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Abstract
We study image segmentation on the basis of locally excitatory globally inhibitory oscillator
networks (LEGION), whereby the phases of oscillators encode the binding of pixels.  We
introduce a potential for each oscillator so that only those oscillators with strong connections from
their neighborhood can develop high potentials.  Based on the concept of potential, a solution to
remove noisy regions in an image is proposed for LEGION, so that it suppresses the oscillators
corresponding to noisy regions, without affecting those corresponding to major regions.  We show
analytically that the resulting oscillator network separates an image into several major regions, plus
a background consisting of all noisy regions, and illustrate network properties by computer
simulation.  The network exhibits a natural capacity in segmenting images.  The oscillatory
dynamics leads to a computer algorithm, which is applied successfully to segmenting real gray-
level images.  A number of issues regarding biological plausibility and perceptual organization are
discussed.   We argue that LEGION provides a novel and effective framework for image
segmentation and figure-ground segregation.
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1. Introduction
The segmentation of a visual scene (image) into a set of coherent patterns (objects) is a

fundamental aspect of perception, which underlies a variety of tasks such as image processing,
figure-ground segregation, and automatic target recognition.  Scene segmentation plays a critical
role in the understanding of natural scenes.  Although humans perform it with apparent ease, the
general problem of image segmentation remains unsolved in sensory information processing.  As
the technology of single-object recognition becomes more and more advanced in recent years, the
demand for a solution to image segmentation is increasing since both natural scenes and
manufacturing applications of computer vision are rarely composed of a single object.

Objects appear in a natural scene as the grouping of similar sensory features and the
segregation of dissimilar ones.  Sensory features are generally taken to be local, and in the simplest
case may correspond to single pixels.  To approach the problem of scene segmentation, three basic
issues must be addressed: What are the cues that determine grouping and segregation?  What is the
proper representation for the result of segmentation?  How are the cues used to give rise to
segmentation?

Much is known about sensory cues that are important for segmentation.  In particular, Gestalt
psychology has uncovered a set of principles guiding the grouping process in the visual domain
(Wertheimer 1923; Koffka 1935; Rock and Palmer 1990).  We briefly summarize some of the
most important principles (see also Rock and Palmer 1990):

• Proximity.  The closer the features lie to each other, the easier they are to be grouped into the
same segment.

• Similarity. Features that have similar attributes, such as grayness, color, depth, texture, etc.,
tend to group together.  

• Common fate. Features that have similar temporal behavior tend to group together.  For
instance, a group of features that move coherently (common motion) would form a single object.
Notice that common fate may be regarded as one aspect of similarity.  We list it separately to
emphasize the importance of time as a separate dimension.

• Connnectedness. A uniform, connected region, such as a spot, line, or more extended area,
tends to form a single segment.

• Good continuation. A set of features that form a smooth and continuous curve tend to group
together.

The above principles concern only the qualities within the input image.  Such groupings may
be referred to as the bottom-up process.  Another important aspect has to do with prior knowledge
(memory), i.e., if a set of features belong to the same familiar pattern, they tend to group together.
Prior knowledge can strongly influence the grouping process in a top-down fashion, and it is listed
in the following.

• Prior knowledge.
All of these principles (possibly more) work together to give rise to segmentation.  The

integration of these differing principles by itself can pose a significant computational problem.
In computer vision algorithms for image segmentation, the result of segmentation can be

represented in many ways.  However, it is not a trivial task to represent the outcome of
segmentation in a neural network.  One proposal is naturally derived from the so-called neuron
doctrine (Barlow 1972), where neurons at higher brain areas are assumed to become more selective
and eventually a single neuron represents each single object.  This representation is also called the
grandmother-cell representation.  Multiple objects in a visual scene would be represented by the
coactivation of multiple units at some level of the nervous system.  This representation faces major
theoretical and neurobiological problems (von der Malsburg 1981; Abeles 1991; Singer 1993).
Another proposal relies on temporal correlation to encode the binding (Milner 1974; von der
Malsburg 1981; Abeles 1982).   In particular, the correlation theory of von der Malsburg (1981)
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asserts that an object is represented by the temporal correlation of the firing activities of the
scattered cells that encode different features of the object.  Multiple objects are represented by
different correlated firing patterns that alternate in time, each corresponding to a single object.  

Temporal correlation provides an elegant way to represent the result of segmentation.  A special
form of temporal correlation is oscillatory correlation, where the basic unit is a neural oscillator
(see Terman and Wang 1995; Wang and Terman 1995).  However, this representation does not,
by itself, reveal how segmentation is achieved using Gestalt grouping principles.  As a matter of
fact, despite an extensive body of literature dealing with segmentation using temporal correlation
(starting perhaps from von der Malsburg and Schneider 1986), little progress has been made in
building successful neural systems for image segmentation.  There are two major challenges facing
the oscillatory correlation theory.  The first challenge is how to achieve fast synchronization within
a population of locally coupled oscillators.  Most of the models proposed for achieving phase
synchrony rely on all-to-all connections (see Sect. 2 for more details).  However,  as pointed out
by Sporns et al. (Sporns et al. 1991) and Wang (Wang 1993a), a network with full connections
indiscriminately connects all the oscillators which are activated simultaneously by different objects,
because the network is dimensionless and loses critical information about geometry.  The second
challenge is how to achieve fast desynchronization among different groups of oscillators
representing distinct objects.  This is necessary in order to segment multiple objects simultaneously
presented.  

We have previously proposed a neural network framework to deal with the problem of image
segmentation, called Locally Excitatory Globally Inhibitory Oscillator Networks (LEGION) (Wang
and Terman 1995; Terman and Wang 1995).  Each oscillator is modeled as a standard relaxation
oscillator.  Local excitation is implemented by positive coupling between neighboring oscillators
and global inhibition is realized by a global inhibitor.  LEGION exhibits the mechanism of selective
gating, whereby oscillators stimulated by the same pattern tend to synchronize due to local
excitation and oscillator groups stimulated by different patterns tend to desynchronize due to global
inhibition (Wang and Terman 1995; Terman and Wang 1995).  We have proven that, with the
selective gating mechanism, LEGION rapidly achieves both synchronization within groups of
oscillators that are stimulated by connected regions and desynchronization between different
groups.  In sum, LEGION provides an elegant solution to both challenges outlined above.

In this paper, we study LEGION for segmenting real images.  Before we demonstrate image
segmentation, the original version of LEGION needs to be extended to handle images with many
tiny (noisy) regions.  One such example is shown in Fig. 1, where three objects with a noisy
background form a visual image.  Without extension, LEGION would treat each region, no matter
how small it is, as a separate segment.  Thus, it would lead to many tiny fragments.  We call this
problem fragmentation.  Because different segments alternate in time, a large number of fragments
slow down the segmentation process drastically.  Another and more serious problem is that it is
difficult to choose parameters so that LEGION is able to achieve more than several (5 to 10)
segments (Terman and Wang 1995).  Noisy fragments may, therefore, compete with major image
regions for becoming segments, so that it may not be posssible to extract all of the major segments
from an image.  The problem of fragmentation is solved by introducing a concept of potential for
each oscillator.  The stimulated oscillators that receive significant input from their neighborhoods
will develop high potentials, while other stimulated oscillators will not.  Shortly after they are
stimulated, low-potential oscillators that cannot be recruited by high-potential ones will cease
oscillating.  The extended dynamics is fully analyzed, and the resulting LEGION network is
applied to gray-level images and yields successful segmentation.

In the next section we review prior work relevant to image segmentation and neural networks,
particularly neural models using the representation of oscillatory correlation.  In Section 3, our
model is described in detail, and it is analyzed in Section 4.  In Section 5, computer simulations of
the extended LEGION network are presented.  Section 6 presents the segmentation results on real
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images.  Further discussions concerning our approach are given in Section 7.  Finally, Section 8
concludes our exposition.

2. Related Work
2.1 Image Segmentation Algorithms

Due to its critical importance for computer vision, image segmentation has been studied
extensively.  Many techniques have been invented (for reviews of the subject see Zucker 1976;
Haralick 1979; Lowe 1985; Haralick and Shapiro 1985; Sarkar and Boyer 1993b; Pal and Pal
1993).  Broadly speaking, there are three categories of algorithms: pixel classification, edge-based
organization, or region-based segmentation.  A simple classification technique is thresholding: a
pixel is assigned a specific label if some measure of the pixel passes a certain threshold.  This idea
can be extended to a complex form including multiple thresholds which are determined by pixel
histograms (Kohler 1981).  This way, a region of pixels is grouped together if its pixels fall
between two threshold values.  Some learning techniques may be introduced to make classification
more flexible (see Uchiyama and Arbib 1994, for example).  Edge-based techniques generally start
with an edge-detection algorithm, which is followed by grouping edge elements into rectilinear or
curvilinear lines.  These lines are then grouped into boundaries that can be used to segment images
into various regions (see, for example, Geman et al. 1990; Sarkar and Boyer 1993a; Foresti et al.
1994).  Finally, region-based techniques operate directly on regions.  A classical method is region
growing/splitting (or split-and-merge, see Horowitz and Pavlidis 1976; Zucker 1976; Pavlidis
1977; Adams and Bischof 1994), where iterative steps are taken to grow (split) pixels into a
connected region if all the pixels in the region satisfy some conditions.  One such condition is that
the distance between the minimum and the maximum pixel values is within a pre-defined range.
Most of the techniques use one or more Gestalt grouping principles that emphasize relationships
among object components (Mohan and Nevatia 1989; Sarkar and Boyer 1993b).

One of the apparent deficits with these algorithms is their iterative (serial) nature (Liou et al.
1991).  There are some recent algorithms which are partially parallel.  In Sha'ashua and Ullman
(1988), a globally consistent curve structure is detected using a locally connected network.  In Liou
et al. (1991), a parallel technique is used to search a partition space.  In Mohan and Nevatia
(1992), part of the segmentation process is performed by a neural network for cost optimization.
A similar approach is taken by Manjunath and Chellappa (1993), who use a competitive network
for reducing noise and illumination effects.  A parallelizable inference network based on Baysian
statistics is used by Sarkar and Boyer for detecting a set of structures, such as ellipses, circles, and
ribbons (Sarkar and Boyer 1993a).

Most of these techniques rely on domain-specific heuristics to perform segmentation, and no
unified computational framework exists to explain the general phenomenon of scene segmentation
(Haralick and Shapiro 1985).  The problem of scene segmentation is computationally hard (Gurari
and Wechsler 1982), and largely regarded unsolved.

2.2 Neural Network Efforts
Neural networks have proven to be a successful approach to pattern recognition (Schalkoff

1992; Wang 1993b).  Unfortunately, little work has been devoted to scene segmentation which is
generally regarded as part of preprocessing (often meaning manual segmentation).  Scene
segmentation is a particularly challenging task for neural networks, partly because traditional neural
networks lack the representational power for encoding multiple objects simultaneously.  The two
most popular network architectures, namely multilayer perceptrons and associative memories, both
require learning or memory of patterns first, whereas scene segmentation, except that based on
prior knowledge, seems to be an innate and immediate process, thus difficult to be formulated in
these architectures.
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Sejnowski and Hinton proposed a scheme for separating a figure from a background using the
Bolzmann machine algorithm (Sejnowski and Hinton 1987).  Their method may reverse the figure
and the background by shifting top-down input (they call it attention).  Mozer et al. (1992)
presented an interesting method of using multilayer perceptrons for scene segmentation, in which
each unit is extended to code both intensity and phase.  Grossberg and Wyse (1991) proposed a
model for image segmentation, based on the contour detection model of Grossberg and Mingolla
(1985).  The model uses filling-in (dye-spreading) to restore regions from closed contours.
Computer simulations implementing some of the ideas proposed in Grossberg and Mingolla
(Grossberg and Mingolla 1985) have been presented by Gove et al. (in press).  However, all of
these methods were tested only on small synthetic images, and it is not clear how they can be
extended to handle real images.

