5] represent two traditional approaches to
speaker separation. After the success of using deep neural networks
(DNNs) for speech enhancement [6], the speaker separation problem
has been addressed by learning a mapping from mixture features to
some training target. This approach works well for talker-dependent
speaker separation (i.e. separating two trained speakers) [7–10] and
yields substantial improvement for human listeners in anechoic and
reverberant conditions [11, 12].

Talker-independent speaker separation is the most general case
where test speakers can be unseen during training. The DNN-
based speech separation approach is not applicable for the talker-
independent separation, because in this case the output layers cannot
be uniquely assigned to individual speakers. This problem is often
referred to as the permutation problem [13], and has been addressed
in two approaches: deep clustering [14] and permutation invari-
ant training (PIT) [13]. In deep clustering, embedding vectors are
learned from time-frequency (T-F) units. Then using the K-means
algorithm these embeddings are clustered to yield an estimated ideal
binary mask (IBM) [15], which is used to reconstruct the separated
signals. PIT optimizes a DNN using the minimum losses among the

possible speaker-output assignments. One version of PIT, known
as frame-level PIT (tPIT) [16], addresses speaker separation at the
frame level. Since tPIT does not have a mechanism for assigning
the separated frames to individual speakers, it does not address the
speaker tracking problem. Utterance-level PIT (uPIT) [13] performs
speaker tracking together with separation by calculating the loss
over the entire mixture signal instead of individual frames, during
training. Evaluations, however, show that tPIT with an optimal
speaker tracker significantly outperforms uPIT [13].

Conv-TasNet [17] and FurcaNeXt [18] are two recent studies of
talker-independent speaker separation in anechoic conditions. Both
algorithms demonstrate very good separation results and even sur-
pass the oracle results of the ideal ratio mask (IRM) [19]. Another
successful approach is deep CASA [20], which first separates the
speakers at the frame level, and then groups the separated frames
sequentially to form the individual speaker utterances. The divide
and conquer strategy in deep CASA is inspired by research in com-
putational auditory scene analysis (CASA) [21]. CASA typically
performs simultaneous grouping of temporally-overlapped speech
segments, and then sequentially organizes those simultaneously sep-
arated segments into streams, each corresponding to one auditory
source.

This paper addresses the monaural talker-independent speaker
separation in reverberant conditions. We extend the deep CASA al-
gorithm to a two-stage method. In the first stage reverberant speech
signals are separated, and the second stage further dereverberates the
separates utterances. We found two-stage processing advantageous
in our talker-dependent reverberant speaker separation study [22].
The two-stage processing strategy was also pursued in other speech
and speaker separation studies [23], [24], [25].

The rest of this paper is organized as follows. In Section 2, we
present the background of this study including the problem formula-
tion and the deep CASA baseline. Section 3 describes the proposed
two-stage deep CASA algorithm. Evaluation results and compar-
isons are discussed in Section 4. We conclude the paper in Section 5.

2. BACKGROUND

In a reverberant room with two simultaneous talkers, a monaural
two-speaker mixture y(t) can be described as follows:

y(t) = sr1(t) + sr2(t) = s1(t) ∗ h1(t) + s2(t) ∗ h2(t) (1)

where s1 and s2 are the anechoic speech signals, h1 and h2 are their
corresponding room impulse responses (RIRs), sr1 and sr2 are the
reverberant speech signals, and ∗ denotes convolution. In this study,
we aim at extracting s1 and s2 from y. This problem formulation
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Fig. 1: Overview of the proposed two-stage deep CASA algorithm
for speaker separation in reverberant conditions.

has a special case of speaker separation in anechoic conditions, i.e.:

h1(t) = h2(t) = δ(t) (2)

where δ is the Dirac delta function. Anechoic talker-independent
speaker separation was addressed by the deep CASA approach [20]
by first separating the speakers at the frame level and then assign-
ing the separated frames to the speakers via a speaker tracker neural
network.

Deep CASA can be directly extended to reverberant conditions
by dereverberating and separating speech signal frames in the si-
multaneous grouping module and then organizing those frames into
the estimates of s1 and s2 via the predicted speaker-frame assign-
ments obtained from the sequential grouping module. To further im-
prove this baseline, in the next section, we propose a two-stage deep
CASA algorithm that performs the two tasks of speaker separation
and speech dereverberation separately.