Since neural networks can be readily applied to classification tasks, they are applicable to
segmentation based on pixel classification.  In particular, Kohonen's self-organizing maps have
been used for segmentation (Kohonen 1995).  Koh et al. (1995) have developed a system based on
self-organizing maps to segment range images.  Raghu et al. (1995) have studied texture
classification using a self-organizing map followed by a multilayer perceptron.  A primary
drawback of these methods is that the number of segments (objects) is assumed to be known a
priori .   

Because temporal (oscillatory) correlation offers an elegant way of representing multiple
objects in neural networks (von der Malsburg and Schneider 1986), most of the neural network
efforts on image segmentation have centered around this theme. In particular, the discovery of
synchronous oscillations in the visual cortex has triggered much interest in exploring oscillatory
correlation to solve the problems of segmentation and figure-ground segregation (Wang et al.
1990; Baldi and Meir 1990; Sompolinsky et al. 1991; Sporns et al. 1991; von der Malsburg and
Buhmann 1992; Hummel and Biederman 1992; Murata and Shimizu 1993; Schillen and König
1994).  One type of model uses all-to-all connections to reach synchronization (Wang et al. 1990;
Baldi and Meir 1990; Sompolinsky et al. 1991; von der Malsburg and Buhmann 1992).  As
explained in Sect. 1, these models cannot extend very far in solving the segmentation problem
because fundamental information concerning the geometry among sensory features is lost.
Another type of model uses lateral connections to reach synchrony (Sporns et al. 1991; Hummel
and Biederman 1992; Murata and Shimizu 1993;  Schillen and König 1994).  Unfortunately, it is
unclear to what extent these oscillator networks can synchronize on the basis of local connectivity
since no analysis is given and only simulation results on small networks are provided.  Moreover,
recent insights into the contrasting behavior between sinusoidal and relaxation oscillators makes
clear that sinusoid-typed oscillators, which encompass most of the oscillator models used, have
severe limitations to support fast synchronization (Wang 1995; Terman and Wang 1995; Somers
and Kopell in press).  In fact, in all of the above models, nothing close to a real image has ever
been used for testing these models.

3. Model Description

In this section, we provide the precise definition of our model.  In Sect. 3.1 we describe the
model in detail, which will be studied in this paper.  In Sect. 3.2 we give some alternative
definitions that can be used without altering model dynamics.

3.1 Model Definition
The building block of LEGION, a single oscillator i, is defined as a feedback loop between an

excitatory unit xi and an inhibitory unit yi:

′xi  = 3xi – xi
3 + 2 – yi + Ii H(pi + exp(-α t) – θ) + Si + ρ (1a)
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′yi  = ε (γ (1 + tanh(xi /β)) – yi) (1b)

Here H stands for the Heaviside step function, which is defined as H(v) = 1 if v ≥ 0 and H(v) = 0
if v < 0.  Ii represent external stimulation which is assumed to be applied at time 0, and Si denotes

the coupling from other oscillators in the network.  ρ denotes the amplitude of Gaussian noise, the

mean of which is set to -ρ.  The negative mean is used to reduce the chance of self-generating
oscillations, which will become clear in the next paragraph.  The noise term is introduced for two
purposes.  The first one is obvious: to test the robustness of the system.  The second one, perhaps
more important, is to play an active role in separating different input patterns (for more discussions
see Sect. 4 and Terman and Wang 1995).  

The parameter ε is a small positive number.   Hence (1), without any coupling or noise and
with constant stimulation, corresponds to a standard relaxation oscillator.  The x-nullcline of (1) is
a cubic curve, while the y-nullcline is a sigmoid function.   If I > 0 and H = 1, these curves
intersect along the middle branch of the cubic when β is small.  In this case, we call the oscillator

enabled (see Fig. 2A).  It produces a stable periodic orbit for all sufficiently small values of ε.  The
periodic solution alternates between silent and active phases of near steady-state behavior.  As
shown in Fig. 2A, the silent and the active phases correspond to the left L  and the right R
branches of the cubic, respectively.  The transitions between the two phases occur rapidly (thus
referred to as jumping).  The parameter γ  is used to control the ratio of the times that the solution

spends in these two phases.  For a larger value of γ, the solution spends a shorter time in the active
phase.  If I ≤ 0 and H = 1, the nullclines of (1) intersect at a stable fixed point along the left branch
of the cubic (see Fig. 2B).  In this case (1) produces no periodic orbit, and the oscillator is referred
to as excitable, indicating the oscillator has not yet been but can be excited by stimulation.  An
excitable oscillator may be oscillatory if it receives, through the term S, large enough coupling
from other oscillators.  Because of this dependency on external stimulation, the oscillations are
stimulus-dependent.  We say that the oscillator is stimulated if I  > 0, and unstimulated if I  ≤ 0.
The parameter β specifies the steepness of the sigmoid function, and is chosen to be small.  The
oscillator model (1) may be interpreted as a model for the spiking behavior of a single neuron, the
envelope of a bursting neuron, or a mean field approximation to a network of excitatory and
inhibitory binary neurons (Buhmann 1989; Sporns et al. 1989).

The primary difference between (1) and the model in Terman and Wang (1995) is the
introduction of the Heaviside function in which α > 0 and 0 < θ < 1.  The parameter α is chosen to

be O(ε) so that the exponential function in (1a) decays on a slow time scale.  It is the Heaviside
term which allows the network to distinguish between major blocks and noisy fragments.  The
basic idea is that a major block must contain at least one oscillator, denoted as a leader, which lies
in the center of a large homogeneous region.  This oscillator will be able to receive large lateral
excitation from its neighborhood.  A noisy fragment does not contain such an oscillator.  The
variable pi in (1a) determines whether or not an oscillator is a leader.  It is referred to as the
potential of the oscillator i.  We assume that pi satisfies the differential equation:

′pi  = λ (1 – pi) H[ ∑
k∈ N1(i)

   Tik H(xk – θx) – θp] – µ pi (2)

Here λ > 0, Tik is the permanent connection weight (explained later) from oscillator k to i, and
N1(i) is some neighborhood of i, called the potential neighborhood.  Note that the outer Heaviside
function in (2) equals 1 if the weighted sum oscillator i receives from N1(i) exceeds the threshold
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θp.  Hence, if this weighted sum exceeds the threshold θp, pi approaches 1.  If this weighted sum

is below θp, pi relaxes to 0 on a time scale determined by µ, which is chosen to be O(ε) resulting

in a slow time scale.  It follows that pi can only exceed the threshold θ in (1a) if i is able to receive
a large enough lateral excitation from its potential neighborhood.

In order to develop a high potential, it is not sufficient that a large number of neighbors of i are
oscillatory.  They must also have a certain degree of synchrony in their oscillations.  In particular,
they must all exceed the threshold θx at the same time in their oscillations.  Although (2) appears
complicated, it should be clear by now that the equation and the idea behind it are quite
straightforward.

The purpose of introducing the potential is that an oscillator with a high potential can lead the
activation of an oscillator block corresponding to an object.  Though it is not needed that a high-
potential oscillator be stimulated, it must be stimulated in order to play the role of leading an
oscillator block; otherwise, the oscillator will stay excitable according to (1).  Thus, we require that
a leader be always stimulated.  More formally, an oscillator i is defined as a leader if pi ≥ θ and i is
stimulated.  The potential of every oscillator is initialized to zero.

The network we study for image segmentation is two dimensional.  Each oscillator has a
permanent connection with the oscillators in its potential neighborhood.  Figure 3 shows the
simplest case of permanent connectivity, where an oscillator is connected only with its four
immediate neighbors except on the boundaries where no wrap-around is used.  Such connectivity
forms a 2-D grid.  In general, however, N1(i) should be larger, and the permanent connection
weights should take on the form of a Gaussian distribution, i.e., the weight between two
oscillators should fall off exponentially.    

The coupling term Si in (1) is given by

Si = ∑
k∈ N2(i)

   Wik H(xk – θx) – Wz H(z – θxz)     (3)

where Wik is the dynamic connection weight from k to i, and N2(i) is another set of neighboring
oscillators of i, called the coupling neighborhood.  Unlike the potential neighborhood, the coupling
neighborhood affects the activity of an oscillator directly.  

Why do we need two neighborhoods?  N1(i) determines whether i can become a leader, while
N2(i) determines which oscillators can affect the activity of i.  In general, we want N1(i) to be
relatively large, so that only a sizable, homogeneous region can produce leaders.  Figure 4
illustrates this point.  With the size of N1(i) in Fig. 4, it is easy to select θp so that only the three
major regions can produce leaders.  Unlike the oscillators lying in the three major regions, the
oscillator whose N1(i) lies in the upper-left part of the figure, for example, has much fewer
stimulated oscillators within N1(i).  Such a choice of N1(i) is desirable since noisy regions are not
supposed to produce leaders.  On the other hand, if N2(i) is the same as N1(i), then it is difficult to
distinguish, for example, the two oscillators in Fig. 4, one lying inside the tree-like object but near
the border and another one lying outside of the object but also near the border, in terms of which
one should join the tree-like segment.  This troubling situation can be resolved by using a smaller
N2(i).  As illustrated in the figure, the choice of a small N2(i) makes it clear which of the two
oscillators lies inside the tree-like object.  This analysis leads to our following assumption

N2(i) ⊆  N1(i)
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Now let us explain the use of permanent and dynamic connection weights.  To facilitate
synchrony and desynchrony (more discussions later), we assume that there are two kinds of
synaptic weight (link) between two oscillators.  The permanent weight, or Tik, embodies the
hardwired structure of a network, and does not change1.  On the other hand, the dynamic weight,
or Wik, rapidly changes.  Wik is formed on the basis of Tik according to the mechanism of
dynamic normalization (Wang 1995).  Dynamic normalization was previously defined as a two-
step procedure: First update dynamic links and then normalization (Wang 1995; Terman and Wang
1995).  There are different ways to realize such normalization.  In the following, we give one way
to implement dynamic normalization in differential equations,

′ui  = η (1 – ui)Ii  – ν ui (4a)

′Wik  = WT Tik ui uk  – Wik ∑
j∈ N2(i)

 
 Tij  ui uj (4b)

The function ui measures whether oscillator i is stimulated, and it is initialized to 0.  The parameter

η determines the rate of updating ui, and it is chosen so that η is O(1) with respect to ε.  When Ii >

0, ui → 1 quickly; otherwise when Ii = 0, ui = 0.  For this equation we assume Ii = 0 if oscillator i
is unstimulated (otherwise it is easy to enforce this by applying a step function on I i).  The

parameter ν is chosen to be O(ε), so that ui slowly relaxes back to 0 after the external stimulus is
withdrawn.

We assume that Wik are initialized to 0 for all i and k.  It is easy to see that if oscillator i is
unstimulated, Wik remains to be 0 for all k, and if oscillator k is unstimulated Wik = 0 for all i .

Otherwise, if ui = 1 and uk = 1 for at least one k ∈  N2(i), then at equilibrium,

Wik = 
WTTik ui uk

∑
j∈ N2(i)

 Tij  ui uj
 and  ∑

k∈ N2(i)

  Wik  = WT

Thus the total dynamic weights converging to a single oscillator equals WT, which gives the
desired normalization.  Notice that dynamic weights, not permanent weights, participate in
determining Si (see (3)).  Weight normalization of this type is commonly used in competitive
learning networks (von der Malsburg 1973; Goodhill and Barrow 1994).  Notice that Wik can be
properly set up in one step at the beginning based on external stimulation, which should be useful
for engineering applications.

It should be mentioned that weight normalization is not a necessary condition for the selective
gating mechanism to work.  This conclusion has been established previously (Terman and Wang
1995).  With normalized weights, however, the quality of synchronization within each oscillator
block is better (Terman and Wang 1995).  In Sect. 3.2, we give an alternative system definition

                                                
1 To be more precise, a permanent weight may reflect the traces of long-term memory and thus may change on a
very slow time scale compared to a dynamic link.
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without weight normalization.  Indeed, in an algorithmic version of LEGION to be introduced in
Sect. 6 for handling gray-level images, no weight normalization is employed.

In (3), Wz is the weight of inhibition from the global inhibitor z, whose activity, also denoted
by z, is defined as

′z  = φ (σ∞ – z)                       (5)

where σ∞ = 1 if xi ≥ θzx for at least one oscillator i, and σ∞ = 0 otherwise.  Hence θzx represents
another threshold, and it is chosen so that only an oscillator jumping to the active phase can trigger
the global inhibitor.  If σ∞ equals 1, z → 1.  The parameter φ represents the rate at which the
inhibitor reacts to the stimulation from the oscillator network.

The introduction of a potential provides a solution to the problem of fragmentation.  There is an
initial period when the term exp(α t) exceeds the threshold θ.  During this period, every stimulated
oscillator is enabled.  This allows the leaders to receive sufficient lateral excitation so that they can
achieve a high potential.  After this initial period, the only oscillators which can jump up without
stimulation from other oscillators are the leaders.  When a leader jumps up, it spreads its activity to
other oscillators within its own block, so they can also jump up.  These oscillators are referred to
as followers.  Oscillators not in this block are prevented from jumping up, because of the global
inhibitor.  The oscillators which belong to the noisy fragments will not be able to jump up beyond
the initial period, because these oscillators will not be able to develop a sufficiently high potential
by themselves and they cannot be recruited by leaders.  These oscillators are referred to as loners.

In order to be oscillatory beyond the initial time period, an oscillator must either be a leader or a
follower.  This indicates that the oscillator is not part of a noisy fragment, because noisy fragments
in an image tend to be small and isolated (see Fig. 4).  The collection of all noisy regions whose
corresponding oscillators are loners is called the background, which is not a uniform region and
generally discontiguous.   

 The global inhibitor plays the same role of desynchronization as it did before (Terman and
Wang 1995; Wang and Terman 1995).  Thus, this extended LEGION network can still be
characterized as local cooperation via excitatory coupling among neighboring oscillators and global
competition via the global inhibitor.  See Terman and Wang (1995) and Wang and Terman (1995)
for more discussions on other aspects of this model.

3.2 Alternative Definitions
There are alternative ways of defining the model without affecting its essential dynamics.  Here

we give some alternatives.  First, the product of external stimulation and the Heaviside function in
(1a) can be replaced by a sum,

′xi  = 3xi – xi
3 + 1 – yi + Ii  + H(pi + exp(-α t) – θ) + Si + ρ (3.1)

In this case, we require that an oscillator be oscillatory if and only if two of the three terms: I , H,
and S, are positive.  This requirement can be implemented by changing the constant 2 in (1a) to 1
in the above equation.  The same analysis as in Sect. 4 will apply to the resulting model.

Another possible change to (1a) is more substantial.  Again, we change (1a) to the following,
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′xi  = 3xi – xi
3 + 2 – yi + Ii  + Wp H(pi + exp(-α t) – θ) + WT H(Si – θS) – Wz H(z – θxz) + ρ

(3.2)

Here, Wp and θS are new parameters, and WT  and Wz are as defined in (4b) and (3), respectively.
In addition, the z term in (3) is removed from the definition of Si.  More importantly, dynamic
normalization of connection strengths in (4) is not needed in this modified model, because the
second Heaviside function in (3.2) plays the role of normalizing the overall coupling from other
oscillators.  Because of this, the analysis in Sect. 4 will apply to the resulting model in the same
manner.

We choose not to include (3.2) in the main model described in Sect. 3.1 because the quality of
synchrony within each block and the flexibility for choosing parameters seem somewhat lessened.
However, due to its relative simplicity, (3.2) may be more desirable for engineering applications.
More discussions will be given in Sect. 5, along with some simulation results.

In (1a), there is an explicit use of time t in the exponential function.  Explicit time makes it
difficult to segment a sequence of images, because every time a new image is presented, t has to be
reset to 0.  The ability to deal with time-varying images is necessary for perceiving motion patterns
(see "common fate" in Sect. 1), and it is crucial for real-time segmentation of nonstationary scenes.
We can, however, eliminate explicit time by the following modification to (1a)2

′xi  = 3xi – xi
3 + 2 – yi + Ii H(pi + ′qi  – θ) + Si + ρ (3.3)

Where qi is defined as

′qi  = -α qi + I i(t)

Here α is a decay parameter.  We assume for simplicity that Ii(t) is a step function that suddenly
turns on when external input stimulates oscillator i.  With qi initialized to 0, ′qi  equals 1 when Ii(t)
turns on, and ′qi  decays to 0 exponentially when Ii(t) turns off, thus playing the same role as the
exponential function in (1a).

As will be clear in Section 4, the precise nonlinear forms of the x-nullcline and the y-nullcline
in (1) are not important for the system to work.  The specific cubic and sigmoid functions (see Fig.
2) are used in the model because of their simplicity.

4. Analysis
4.1 Preliminaries

Before stating the main result, it will be necessary to make some definitions and introduce
some notation.  Let ei be any oscillator.  A block is defined to be a maximally connected set of
stimulated oscillators.  This definition of a block implies that N1(i) is assumed to contain only
immediate neighbors of i.  Suppose that the oscillator ei belongs to the block B.  According to (2),

ei is a leader if ∑k∈ N1(i)∩B Tik > θp.  That is, the maximum stimulus that ei can receive from

                                                
2 We thank P. Linsay for this suggestion.
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permanent connections with oscillators in N1(i) ∩ B  is above the threshold θp.  A major block is
any block that contains at least one leader, and a minor block is a block with no leader.

The analysis will take extensive advantage of the singular nature of solutions to the model.  We
dissect the solutions into fast and slow components using the small parameter ε.  This allows us to

construct singular solutions of (1)-(5) in which ε is formally set to zero.  Here we briefly review
the singular perturbation construction of a single oscillator.  This will help motivate the notation
and more complicated constructions which follow.

Consider the relaxation oscillator

′x  = f(x, y) + I
(4.1)

′y  = ε g(x, y)

where  f(x, y) ≡ 3x – x3 + 2 – y  and  g(x, y) ≡ γ (1 + tanh(x/β)) – y.  If I > 0 and β is sufficiently

small, then the x-nullcline C  ≡ {(x, y): f(x, y) + I = 0} intersects the y-nullcline H  ≡ {( x, y): g(x,
y) = 0} at a unique point which lies on the middle branch of C , and (4.1) gives rise to a stable

periodic solution for all ε > 0.  The singular solution of (4.1) is shown in Fig. 2A.  It consists of
four pieces.  The pieces which lie on the left branch L  and the right branch R  of C  correspond to
the silent and active phases, respectively.  The other two pieces connect L  with R . The piece
which connects the left knee LK of L  with R  corresponds to when the singular solution jumps
up.  The piece which connects the right knee RK of R  with L  corresponds to when the singular
solution jumps down.

If I ≤ 0, then the nullclines intersect at a point which lies on the left branch of C . This is a
stable fixed point of (4.1), and the system is excitable.  This situation is illustrated in Fig. 2B.

In the analysis that follows, we construct singular solutions for more general networks.  Each
oscillator will lie on the left or the right branch of some cubic, or will be in the process of jumping
up or jumping down between such branches.  The relevant cubic is determined by the level of
stimulus which the oscillator receives.  It will be convenient to introduce the following notations.
Referring to (1a) and (3), we set

                                

SI
i  = Ii H(pi + exp(-α t) – θ);    SE

i  = ∑
k∈ N

2
(i)

   Wik H(xk – θx),    Sz = Wz H(z – θxz)

Let C(SI, SE, SZ) ≡ {(x, y): f(x, y) + SI + SE – SZ = 0} and denote the left and right branches of
this cubic by L(SI, SE, SZ) and R(SI, SE, SZ), respectively.  Denote the left and the right knees of
this cubic by LK(SI, SE, SZ) and RK(SI, SE, SZ), respectively.

We will assume that the parameter Ii takes one of two values.  In other words, the input image
is assumed to be a binary one.  This assumption simplifies the following analysis, but, as
discussed in Sect. 6, the analysis can be extended to gray-level images.  If the oscillator ei is

stimulated, then Ii = I+ > 0, while if ei is unstimulated, then Ii = I– < 0.  

Assume that the left branch of L  ≡ L(I+, 0, 0) is given by L  ≡ {( x, y): x = h(y)}, and
consider the scalar equation
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′y  = g(h(y), y) (4.2)                

This equation determines the evolution of singular solutions during the silent phase.  For (x, y) ∈
L , let ψ(y, t) be the solution of (4.2) such that ψ(y, 0) = y.  For y1 < y2, define τ(y1, y2) by

ψ(y2, τ(y1, y2)) = y1.  That is, τ(y1, y2) is the time of excursion from y2 to y1.

4.2 Main Result
We now formally state our main result.  It basically states that it is possible to choose the

parameters so that the network quickly evolves to a state in which only the oscillators belonging to
a major block oscillate.  All of the oscillators within a major block oscillate in synchrony, while
distinct major blocks oscillate out of phase from each other.  The unstimulated oscillators never
oscillate, and after an initial transient period, loners do not oscillate either.

The following theorem is concerned with singular solutions of (1)-(5) in which ε is formally
set to zero.  The precise definition of a singular solution is very similar to that given in Terman and
Wang (1995).  In the theorem t is considered to be the slow time.  Using analysis similar to that
given in Terman and Wang (1995, Section 4.5), one can show that the following theorem extends
to solutions of (1)-(5) if ε  > 0 is sufficiently small.  We will ignore the role of noise in the proof of
the theorem.  While this simplifies the proof, a small amount of Gaussian noise not only does not
disrupt oscillatory dynamics but also aids the process of separating oscillator blocks, as illustrated
in the numerical simulations of Section 5.  