3. DEEP CASA FOR SPEAKER SEPARATION IN
REVERBERANT CONDITIONS

An overview of the proposed two-stage algorithm is shown in Fig. 1.
The first stage is deep CASA and it comprises a simultaneous group-
ing and a sequential grouping module. The simultaneous grouping
module is fed by the reverberant mixture features to perform frame-
level separation of the reverberant speech signals. Then, the sequen-
tial grouping module organizes these separated reverberant frames
over time into two reverberant signals, each corresponding to one
speaker. The proposed second stage is a DNN that dereverberates
separated streams individually to form separated anechoic speech
estimates. A description of the different modules is as follows.

3.1. Simultaneous grouping

Fig. 2a depicts the simultaneous grouping module. Given the mix-
ture signal y, the real and imaginary short-time Fourier transform
(STFT) features, Y , are extracted and fed into a DNN to produce
two complex ratio masks cRM1 and cRM2 [26]. These ratio masks
along with Y produce two STFT features Ŝu1 and Ŝu2 :

Ŝu1(m, f) = cRM1(m, f)⊗ Y (m, f) (3)

Ŝu2(m, f) = cRM2(m, f)⊗ Y (m, f) (4)

where m is the time frame index, f is the frequency index, and ⊗
denotes point-wise matrix multiplication. Ŝu1 and Ŝu2 are the esti-
mated frame-level reverberant speaker signals, yet to be organized
over time. We use the tPIT loss function [16] to organize these
frames into Ŝo1 and Ŝo2 that correctly represent the speaker signals.
Accordingly, two possible loss functions �1 and �2 are calculated
per time frame as follows:
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Fig. 2: Diagram of (a) the simultaneous grouping module and (b) the
sequential grouping module in the proposed two-stage deep CASA
algorithm.

�1(m)=Σf|Ŝu1(m, f)−Sr1(m, f)|+Σf|Ŝu2(m, f)−Sr2(m, f)|
(5)

�2(m)=Σf|Ŝu1(m, f)−Sr2(m, f)|+Σf|Ŝu2(m, f)−Sr1(m, f)|
(6)

where Sr1 and Sr2 are the complex STFT features of sr1 and sr1 ,
accordingly. Then optimal speaker tracking is performed:

Ŝo1(m,f), Ŝo2(m,f)=

�
Ŝu1(m,f), Ŝu2(m,f) if �1(m)≤�2(m)

Ŝu2(m,f), Ŝu1(m,f) otherwise
(7)

Next, Ŝo1 and Ŝo2 are converted into time domain signals ŝo1 and
ŝo2 using inverse STFT (iSTFT), which are the predicted reverber-
ant signals using optimal speaker tracking. Finally, the simultaneous
grouping module is optimized by minimizing the signal-to-noise ra-
tio loss function:

J tPIT−SNR = −10
�

i=1,2

log
Σtsi(t)

2

Σt[si(t)− ŝoi(t)]
2

(8)

The simultaneous grouping module uses a Dense-Unet architecture
as used in deep CASA [20].

3.2. Sequential grouping

The simultaneous grouping module uses sr1 and sr2 to predict the
separated reverberant signals for the speakers which are not available
at the test time. For this reason, a sequential organization module is
trained for speaker tracking. Fig. 2b depicts the sequential organiza-
tion module. Given an M -frame mixture Y , this module is fed by
|Y | along with the unorganized signals |Ŝu1 | and |Ŝu2 | which are
produced from Equations 3 and 4. Then, an M × 2 matrix A is
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predicted as:

A(m) =

�
[1, 0] if �1(m) ≤ �2(m)

[0, 1] otherwise
(9)

where 1 ≤ m ≤ M . Note that A optimally organizes Ŝu1 and Ŝu2

as:
�
Ŝo1

Ŝo2

�
=

�
A

1−A

� �
Ŝu1

Ŝu2

�
(10)

The network predicts the embedding matrix V ∈ RM×D , where
D is the embedding dimension. V encodes the information of the
optimal output-speaker pairing. Accordingly, the loss function [14]:

JDC = ||W 1/2(V V T −AAT )W 1/2||2F (11)

is optimized, where ||.||F is the Frobenius norm and:

W = diag(
|l1 − l2|

Σc|l1 − l2|
) (12)

At the test time, the sequential grouping module predicts the
embedding V and then a K-means algorithm clusters V (m) vec-
tors, i.e. assigning labels â(m) = {0, 1}. Finally, the predicted
sequential organization matrix Â is obtained:

Â = [â,1− â] (13)

which is used as in Eq. 9 to generate the estimated complex domain
reverberant signals Ŝr1 and Ŝr2 .

Following the deep CASA algorithm, a temporal convolutional
network (TCN) [27, 28] is adopted as the sequence model in the se-
quential organization module. Using a stack of dilated convolutional
layers, TCN possesses very long memory, which is desirable for the
task of speaker tracking.