Theorem: Fix M > 0.  Assume that each oscillator begins, when t = 0, on L .  Moreover, if

(x1, y1)  and (x2, y2)  are distinct oscillators then y1 ≠ y2, and if y1 < y2, then τ(y1, y2) < M.
There exists T > 0 such that if the parameters in (1)-(5) are chosen appropriately, then the
following hold:

A) Let B  be any major block.  For each t > 0, either every oscillator in B  is in a silent phase,
in an active phase, or every oscillator in B  is jumping up or jumping down.

B) If t  > T, then at most one block can be in the active phase.
C) Every loner is in the silent phase for every t > T.
D) Every unstimulated oscillator is in the silent phase for every t > 0.

Remarks: a) The proof demonstrates that it is possible to choose the parameters so that the
time T corresponds to no more than NM + 1 cycles where NM is equal to the number of major
blocks.

b) We assume that every oscillator begins in the silent phase. The choice of parameters depends
on the constant M which measures how close the oscillators begin to each other. Our numerical
simulations indicate that these restrictions are not necessary. For the numerical simulations, we use
random initial conditions.

c) The proof is very constructive, and gives rather precise estimates on how the parameters
need to be chosen. We comment on this later after the analysis.

The proof of the Theorem is carried out in a number of steps. We first prove a weaker result in
which T may correspond to more than NM + 1 cycles.  For this weaker result, we make very few
restrictions on the parameters.  We then prove the stronger result by choosing the parameters more
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carefully. The approach we take is very similar to the proofs given in Terman and Wang (1995).
We will not give all of the details of the analysis here whenever an argument is identical to that
given in Terman and Wang (1995).

4.3 Unstimulated Oscillators
We require that unstimulated oscillators never jump up to the active phase.  This will be the

case if certain conditions on the parameters are satisfied.  Recall that if ei is an unstimulated

oscillator, then Ii = I– < 0.  The maximal input that ei can receive due to coupling from its
neighbors is WT.  Then we require that

I  + WT  < 0 (4.3)

From the discussion in the preceding section, this implies that the cubic corresponding to ei always
has a fixed point on its left branch.  This cubic may change, because the input which ei receives
may change.  However, ei will always tend towards the fixed point on the left branch which it lies
on.

4.4 Synchronization of Oscillators within a Major Block

Let B  be any major block.  We demonstrate that if all of the oscillators in B  begin sufficiently
close to each other, then they will synchronize in the following sense: at any given (slow) time, all
of the oscillators in B  are either in their silent phase, in their active phase, jumping up, or jumping
down.  Moreover, the maximum distance between any two leaders in B  or any two followers in B
approaches zero at an exponential rate as time approaches infinity.  This will only be true for
appropriate choices of the parameters, and the analysis will clarify how to choose the parameters.
For this analysis, there may or may not exist other oscillators besides those in B.

The oscillators in B  begin in the silent phase on the left branch of L(I+, 0, 0).  Here we need

the term exp(-α t) in (1a).  This guarantees that every stimulated oscillator is initially enabled.  If α
is sufficiently small, then the oscillators in B  remain enabled for at least the first cycle.  Hence
these oscillators must eventually jump up, and there are two ways in which this can happen.  Here
we briefly describe both mechanisms.  For this, it will be necessary to make the following
definition.  Let ei and ej be any stimulated oscillators in B.  We say that ej is a coupling neighbor of

ei if j ∈ N2(i) ∩ B .  Referring to (3), this implies that the coupling neighbors of ei are those
oscillators in the same block as ei which receive input from ei whenever ei is active.

The first mechanism by which the oscillators in B  may jump up is called fast threshold
modulation (Somers and Kopell 1993).  One oscillator, say ei, in B  reaches the left knee of L(I+,

0, 0) and then jumps up to the active phase.  When xi crosses θx, ei 's coupling neighbors feel
excitation.  This has the effect of raising the cubics corresponding to these neighbors.  If, at this
time, the neighbors lie below the left knee of their new cubic, then they must jump up to the active
phase.  In Terman and Wang (1995), we prove that this will be the case if the parameters are
chosen appropriately.  We must be careful in choosing the parameters because ei also turns on
inhibition; this has the effect of lowering the cubics.  We assume that

minj∈ N1(i)∩B { Wji } > WZ (4.4)
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so that the net effect of both excitation and inhibition is to raise an oscillator's cubic.  Once ei 's
coupling neighbors jump up, then they will cause their coupling neighbors to jump up by the same
mechanism.  Continuing in this way, every oscillator in B  will jump up at the same (slow) time.

The second mechanism by which that the oscillators in B  may jump up is often referred to as
rebound (Perkel and Mulloney 1974).  Suppose that the oscillators in B  are in their silent phase
and some other oscillators are active.  Then the oscillators in B  lie on L(I+, 0, Wz).  When the
active oscillators jump down, they turn off inhibition so that the oscillators in B  jump towards the
cubic L(I+ , 0, 0).  If, at this time, an oscillator in B  lies below LK(I+ , 0, 0), then that oscillator
must jump up to the active phase.  If this is the case, then all of the oscillators in B  will jump up
because of fast threshold modulation.

We now consider what happens when all of the oscillators in B  lie in their active phase.  We
still assume that this is the first cycle so that every oscillator in B  is still enabled.  Our assumption
of normalized weights implies that each oscillator in B  receives the same input WT from its
coupling neighbors.  This is because the equations (4a) and (4b) respond on the fast time scale.
Hence, during the active phase each oscillator in B  lies on R(I+, WT, WZ).  This active phase
continues until one of the oscillators, say ek, in B  reaches its right knee and then jumps down to
the silent phase.  We claim that because of fast threshold modulation, this causes the other
oscillators in B  to jump down.  When xk crosses θx, the excitation to ek's coupling neighbors is
reduced.  This has the effect of lowering the cubics corresponding to ek's coupling neighbors.  The
analysis in Terman and Wang (1995) demonstrates that if the parameters are chosen appropriately,
then these neighbors must lie above the right knees of their new cubics.  Hence, these neighbors
must jump down.  In a similar way, the coupling neighbors of ek's coupling neighbors must jump
down and so on until all of the oscillators in B  jump down to the silent phase.

We have shown that during the first cycle, all of the oscillators in B  jump up and jump down
together.  We now show why this is true for every cycle.  The leaders will, in fact, continue to
behave in this manner.  This is because each time the oscillators in B  jump up, the leaders in B
receive enough input from their neighbors in N1 ∩ B  so that they achieve a high potential.  Each
leader, therefore, remains enabled for at least the next cycle.  It follows that every leader lies on
either L(I+, 0, 0) or L(I+, 0, WZ) during the silent phase and on R(I+, WT, WZ) during the active
phase.

The followers in B , however, must become excitable.  This is because the followers must

eventually have low potential so that the term  pi + exp(-α t)  in (1a) must fall below the threshold

θ.  This is not completely obvious since while the followers are in the active phase, there may be
other oscillators besides those in B  which lie in the active phase.  Hence, the followers in B  may
achieve a high potential by receiving input from other oscillators not in B.  In the next subsection,
however, we will show that eventually no other oscillator besides those in B  will jump up while
the oscillators in B  are active.  Since the followers in B  can then only receive input from other

oscillators in B , their potential must decay to zero at a rate determined by µ.

The followers become excitable when their potential falls below θ.  They then lie on either L(0,
0, 0) or L(0, 0, WZ) during the silent phase and on R(0, WT, WZ) during the active phase.  Since
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the y-nullcline intersects L(0, 0, 0) along its left branch, the followers are never able to reach their
left knee.  Hence, one difference between the first and later cycles is that after the followers
become excitable, the silent phase cannot terminate by a follower reaching a left knee and jumping
up.  The silent phase can only terminate if a leader in B  jumps up either because of its reaching a
left knee or because of rebound.  All of the oscillators in B  still jump up together, however,
because of fast threshold modulation.  Another difference is that after the followers become
excitable, they lie on the right branch of a different cubic than the leaders during the active phase.  
The same considerations as before, however, show that all of the oscillators in B  jump down at
the same (slow) time because of fast threshold modulation.

It is not hard to show that if two oscillators lie on the same branch of the same cubic, then the
distance between them must decrease at an exponential rate.  Since the followers or leaders always
lie on the same left or right branch, the maximal distance between the followers or leaders must
decrease at an exponential rate.  We note that there is also a compression of the "time metric"
(LoFaro 1994) between oscillators when they jump up from the silent to the active phase.  This is
because the rate at which the oscillators move along the left and right branches is determined by the
nonlinear function g(x, y).  If the oscillators lie near the left knee, and this knee is close to the y-
nullcline, then the g values of the oscillators must be small.  In particular, even though the
Euclidean distance between two oscillators near the left knee may appear to be small, the actual
time it takes for one oscillator to reach the other may be large.  Immediately after the oscillators
jump up to the right branch, the Euclidean distance between them does not change.  However, the
rate at which they evolve along the right branch is now determined by the values of g(x, y) along
the right branch.  The oscillators are now much further from the y-nullcline than they were before
the jump.  Hence, the time it takes the trailing oscillator to reach the leading one is much shorter
after the jump.  This compression in the time metric can be used to prove that both the followers
and leaders must synchronize at an exponential rate.  Note that while the oscillators evolve along
the same branch, the time metric remains invariant, although the Euclidean metric must decrease.

4.5 Separation of Blocks
In the preceding section, we demonstrated that the oscillators within each block remain

synchronized in the sense that they jump up and jump down together.  This analysis applies to all
blocks, including minor ones, as long as they continue to oscillate.  Here, we show that even if the
blocks are initially close to each other, they eventually separate.  By this we mean that after some
transient period there can be at most one major block in the active phase at any particular time, and
these blocks take turns to jump up to the active phase.  This is what is meant by desynchronization
of the blocks.  The analysis is very similar to that in Terman and Wang (1995), and we will only
sketch the proof of this result.

Recall that there are two mechanisms by which a block B  can jump up to the active phase.  The
first is if one of the oscillators in B reaches its left knee, jumps up, and then the remaining
oscillators in B  jump up because of fast threshold modulation.  We claim that this mechanism will
cause B  to separate from the remaining blocks.  That is, no other oscillator besides those in B  will
be able to jump up during this active phase or any other later time during which B  is in the active

phase.  The reason why this is true is because once one oscillator in B  crosses θzx, the global

inhibitor is turned on.  This lowers the cubic corresponding to an oscillator not in B  to either C(I+,
0, Wz), if the oscillator is enabled, or to C(0, 0, Wz), if the oscillator is excitable.  We assume that

I+ – WZ < 0 (4.5)                   
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This implies that the y-nullcline intersects both of these cubics at a point on the left branch of the
cubic.  The oscillators not in B  must then tend towards one of these fixed points while B  is in the
active phase and will not be able to jump up until B  returns to the silent phase.  This process of
separation of the blocks is referred to as selective gating in Terman and Wang (1995).

The second mechanism by which the oscillators in B  can jump up is through rebound.  That
is, oscillators in B  jump up when other oscillators not in B  jump down and release the global
inhibition.  It is perfectly possible that other oscillators, besides those in B , will jump up at this
time.  This is the major difficulty in proving that the blocks must eventually separate from each
other.