3.3. Speech dereverberation

In this stage, the estimated reverberant signals are individually dere-
verberated using a Dense-Unet. Accordingly, Ŝr1 (or Ŝr2 ) is fed to
the network, and a complex ratio mask is generated to produce the
complex domain STFT Ŝ1 (or Ŝ2). It is then converted to the time-
domain signal ŝ1 (or ŝ2) and the network is optimized to minimize:

JSNR = −10 log
Σtsi(t)

2

Σt[si(t)− ŝi(t)]2
i = 1, 2 (14)

At the inference time, the reverberant two-talker mixture is
passed through the simultaneous grouping module to form the
frame-level separated reverberant speaker signals. Then, the se-
quential grouping module uses the K-means algorithm to predict
the across-frame organization sequence. This predicted sequence is
used to form the two reverberant speech streams. Finally, each of
the streams undergoes speech dereverberation to yield the predicted
anechoic speaker signals.

4. EVALUATIONS AND COMPARISONS

4.1. Experimental setup

In this study, spectrograms are generated from signals sampled at 16
kHz and by applying a 512-point DFT on those signals divided into
32-ms frames with a frame-shift of 8 ms.

We use the WSJ0 dataset [29] to generate the two-talker mix-
tures1. To produce the training data, two different speakers from the
folder si tr s are randomly picked each time to produce a pair.
We use the image method to simulate reverberant room conditions.
To this end, for each speaker pair a simulated room with random
dimensions is picked. Next, a T60 ∈ [0.3, 1.0] s is chosen for the
reverberation time. A microphone is placed in this room at a random
position. Then, each of the two speakers is placed in the room at
different locations with a random distance of d ∈ [0.5, 3] m from
the microphone. The speakers and the microphone have the same
elevation within the room. An RIR generator toolbox2 is used to
generate a room impulse response for each speaker. Then, the rever-
berant two-talker mixtures are generated as described in Eq. 1. The
process of mixture generation is repeated to obtain 200,000 training
and 1000 cross-validation mixture signals.

Test mixtures are generated using speakers from the WSJ0 cor-
pus that were not used in the training set. For this purpose, speakers
are picked from the folders si dt 05 and si et 05, and mixture
signals are generated using simulated and recorded RIRs. The test
simulated room T60 was set to 0.3, 0.6, or 0.9 s. To generate mix-
tures with real room conditions, recorded RIRs from four rooms are
used [30]. In each condition, 3000 test mixtures are generated.

In our experiments, each stage is trained separately and then
connected to perform joint training. Performance metrics used for
algorithm evaluations are ESTOI (%) [31] which is a standard speech
intelligibility metric with the value range typically between 0 and 1,
PESQ [32] which is a standard speech quality metric with the value
range of -0.5 to 4.5, and ΔSDR (dB) [33]. In all three metrics higher
scores indicate better results. The reference signals in the evalua-
tions are the direct-sound speech signals and in each test condition
the average scores of test mixtures are reported.

4.2. Comparison systems

We compare the performance of the proposed two-stage deep CASA
algorithm with the following strong baselines:

• One-stage deep CASA [20]: This system represents the di-
rect extension of deep CASA from anechoic to reverberant
conditions and is implemented as described in Section 2.

• Dense-Unet uPIT: The Dense-Unet structure of the simulta-
neous grouping module in deep CASA is trained with the
uPIT loss function. This system does not need a sequential
organization module.

• Conv-TasNet [17]: This algorithm performs uPIT [13] in the
time domain and yields very good results of speakers in ane-
choic conditions. Our implementation of Conv-TasNet uses a
TCN structure and predicts frames of length 2 ms with 1 ms
frame shift. It minimizes an utterance-level SNR loss func-
tion (Eq. 8) to predict two direct-sound speaker signals from
a reverberant mixture in the time domain.

• IRM [19]: We report the results for the signals reconstructed
by applying the oracle IRM. This separation is not trained and
the IRM is directly calculated from premixed signals. The
overlap-add method uses IRMi⊗|Y | and ∠Y to resynthesize
time-domain signal si.

1Mixture generation script from http://www.merl.com/demos/deep-
clustering/create-speaker-mixtures.zip

2https://github.com/ehabets/RIR-Generator
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Table 1
Objective scores for speaker separation using the WSJ0 test

mixtures. Average scores for same- and different-gender mixtures
are reported.

Metrics ΔSDR (dB) ESTOI (%) PESQ
Condition Sim. Real Sim. Real Sim. Real
Unprocessed 0.0 0.0 32.5 39.4 1.52 1.65
One-stage deep CASA 9.1 9.8 70.4 72.2 2.51 2.56
Two-stage deep CASA 8.9 10.5 72.4 75.3 2.54 2.64
uPIT Dense-UNet 7.4 8.0 63.2 67.3 2.32 2.42
Conv-TasNet [17] 7.4 7.0 62.6 62.8 2.30 2.26
IRM 9.1 10.5 76.9 82.4 2.88 3.22

4.3. Results and comparisons

We begin with evaluating the systems using the WSJ0 test speak-
ers. Table 1 shows objective evaluation scores in simulated and
real reverberant room conditions using such mixtures. All systems
yield substantial improvement over the unprocessed mixtures. Ex-
cept in the simulated room conditions with the ΔSDR metric, the
two-stage deep CASA produces higher scores than one-stage deep
CASA. These results suggest that addressing speech dereverberation
and speaker separation in two different stages results in better gen-
eralization to unseen speakers and room conditions. The IRM has
significantly better ESTOI and PESQ results than the deep CASA
systems, but when measured by ΔSDR the two-stage deep CASA
system has comparable performance to the IRM. Consistent with
speaker separation results in anechoic conditions [20], uPIT Dense-
Unet and Conv-TasNet scores are worse than the deep CASA meth-
ods across all three objective metrics. uPIT Dense-Unet and Conv-
TasNet have similar performance in simulated RIR conditions, while
the former has significantly better results with real room mixtures.

To examine the quality of sequential organization in the uPIT
Dense-Unet and the deep CASA systems, Fig. 3 plots the rate of
incorrect frame-speaker assignments for these systems in simulated
and recorded RIR test conditions. Frame assignment errors are
shown for frames with significant energy, i.e. those with at least
−20 dB relative to the frame with the maximum energy in the mix-
ture. Apparently, uPIT Dense-Unet has much higher assignment
errors than the deep CASA systems. In general, the sequential
grouping module in two-stage deep CASA has better performance
than one-stage deep CASA. We think that this is because the output
frames from the simultaneous grouping module in two-stage deep
CASA are better separated (and thus less similar), which facilitates
sequential organization.

A simplified version of the proposed deep CASA algorithm was
recently evaluated on normal-hearing (NH) and hearing-impaired
(HI) listeners by Healy et al. [34]. In this speech intelligibility test,
reverberant two-talker mixtures were generated using IEEE speak-
ers [35]. One-hundred and sixty speech mixtures were generated
with T60 = 0.6 s or 0.9 s, and each mixture comprised one male and
one female utterance. Reverberant male and female signals were
mixed at target-to-interferer ratio (TIR) of -5, 0, or 5 dB, with the
male speaker designated as the target. Note that the IEEE sentences
and speakers were not used during training, which used the WSJ0
corpus. Ten HI and ten NH listeners participated in this experiment.
Table 2 shows the average intelligibility scores for NH and HI lis-
teners. As shown in the table, the algorithm benefit is substantial for

Table 2
Mean speech intelligibility (in %) for normal-hearing and
hearing-impaired listeners in unprocessed and processed

(separated) two-talker reverberant mixtures.

TIR T60 (s)
Normal-hearing Hearing-impaired

Unprocessed Processed Unprocessed Processed

-5 dB
0.6 39.7 84.9

- -
0.9 13.4 60.8

0 dB
0.6 68.3 89.5 8.7 81.2
0.9 51.4 84.3 5.2 67.7

5 dB
0.6

- -
25.6 84.2

0.9 13.7 78.8
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Fig. 3: Sequential organization error rates in different systems.

both groups across all test conditions. Particularly large speech in-
telligibility improvements are observed for HI listeners. See [34] for
more details of the listening test. The listening results show that the
deep CASA algorithm is remarkably effective in improving the in-
telligibility of human listeners in reverberant two-talker conditions.

5. CONCLUDING REMARKS

In this paper, we have proposed a two-stage deep CASA algorithm
to address talker-independent speaker separation in reverberant con-
ditions. Our evaluations with reverberant two-talker mixtures indi-
cate that two-stage deep CASA outperforms one-stage deep CASA,
which in turn outperforms Conv-TasNet and Dense-Unet systems.
A major difference between deep CASA and these systems lies in
their frame organization mechanisms. uPIT forces speaker frames
to occur at the same output layer throughout a mixture signal which
limits the flexibility of the system. Deep CASA uses tPIT and pre-
dicts the underlying speaker-frame assignments with high accuracy
at the sequential grouping module. In addition, the deep CASA algo-
rithm can substantially improve the speech intelligibility of normal-
hearing and hearing-impaired listeners. In the future, we plan to
extend two-stage deep CASA to speaker separation involving more
than two speakers and in noisy-reverberant conditions.
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