In Terman and Wang (1995), we prove that during each cycle at least one new block jumps up
because some oscillator in that block reaches its left knee, i.e. not by rebound.  From the previous
discussion, this implies that until the system reaches full separation of blocks, at least one new
block separates itself from the remaining blocks during each cycle.  Hence, if NB is the total
number of blocks (major or minor), then all of the blocks are separated from each other after NB
cycles.  Here we include the minor blocks, because unless further restrictions are placed on the
parameters, they may be oscillatory for up to NB cycles before they are no longer able to jump up.

For the proof of this result, we require that the time each oscillator spends in the active phase is
small compared to the time it spends in the silent phase.  More precisely, let τS and τA equal to the
times that the singular solution of (4.1) spends in the silent and active phases, respectively.  We
require that τS > NBτA.  It is not hard to see that this will be the case if the parameter γ  is

sufficiently large.  This can also be achieved by choosing I+ so that the left knee of an uncoupled
oscillator is close to the y-nullcline.  This condition guarantees that there must be some time during
each cycle when every oscillator lies in the silent phase on the left branch of C .  Hence, the next
oscillator which jumps up must do so by reaching a left knee.  The block containing this oscillator
must then separate itself from the remaining blocks.

We must still show that once a block, say B , separates itself from the remaining blocks, it
must always remain bounded away from the other blocks.  This is proved in Terman and Wang
(1995, Theorem 4.3.1).  The basic idea of the proof is the following.  First consider a time, say t0,
when B  jumps down to the silent phase after being in the active phase with no other block.  At this
time, B  is bounded away from the other oscillators by some distance determined by how long B
spent in the active phase.  This time is bounded below by some constant TA which does not
depend on the particular block B .  It is actually more convenient to consider the time metric.   That

is, let τ(y1, y2) be as defined in Section 4.1.  If ei = (xi, yi) is any oscillator in B  and ej = (xj, yj)

is any oscillator not in B , then when t = t0, yj < yi and τ(yj, yi) > TA.  The time metric is
convenient because it remains invariant as long as two oscillators remain on the same left branch in
the silent phase.  One technical difficulty is that oscillators may jump back and forth between
different left branches while they are in the silent phase.  These jumps occur whenever other
oscillators jump to and from the active phase.  We require that the times of excursion on different
left branches are not too much different from each other.  This will be the case if the parameter β in
(1b) is sufficiently small.  With this assumption, we can show that if ej and ei are as above, then

τ(yj, yi) > TA/2 as long as the oscillators in B  remain in the silent phase.   Hence, B  remains
bounded away from the other blocks as long as it remains in the silent phase.  Eventually the
oscillators in B  jump up to the active phase, and this entire analysis repeats itself over the next
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cycle.  The condition τS > NBτA is needed to insure that once B  is separated from the remaining
blocks it will not jump up at the same time with any other block because of rebound.

4.6 Minor Blocks

We assume throughout this subsection that ei is a loner which belongs to a minor block B .  It
is possible that ei is the only oscillator in B .  We first demonstrate that ei can jump up to the active
phase for at most a finite number of cycles.  After that, ei must remain in the silent phase.

We prove that the oscillators in B  eventually remain silent by showing that there is some time
after which every oscillator in B  is excitable.  After this time the oscillators in B  will not be able to
jump to the active phase for the following reason.  If a stimulated oscillator is excitable, then
during the silent phase it lies on either L(0, 0, 0) if no other oscillator is in the active phase, or on
L(0, 0, WZ) if some other oscillator is in the active phase.  The y-nullcline intersects both of these
branches.  Hence, the oscillators in B  will always be attracted towards one of these intersection
points.  They will never be able to jump up by reaching the left knee of one of these cubics.  It may
be possible that the oscillators in B  jump up because of rebound, but the left knee of C(0, 0, 0) lies
below the fixed point on L(0, 0, WZ).  This implies that if the oscillators in B  are released from
inhibition because some other oscillator jumps down, the oscillators in B  must jump from L(0, 0,
WZ) to L(0, 0, 0).  They will not be able to jump up to the active phase.

It remains to prove that there is some time after which all of the oscillators in B  are excitable.
The difficulty here is that while B  is in the active phase, other blocks may also be in the active
phase.  Hence, oscillators in B  may achieve a high potential by receiving input from other
oscillators besides those in B (cf. the discussion regarding N1(i) vs. N2(i) in Sect. 3).  In the
preceding subsection, however, we saw that after NB cycles, all of the blocks must be separated
from each other; there can be at most one block in the active phase at any time.  In particular, after
NB cycles, B  can only be in the active phase by itself.  Since B , by itself, cannot develop leaders,

after this time, the potential of each oscillator in B  must decay by a rate determined by µ.  
Eventually, these potentials must fall below threshold and the oscillators change from enabled to
excitable.

4.7 Stronger Result
We now prove that if the parameters are chosen more carefully, then the Theorem holds with T

corresponding to NM + 1 cycles.  From our analysis, this will be the case if the minor blocks are
not able to jump up to the active phase after the first cycle.  This, in turn, will follow if all of the
loners become excitable after the first cycle.  Referring to (1a), we see that there are two ways in
which a loner can be oscillatory.  The first is if exp(-α t) > θ.  The second is if the loner has a high
potential.

We choose α so that if t corresponds to some time after the first cycle, then exp(-α t) < θ.

More precisely, consider the singular periodic solution of (4.1).  Again, let τS and τA equal to the
times that this singular solution spends in the silent and active phases, respectively.  In addition, let
τF equal to the time between the system start and when the first oscillator jumps to the active phase.

Choose α so that
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θ < exp(-α(τS + τA)) and exp(-α(τS + τA + τF)) < θ (4.6)

This guarantees that all the stimulated oscillators remain enabled during the first cycle, but only
those oscillators with high potential remain enabled when they are ready to jump up during the
second cycle.

It follows that the only way that a loner can jump up during the second cycle is if it has a high
potential.  Recall that the only way that this can happen is if the loner receives enough input from
oscillators not in its own block.  We now show how to choose the parameters so that this is
impossible.

We assume that the network is weakly isotropic in the following sense.  Suppose that the
quantity ∑k∈ N1(i)Tik ≡ Ω is independent of the oscillator i.  We then let θp = Ω – δ, where δ is

sufficiently small.  In particular, we assume that  δ < mink∈ N1(i){ Tik}.  It then follows that the

oscillator i which belongs to the block B  is a leader if and only if the entire neighborhood N1(i)
belongs to B.  Moreover, if i is in the active phase and there is at least one oscillator in N1(i) which

is not in the active phase, then  ∑k∈ N1(i)Tik H(xk – θx) < θp.  Clearly, this is the case if i is a

loner.  It follows that a loner can never have a high potential.  From the above discussion, this
completes the proof of the Theorem.

4.8 Choosing the Parameters
We have now demonstrated that the Theorem holds if the parameters in the model are chosen

appropriately.  The analysis is constructive in the sense that it leads to precise estimates that the
parameters must satisfy.  It also shows that the Theorem holds for a robust range of parameter
values.  Moreover, the analysis does not depend on the precise forms of the nonlinear functions
f(x, y) and g(x, y).  Here, we summarize what estimates the parameters must satisfy.

First consider the parameters in (1a).  We require that 0 < θ  < 1, and α satisfies (4.6).  Recall
that Ii = I+ > 0 if i corresponds to a stimulated oscillator, and Ii = I– < 0 if i corresponds to an

unstimulated oscillator.  The conditions needed on I+ and I– will be discussed shortly.
Next consider (1b).  We require that β is sufficiently small so that the times of excursion on

different left branches are not too much different from each other.  We also need that γ  is
sufficiently large so that the time of excursion in the active phase is much shorter than that in the
silent phase.  More precise conditions on these parameters are given earlier in this section.

We next turn to (2). We simply require that λ is O(1), with respect to ε, and µ is O(ε).  The

threshold θx must be chosen to lie between the values of x at the left and right branches of the

cubics.  Finally, we assume that 0 < θp < 1.
Now consider (3) and (4).  The weights Wik, WZ, and WT must satisfy (4.3), (4.4), and

(4.5).  These also give conditions on I+ and I–.  We require that 0 < θxz < 1.  The parameter η in

(4) and the parameter φ in (5) simply need to be O(1), and ν to be O(ε)

5. Computer Simulation

To illustrate how the LEGION network is used for image segmentation while eliminating
fragmentation, we have simulated a 25x25 grid of oscillators with a global inhibitor as defined by
(1)-(5).  In the simulation, N1(i) is simply the four nearest-neighbors without boundary wrap-
around, and N2(i) is set equal to N1(i).  We arbitrarily selected an image with four binary objects
(patterns): two O's, one H, and one I ; and they form the word OHIO  as shown in Fig. 5A (see
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also Wang and Terman 1995).  We then injected 10% noise to the image: each uncovered box has a
10% chance of becoming covered (stimulated).  The resulting image is shown in Fig. 5B.  For all
the stimulated oscillators I = 0.2, while for the others I = 0.  Notice that if oscillator i is
unstimulated, Wik = Wki = 0 for all k, and Ii does not need to be negative to prevent i from
oscillating.  Thus the oscillators under stimulation become enabled, and those without stimulation
become excitable and unable to oscillate.  The amplitude ρ of the Gaussian noise was set to 0.02.
This represents a 10% noise level compared to the external stimulation.  We observed during the
simulations that noise facilitated the process of desynchronization.

The differential equations (1)-(5) were solved using both a fourth-order Runge-Kutta method
and the adaptive grid o.d.e. solver LSODE.  Permanent connections between any two neighboring
oscillators were set to 2.0, and for total dynamic connections (see (4b)), WT = 6.0.  Dynamic
weights Wik were set up at the beginning according to (4).  The following values for the other

parameters in (1)-(5) were used for the simulation results shown in Fig. 5:  ε = 0.02, α = 0.005, β
= 0.1, γ = 6.0, θ = 0.9, λ  = 0.1, θx = -0.5, θp = 5.0, Wz = 1.5, η  = 1.0, µ = ν = 0.01, φ = 3.0,

and θzx = θxz = 0.1.  The value of θp is chosen so that, in order to achieve a high potential, an
oscillator must have at least three active neighbors out of four possible neighbors on a 2-D grid.
The simulation results were robust to considerable changes in the parameter values.The phases of all the oscillators on the grid were randomly initialized.  Fig. 5C-5G show the
instantaneous activity (snapshot) of the network at various stages of dynamic evolution.  The
diameter of each black circle represents the x activity of the corresponding oscillator.  Specifically,
if the range of x values of all the oscillators is given by xmin and xmax, then the diameter of the
black circle corresponding to one oscillator is set to be proportional to (x–xmin)/(xmax–xmin).

Fig. 5C shows the snapshot at the beginning of the dynamic evolution.  This is included to
illustrate the random initial conditions.  Fig. 5D shows a snapshot shortly after Fig. 5C.  One can
clearly see the effect of synchrony and desynchrony: all the stimulated oscillators which belong to
or are the coupling neighbors of the right O are entrained and have large activities (in the active
phase).  At the same time, the oscillators stimulated by the rest of the noisy image have very small
activities (in the silent phase).  Thus the noisy right O is segmented from the rest of the image.  A
short time later, as shown in Fig. 5E, the oscillators in the group representing the noisy H  reach
their active phase and are separated from the rest of the image.  Fig. 5F shows another snapshot
after Fig. 5E.  At this time, the noisy left O has its turn to be activated and separates from the rest
of the input.  Finally, in Fig. 5G, the oscillators representing the noisy I  are in the active phase and
the rest of the scene remains inactive.  This successive "pop-out" of the segments continues in a
stable periodic fashion until the input image is withdrawn.

To illustrate the entire segmentation process, Figure 6 shows the temporal evolution of every
stimulated oscillator.  The activities of the oscillators stimulated by each object are combined
together as one trace in the figure, and so are for the background.  If any group of oscillators
synchronizes, then together they appear like a single oscillator.  Since the oscillators receiving no
external stimulation remained excitable and unable to oscillate throughout the simulation process,
they are excluded from the display of Fig. 6.  The four upper traces represent the activities of the
four oscillator blocks corresponding to the four objects, and the fifth one represents the
background consisting of all of the scattered dots.  Because of low potentials, these oscillators
quickly become excitable even though they are enabled at the beginning.  The bottom trace
represents the activity of the global inhibitor.  Shortly after the start, the pattern H  and the right O
are in their active phase, together with some of the background oscillators.  Then the left O and I
jump up together.  After about one cycle, the loners fade away, and H  and the right O start to
separate.  After about three cycles, the left O and I  start to separate.  The noisy image of Fig. 5B is
completely segmented into four objects, corresponding to each of the four letters in OHIO , in
about four cycles.  The speed of segmentation is consistent with the analysis of Sect. 4.  After
complete segmentation, the quality of synchrony within the right O improves markedly.  The
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dynamic evolution process is well indicated by the activity of the global inhibitor, which is
activated when an oscillator block reaches its active phase.

As a comparison with the alternative definition of (3.2) for a single oscillator, we have
simulated the same network for segmenting the same noisy image of Fig. 5B.  The simulation was
done in exactly the same way.  Here, for all stimulated oscillators I = 0.2, while for unstimulated
oscillators I = -7.0.  In addition, WT = 6.0, θS = 1.0, and Wp = 0.2.  The other parameters have
the same values as in the previous simulation.  Figure 7 shows the simulation result, in the same
format as in Fig. 6.  For this task, the network takes about four cycles to fully segment all four
noisy objects.  This rate of segmentation is again consistent with our analysis in Sect. 4.  Also, the
simulation reveals that after full separation the quality of synchrony within each oscillator block is
not as good as in Fig. 6.  Note that the lateral input each oscillator receives is a binary value,
whereas in (1) the lateral input is a graded value depending on how many oscillators in N2(i) are in
the active phase.  Graded lateral input tends to promote synchrony in jumping down and thus
overall synchrony, because an oscillator can immediately feel reduced lateral input (see Sect. 4.4).
During the simulation, we also observed that the definition (3.2) seems to limit the range of
parameter values for lateral interactions, again because of binary lateral interaction.

With a fixed set of parameters, the dynamical system of LEGION can segment only a limited
number of patterns because of the reasons given in Sect. 4.5.  The number of patterns depends, to
a large extent, on the ratio τS/τA of the times that a single oscillator spends in the silent and active
phases.  Let us refer to this limit as the segmentation capacity of LEGION.  In the above
simulation, the number of the major blocks to be segmented is within the segmentation capacity.
What happens if this number exceeds the segmentation capacity?  From the previous section, we
know that the rebound mechanism may synchronize oscillator blocks that have no intrinsic reason
to be grouped together.  So, intuitively, the system should separate the entire image into as many
segments as the capacity allows, where each segment may correspond to one major block  (called
simple segment) or a number of major blocks (called congregate segment).  This is confirmed by
our numerical simulations.  To illustrate this point, we show the following simulation results using
the system (1)-(5).  We present to a 30x30 LEGION network with an arbitrary image containing
nine binary patterns, which together form the phrase OHIO STATE .  These patterns are arranged
as shown in Fig. 8A.  We use exactly the same parameter values as in the simulation presented in
Figs. 5 and 6.  For this set of parameters, our earlier experiments showed that the system's
segmentation capacity is less than 9.  The simulation results are presented in Fig. 8B-G, in the
same format as in Fig. 5.  Shortly after the start of system evolution, the LEGION network
segmented the input of Fig. 8A into five segments, shown in Fig. 8C-8G respectively.  Among
these five segments, two are simple segments (Figs. 8C and 8D) and three are congregate
segments (Figs. 8E, 8F, and 8G).  To illustrate the entire segmentation process, Figure 9 shows
the temporal activity of every stimulated oscillator, shown in the same format as in Figs. 6 and 7.
For this task, the network takes less than three cycles to segment the entire scene into the five
segments shown in Fig. 8.

Besides the simulation illustrated in Figs. 8 and 9, many other simulations have been
performed for the input of Fig. 8A with different random initial conditions, and the results are
comparable with Figs. 8 and 9.  There are different ways, however, that the system separates the
nine patterns into five segments.  For this particular set of parameters, we can say that the
segmentation capacity of the LEGION network is 5.  In fact, we have not seen a single simulation
trial where more than 5 segments are produced.  This important property of the system, i.e. it
naturally exhibits a segmentation capacity, is in good accord with the well-known psychological
principle that there are fundamental limits on the number of simultaneously perceived objects.
Imagine that you walk into a new house.  Though there are many interesting things in the house,
you can attend to only a few things at a time.  Some implications of this property, as well as its
psychological link, shall be further discussed in Sect. 7.2.

The order of activation among segmented patterns bears no particular semantics.  It is
determined by the random initial conditions and system noise.  The LEGION networks simulated
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above can be readily applied to segmenting binary images of much larger sizes.  In the next
section, we consider gray-level images.

6. Real Images

LEGION can segment gray-level images in a way similar to segmenting binary images.  For a
given image, a LEGION network of the same size as the image with a global inhibitor is used to
perform segmentation.  Each pixel of the image corresponds to an oscillator of the network, and
we assume that every oscillator is stimulated when the image is applied to the network.  The main
difference between gray-level and binary images lies in how to set up connections.  For gray-level
images, the coupling strength between two neighboring oscillators is determined by the disparity of
two corresponding pixels.

6.1 Algorithm
To segment real images with large numbers of pixels involves integrating a large number of the

differential equations of (1)-(5).  To reduce numerical computations on a serial computer, an
algorithm is extracted from these equations.  The algorithm follows major steps in the numerical
simulation of the equations, and it exhibits the essential properties of relaxation oscillators, such as
two time scales (fast and slow) and the properties of synchrony and desynchrony in a population
of oscillators.  Such extraction is quite straightforward because, in a relaxation oscillator network,
much of the dynamics takes place when oscillators are jumping up or jumping down.  Besides
reducing numerical computations, the algorithm also overcomes the segmentation capacity, which
may be desired in applications where many patterns need to be segmented from an image.  More
specifically, the following approximations have been made.

(a) When no oscillator is in the active phase (see Fig. 2), the leader closest to the jumping point
(left knee) among all enabled oscillators is selected to jump up to the active phase.

(b) An oscillator takes one time step to jump up to the active phase if the net input it receives
from neighboring oscillators and the global inhibitor is positive.

(c) The alternation between the active phase and the silent phase of a single oscillator takes one
time step only.  

(d) All of the oscillators in the active phase jump down if no more oscillators can jump up.
This situation occurs when the oscillators stimulated by the same pattern have all jumped up.  

In the above actions, (a) and (d) are particularly effective in cutting down integration time,
because they dramatically shorten the time a block stays in the active phase or in the silent phase,
the two relatively stable and time-consuming stages in dynamical evolution (see Fig. 2 and Fig. 6).
Despite these simplifications, it is easy to see that the behavior of the following algorithm well
approximates that of the dynamical system defined in (1)-(5).

In the following, we first present the precise algorithm used in later segmentation tasks.
Further simplifications made in the algorithm will be explained in Sect. 6.2.

---------------------------------------------------------------------------------------------------------------------
LEGION algorithm

Only the x value of oscillator i, xi, is used in the algorithm.  N1(i) is assumed to be the eight
nearest neighbors of i on the 2-D network, except on the boundaries where no wrap-around is
used.  It is further assumed that N2(i) = N1(i).  LKx, RKx, LCx represent the x values of three of
four corner points of a typical limit cycle (see Fig. 2A), where LK and RK denote the left knee and
the right knee (see Sect. 4), and LC denotes the (upper) left corner of the limit cycle.  By
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straightforward calculations, we obtain LKx = -1, LCx = -2, RKx = 1.  In the algorithm, Ii
indicates the value of pixel i, and IM indicates the maximum possible pixel value.

1. Initialize

1.1 Set z(0) = 0;

1.2 Form effective connections

Wij  = I M/(1 + | I i  – I k |), k ∈  N1( i )

1.3 Find leaders

pi  = H[ ∑
k ∈ N1( i )

   Wik  – θp]

1.4 Place all the oscillators randomly on the left branch.  Namely x i ( 0)

takes a random value between LCx and LKx.

2. Find one oscillator j  so that (1) x j ( t ) ≥ xk( t ), where k is currently on

the left branch; (2) pj  = 1.  Then

xj ( t +1) = RKx; z( t +1) = 1 {jump up}

xk( t +1) = xk( t ) + ( LKx - x j ( t )), for k ≠ j .

In this step, the leader on the left branch which is closest to the left
knee is selected.  This leader jumps up to the right branch, and all the other
oscillators move towards LK.

3. Iterate until stop

If ( x i ( t ) = RKx and z( t )  > z ( t- 1))

x i ( t +1) =  x i ( t ) {stay on the right branch}

else if ( x i ( t ) = RKx and  z ( t ) ≤ z( t- 1))

x i ( t ) = LCx; z( t +1) = z( t ) - 1 {jump down}

If ( z( t +1) = 0) go to step 2

else

Si ( t +1) = ∑
k ∈ N2( i )

   Wik H( xk( t )  - LK x) - WzH( z( t ) - 0.5)

If ( Si ( t +1) > 0)

xi ( t +1) = RKx; z( t +1) = z( t )  + 1 {jump up}

else

xi ( t +1) = x i ( t ) {stay on the left branch}

---------------------------------------------------------------------------------------------------------------------

6.2. Further Remarks
Comparing the above algorithm with the dynamical system of (1)-(5), one can find the

following simplifications additionally.
(a) The dynamic weight Wij  is directly set to Wij  = IM/(1 + |Ii – Ik|).  The intuitive reason for

this choice of weights is that the more pixel i and pixel j are similar to each other, the stronger the



DeLiang Wang and David Terman                                                                      Image Segmentation

23

connection between the two corresponding oscillators, and thus the easier the two oscillators are to
synchronize with each other.  This selection of weights promotes gray-level homogeneity as a
determining factor in grouping.   Compared to binary pixels, it is less straightforward to derive this
weight from neural dynamics of the kind in (4).  But it is possible given the fact that the frequency
of a relaxation oscillator, to a certain degree, increases monotonically when the external stimulation
increases (see Fig. 3 of Terman and Wang 1995).  The weight Wij  can then be computed as a
frequency correlation between the presynaptic oscillator and the postsynaptic oscillator.  It is also
worth noting that the algorithm does not compute normalized weights.  Whether an oscillator can
be recruited to jump up depends solely on the net input the oscillator receives from its neighboring
oscillators and the global inhibitor.  As mentioned in Sect. 3, the weight setting in this case does
not prevent the selective gating mechanism from taking place.

(b) The leaders are chosen during initialization.  According to the dynamics described in Sect.
3, potentials, and thus leaders, are determined during a few initial cycles of oscillatory dynamics.
Since every oscillator is stimulated, and Wij  is set at the beginning, it can be precisely predicted at
the beginning which oscillators will become leaders.  Thus, to save computational time, the leaders
are determined in the initialization step.  Notice that, according to (2), pi = H[∑k∈ N1(i)Tik H(xk –

θx) – θp] at equilibrium (µ is ignored here).  Given that N1(i) is 8 nearest neighbors, it is
reasonable to assume that Tik is a constant (say 1).  Thus, pi depends on the extent that the
oscillators within N1(i) synchronize, or whether i lies at the center of a homogeneous region of a
certain size.  The latter is the idea behind the concept of potential, and this is effectively captured by
pi = H[∑k∈ N1(i)Wik – θp], the formula used in the algorithm.  One alternative for computing

potentials is pi = H[∑k∈ N1(i)H(Wik – Wz)– θp], which computes the number of oscillators in N1(i)

that i can potentially recruit to jump up (note Wik = Wki).  This formula appears closer to (2), and
has been tested during simulations.  Our tests indicate that this formula is less flexible than the one
used in the algorithm, and tends to need a larger N1(i) to achieve comparable results.  

The condition for the oscillators in the active phase to jump down is an important one, and is
based on the observation that the number of oscillators in the active phase increases every time step
when an oscillator block is in the process of jumping up to the active phase.  Thus, when the
oscillators in the block has all jumped up, the number of the oscillators in the active phase does not
increase any longer.  When all of the oscillators in a single block have jumped to the silent phase,
i.e. z(t) = 0, another leader is selected to form another block in step 2.  In step 2, the system
maintains the specific values of xi to ensure that every block corresponding to a segment has the
chance to jump up once before any block jumps up twice.  That is, the system keeps an order in
jumping up.

For image segmentation applications, the algorithm can be stopped when every leader has
jumped up once (A user can of course preset the number of time steps for the algorithm to
execute).  It should be noticed, however, that some oscillators may jump up more than once in a
cycle of oscillations, because of the summation in the coupling term Si (see the algorithm and (3)).
This is illustrated in Fig. 10, with an image consisting of three regions of equal pixel value.  It is
easy to choose the parameter Wz so that if the left segment with I = 30 jumps up, then this segment
will recruit the stripe with I = 50 to jump up.  This is because of the summated excitation from the
five oscillators of the left 30-segment.  The I = 50 stripe, however, will not recruit the right 30-
region.  When the right 30-segment jumps up, it recruits the middle stripe to jump up similarly.
Thus, the stripe with I = 50 jumps up twice in one oscillation cycle.

This observation raises an issue, that a region of an image may participate in more than one
segment.  In Fig. 10, it is possible that the 50-region is part of two segments: one with the left 30-
region and one with the right 30-region.  It should be noted that this phenomenon is less likely to
occur in the original dynamical system of LEGION, because an oscillator has to evolve in the silent
for a while before it can jump up again (see Fig. 2A), resembling the refractory period of a real
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neuron.  Although this phenomenon violates the basic definition of image segmentation in
computer vision (Schalkoff 1989), there exist interesting parallels with human perception.  The so
called duplex perception refers to the phenomenon that some sensory features play a double role by
participating in two organizations.  In speech perception, for example, part of a spectrum can be
heard as a separate sound; at the same time, it also joins other parts to form a speech sound
(Liberman et al. 1981; Repp et al. 1983).

There are two critical parameters in the algorithm: Wz and θp, where the former is the strength
of global inhibition and the latter is the threshold for forming high potentials (leaders).  For Wz,
higher values make the algorithm more difficult to group pixels into regions.  Thus, in order for a
region to be grouped together, the algorithm demands a higher degree of homogeneity within the
region.  Generally speaking, given a gray-level image, higher Wz leads to more and smaller

regions.  For θp, higher values make the algorithm more difficult to develop leaders.  Thus fewer
leaders will be developed, and fewer regions result from the algorithm.  On the other hand, regions
produced with a higher θp tend to be more homogeneous.  The above discussion will become
clearer when the test results are presented next.

6.3 Segmenting Real Images
6.3.1 Sum vs. Max: an aerial image

The first image the algorithm is tested on is an aerial image, called Lake, which is shown in
Fig. 11A.  As in the following images to be used, this is a typical gray-level image, where each
pixel is an 8-bit number ranging from 0 to 255 (also called intensity), and pixels with higher values
appear brighter.  The image has 160x160 pixels, and is presented to a LEGION network of
160x160 oscillators plus a global inhibitor.  For this simulation, Wz = 40 and θp = 1200.  Quickly
after the image is presented, the algorithm produces different segments at different time steps, as
though the segments "pop out" sequentially from the oscillator network.  Fig. 11B-11G display the
first six segments that have been produced sequentially, where a black pixel corresponds to an
oscillator in the active phase and a blank pixel corresponds to an oscillator in the silent phase.  As
shown in the figure, each segment corresponds to a meaningful region in the original image: a
segment is either a lake, a field, or a parkway.  The region in Fig. 11B corresponds to a lake.  The
region in Fig. 11C corresponds to the main lake, except for the lower-left part where the lake
region extends to a non-lake part, and for the right side where the lake extends to its bank.  The
parkway segment in Fig. 11G picks up a partial parkway network in the original image.  The other
segments match well with the fields of the image.

The entire image is separated into 16 regions and a background.  To simplify the display, we
put all the segments and the background together into one figure, using gray levels to indicate
phases of oscillator blocks.  Such a display is called a gray map.  The gray map of the results of
this simulation is shown in Fig. 12, where the background is shown by the black scattered areas.
The segments besides those shown in Fig. 11 all have good correspondence with the regions in the
image.  Generally speaking, the background corresponds to parts of the image that have high
intensity variations.  Due to the mechanism of fragment removal, these noisy regions stay in the
background, as opposed to many segments that would have been the result without fragment
removal.

In the above algorithm, an oscillator summates all the input it receives from its coupling
neighborhood, and if the overall input is greater than the global inhibition the oscillator jumps to
the active phase (see also (3)).  Another reasonable way of grouping is to replace summation by
maximization when computing Si:

Si = Maxk∈ N2(i){ Wik H(xk – θx)} – Wz H(z – θxz) (6.1)
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Intuitively, the maximum operation concentrates on the relation of i with the oscillator in N2(i) that
has the strongest coupling with i, but omits the relation between i and N2(i) as a whole.  Thus,
grouping by maximization emphasizes pairwise pixel relations, whereas grouping by summation
emphasizes pixel relations in a local field.  

By using (6.1) in the LEGION algorithm, the Lake image is segmented again.  In this
simulation, Wz = 20 and θp = 1200.  Fig. 13 shows the result of segmentation by a gray map.
The entire image is segmented into 17 regions and a background, which is indicated by black
areas.  Each segment corresponds well with a relatively homogeneous region in the image.
Interestingly, except for the parkway region in the lower part of the image, every region in Fig. 13
has a corresponding one in Fig. 12.  A careful comparison between the two figures reveals the
difference between summation and maximization in segmentation.  The fact that the two figures
correspond almost exactly demonstrates that the two schemes produce similar results.  A closer
comparison, however, indicates that the maximum scheme yields a little more faithful regions.
One can see this by comparing the lake regions, the parkway regions, and by the fact that another
extended parkway region is segmented in Fig. 13.  The problem of the main lake extending to non-
lake parts in Fig. 11 is almost eliminated in Fig. 13.  On the other hand, regions in Fig. 12 appear
smoother and have fewer "black holes" - parts of the background.  The smoothing effect of
summation is generally positive, but it may lose important details.  For example, the sizable hole
inside the main lake region of Fig. 13 corresponds to an island in the original image, which is
neglected in the main lake region of Fig. 12.  Because the maximum scheme appears to produce
better results, it will be used in all of the following simulations.

The reason that summation in oscillator coupling has a role of smoothing while maximization
does not can be seen from the following example.  In Fig. 14A, the center pixel, under the
summation scheme, can be grouped by its surrounding pixels with an appropriate Wz.  This
grouping effectively smoothens the difference between the center pixel and its surround.  But, the
center pixel cannot be grouped with the surround under the maximum scheme.  On the other hand,
in Fig. 14B, the center pixel tends to recruited by the right one with I = 40, but it does not under
the summation scheme.  Another distinction is that the phenomenon of one region belonging to
multiple segments (see Fig. 10) does not occur under the maximum scheme, whereby grouping is
symmetrical in the sense that if pixel a can recruit pixel b, then b can recruit a as well.  This is
because effective weights are symmetrical, namely Wij  = Wji (see the algorithm).

To show the effects of parameters, we reduce the value of θp from 1200 in Fig. 13 to 1000.
As a result, more regions are segmented, as shown in Fig. 15 where 23 segments plus a
background are produced by the algorithm.  Compared with Fig. 13, the notable new segments
include an open-theater-like region to the left of the main lake, and its nearby field region.  Other
newly produced segments are also meaningful regions in the original image.  The Lake image has
been used in the study of Sarkar and Boyer (Sarkar and Boyer 1993a).  As mentioned in Sect. 2.1,
their approach is edge-based.  One of the results produced by their system is a set of closed
boundaries, which implies segmented regions of the image.  The reader is encouraged to compare
our results with theirs.

6.3.2 MR images
The next image to test our algorithm is a magnetic resonance image (MRI) of a human head, as

shown in Fig. 16A.  MR images constitute a large class of medical images, and their automatic
processing is of a great deal of practical value.  This particular image, which we denote as "Brain-
1", is a midsagittal section, consisting of 256x256 pixels.  Salient regions of this picture include
the cerebral cortex, the cerebellum, the brainstem, the corpus callosum, the fornix (the bright stripe
below the corpus callosum), the septum pellucidum (the region surrounded by the corpus callosum
and the fornix), the extracranial soft tissue (the bright stripe on top of the head), the bone marrow
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(scattered stripes under the extracranial tissue), and several other structures (for the nomenclature
see p. 318 of Kandel et al. 1991).  For this image, a LEGION network of 256x256 oscillators plus
a global inhibitor is used.  The algorithm is performed as specified before.  Figure 16B shows the
result of one simulation by a gray map.  In this simulation, Wz = 25 and θp = 800.  The Brain-1
image is segmented into 21 regions, plus a background which is indicated by the black areas.  Of
particular interest are two parts of the brain: the upper part, and the brainstem with part of the
spinal cord (to be called "brainstem" for short), parts of the extracranial tissue, and parts of the
bone marrow.  Other interesting segments include the neck part, the chin part, the nose part, and
the vertebral segment.

Though it is useful to treat the brain as a whole in some circumstances, it may also be desirable
to segment the brain into more detailed structures.  To achieve this in LEGION, one can increase
Wz.  But in order not to produce too many regions, θp should usually be increased as Wz
increases.  To show the combined effects, Fig. 16C displays the result of another run with Wz =

40 and θp = 1000.  With these parameter values, Brain-1 is segmented to 25 regions plus a
background.  The background is again indicated by black areas.  Now, the upper part of the brain
is further segmented into the cerebral cortex, the cerebellum, the callosum/fornix region and its
surrounding septum.  Because of the higher Wz, regions in Fig. 16C tend to contain more
background (compare, for example, the two brainstem regions).  However, in the cortex segment
in Fig. 16C, the noisy stripes actually have physical meanings: they tend to match with various
fissures on the cerebral cortex.  With the higher θp, some segments in Fig. 16B cannot generate
any leaders and thus become the background.  See, for example, the segments corresponding to
the extracranial tissue.  

The final segmentation to be presented uses another MRI of a human head, shown in Fig. 17A.
This image is denoted as Brain 2, consisting of 256x256 gray-level pixels.  Similar to Brain-1,
Brain-2 is a sagittal section, but through one eye instead of along the midline.  Salient regions of
this picture include the cortex, the cerebellum, the lateral ventricle (the black hole within the
cortex), the eye, the sinus (the black hole below the eye), the extracranial soft tissue, and the bone
marrow.  A LEGION network with 256x256 oscillators and a global inhibitor is used for the
segmentation task.  In the first simulation, Wz = 20 and θp = 800, and  Fig. 17B shows the result
by a gray map.  Brain-2 is segmented into 17 regions, plus a background which is indicated by
black scattered areas.  One can see from the figure that the entire brain forms a single segment.
Other significant segments include the eye, the sinus, parts of the bone marrow, and parts of the
extracranial tissue.  The chin and the neck parts are also two large segments.  The lateral ventricle
is put into the background.

In order to generate finer structures, Wz is raised to 35 in the second simulation.  As in Fig.

16, θp is increased as well to avoid too many segments, and it is set to 1000.  Fig. 17C shows the
result of this simulation, where Brain-2 is segmented into 13 regions plus a background, the latter
indicated by the black areas.  As expected, the segments in Fig. 17B become further segmented or
shrunk, and the background becomes more extensive.  Worth mentioning is that the brain segment
in Fig. 17B is segmented into three segments: one corresponding to the cortex and the other two
corresponding to the cerebellum.  Due to the increase of θp, the segments corresponding to the
extracranial tissue and the marrow in Fig. 17B disappear in Fig. 17C.

In the segmentation experiments of this section, our goal was to illustrate the mechanism of
oscillatory correlation and the potential effectiveness of derived algorithms.  We did not attempt to
produce best possible results by fine tuning of parameters.  One can easily tell this by the simple
rule of setting Wij , the simple choice of N1(i) and N2(i), and the values of Wz and θp that have
been used in the simulations.  Therefore, better results can be expected by using more sophisticated
schemes of choosing these parameters.  For example, a more extended neighborhood of N1(i) than
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8 nearest neighbors can remove small segments that occur occasionally.  See Sect. 7 for more
discussions on choosing parameters.  Indeed, a more elaborate version of the LEGION algorithm
has been applied to segment 3-dimensional MR and CT (computerized tomography) images from
the medical domain, and good segmentation results have been obtained (Shareef and Wang, in
preparation).  On the other hand, the parameter values used in the above experiments demonstrate
that the results thus achieved are robust to considerable parameter variations.  

Two important distinctions between the algorithmic version of LEGION and the dynamical
version have not been discussed earlier.  One is that the algorithmic version does not have a
segmentation capacity; it can produce an arbitrary number of segments.  The number of the
segments produced by the algorithm only depends on the pixel distributions of an image.  On the
other hand, as discussed in Sect. 5, with a fixed set of parameters the dynamical system of
LEGION can segment only a limited number of patterns.  The second distinction is that the
algorithm, though having many parallel components, is not a fully parallel algorithm.  It is iterative
in nature, requiring global operations such as selecting a leader, the test of when a block of
oscillators jumps down, and a central clock.  These sequential components are introduced to speed
up simulations on a serial computer.  The dynamical system of LEGION, on the other hand, is
fully parallel, and does not require synchronous operations (thus a central clock).  

7. Discussion

7.1 Further Remarks on LEGION Computation
The analysis in Section 4 demonstrates that the oscillatory dynamics described in this paper is a

robust property of the model.  It is insensitive to considerable changes in the parameters and exists
for a large class of initial conditions.  Moreover, very few assumptions are required on the
nonlinear functions in (1).  This helps to explain why relaxation-type oscillators, together with
synaptic coupling, are more appropriate for scene segmentation than other models which include
phase oscillators, for example.  These differences are also discussed elsewhere (Wang 1995;
Terman and Wang 1995; Somers and Kopell in press).

The analysis is constructive and clearly indicates how the parameters need to be chosen.  It also
indicates how instabilities can arise as parameters are varied.  The discussion in Sect. 4.5, for
example, demonstrates that the oscillators within different blocks may not separate if the parameter
γ  is too small.  The analysis does not depend on the fact that we considered a two-dimensional
LEGION network.  It extends in a straightforward way to arbitrary dimensions, because, in the
analysis, oscillator blocks are formed on the basis of local excitation and global inhibition, without
reference to the dimension of the network.

In the simulations of Sect. 6, N1(i) is set to the eight nearest-neighbors of i.  Larger N1(i)'s
entail more computations for determining leaders.  But larger N1(i)'s have more flexibility in
specifying the conditions for creating leaders, which tends to produce better results.  Also, the
order of pop-out of different segments is currently random.  In some situations, however, it might
be useful to influence the order of pop-out by some criteria, such as the size of each region.  This
is room in LEGION to incorporate different criteria by ordering leaders accordingly, either by
using the global inhibitor in different ways or by introducing other processing units.

The main difference between our approach to image segmentation and other segmentation
algorithms reviewed in Sect. 2 is that ours is neurocomputational, building on the strengths and the
constraints of neural computation.  Our approach relies on emergent behavior of LEGION to
embody the computation involved in image segmentation.  Methodologically, the computation is
performed by a population of active agents - oscillators in this case - that are driven by pixels,
whereas, in a typical segmentation algorithm, pixels are data to be processed by a central agent -
the algorithm or the neural network trained as a pixel classifier.  That LEGION is a massively
parallel network of dynamical systems with mainly local coupling makes it particularly feasible for
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analog VLSI implementation, the success of which would be a major step towards real time
processing of scene segmentation.

7.2 Multi-stage Segmentation
A thorny issue with scene segmentation is that often no unique answer exists.  A house, for

example, may be grouped into a single segment if viewed afar.  The same house, if viewed nearby,
may be broken into multiple segments including a door, a roof, windows, etc.  This situation
demands a flexible treatment of scene segmentation, i.e., a system should be able to easily generate
multiple sets of segmentation, each of which should be reasonable.  In LEGION, this flexibility is
reflected to a certain degree by the effects of the parameters of Wz and θp, as discussed in Sect. 6.
As noted there, both Fig. 16B and 16C are arguably reasonable results, so are Fig. 17B and Fig.
17C.  These parameters are currently determined by simulation trials.  It should be an interesting
issue of future study to search for an adaptive scheme that can automatically find appropriate values
of the parameters.

 Psychological and biological evidence suggests that human and animal visual processing
involves multiple stages (Marr 1982; Watt 1987; Zeki 1993), where later stages refine the results of
earlier ones.  The LEGION network used so far has only one layer of oscillators, representing a
single stage of processing.  We expect that the ability of LEGION improves significantly when
multiple layers are used.  More specifically, the following method may be used for multistage
segmentation from coarse to fine grains.  At the first stage, we segment the entire image into a
limited number of large regions by choosing a level of global inhibition which we denote by Wz1

.

Each of the large segments from stage 1 is processed at the next stage by another LEGION layer
with the inhibition level Wz2

, with Wz2 > Wz1
.  Subsequent stages continue in a similar fashion.

Note that the size of each segment can be easily detected by a global unit.  The background can be
treated in the same way, although it is generally discontiguous.  With multistage processing, the
hierarchical system can provide results of both coarse- and fine-grain segmentation.  

 In Sect. 5, we mentioned that the oscillatory dynamics of one-layer LEGION has a limited
segmentation capacity (see Figs. 8 and 9).  It is interesting to note that the human perceptual
system is also limited in simultaneously attending to the objects in a scene, the capacity of which
seems to be around seven (Miller 1956).  The multistage processing outlined above provides a
natural way out of this fundamental limitation.  In multistage processing, each layer does not need
to segregate more than several segments, and yet the system as a whole can segregate many more
segments than the segmentation capacity - an idea reminiscent of chunking proposed by Miller
(Miller 1956).  When the number of segments in an image is greater than the segmentation
capacity, one-layer LEGION will produce a number of segments (simple or congregate) up to the
segmentation capacity (see Figs. 8 and 9).  Congregate segments, however, can be further
segmented with another layer of LEGION, whereas simple segments will not segment further.
Thus, we expect that the segments separated from each image in Sect. 6, despite they number
higher than the segmentation capacity, will still be valid segments when a multilayer LEGION
network is used.  

7.3 Biological Relevance
The relaxation-type oscillator used in LEGION is dynamically very similar to numerous other

oscillators used in modeling neuronal behavior.  Examples include the FitzHugh-Nagumo
equations (FitzHugh 1961; Nagumo et al. 1962), and the Morris-Lecar model for electrical activity
in the barnacle muscle fiber (Morris and Lecar 1981).  These can all be viewed as simplifications of
the Hodgkin-Huxley equations (Hodgkin and Huxley 1952).  In (1), the variable x corresponds to
the membrane potential of the neuron, and y corresponds to the channel activation or inactivation
state variable which evolves on the slowest time scale.  The reduction from a full Hodgkin-Huxley
model to the two variable model is achieved by assuming that the other, faster, channel state
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variables are instantaneous.  Of course, the behavior of a single neuron can be quite complicated.
It may, for example, exhibit bursting oscillations in which the dynamics alternates between a silent
phase of near steady state behavior and an active phase of rapid spiking.  In this case, the two
variable model in (1) can be viewed as a model for the envelope of a bursting neuron.

The mechanism of selective gating is consistent with the growing body of evidence that
supports the existence of neural oscillations in the visual cortex and other brain regions.  In the
visual system, synchronous oscillations have been observed in cell recordings of the cat visual
cortex (Eckhorn et al. 1988; Gray et al. 1989).  The main discovery of these experiments can be
summarized in the following.  First, neural oscillations are triggered by sensory stimulation, thus
known as stimulus-dependent.  These oscillations range from 30 to 70 Hz, often referred to as 40
Hz oscillations (or γ  rhythms).  Second, synchronous oscillations (locking with zero phase lag)
occur across an extended brain region if the stimulus constitutes a coherent object.  Third, no phase
locking exists across regions stimulated by different stimuli if they are not related with each other.
These basic findings have been confirmed repeatedly in different brain regions and in different
animal species (Engel et al. 1991b; Engel et al. 1991a; Murthy and Fetz 1992; Sanes and
Donoghue 1993; Bressler et al. 1993; Sillito et al. 1994; Buzsáki et al. 1994; Whittington et al.
1995; Singer and Gray 1995).  Similar phenomena have also been observed in the olfactory and
auditory systems.

The local excitatory connections assumed in LEGION conform with various lateral connections
in the brain.  Relating to the visual cortex, these excitatory connections, which link the excitatory
elements of oscillators, could be interpreted as the horizontal connections in the visual cortex
(Gilbert and Wiesel 1989; Gilbert 1992).  It is known that horizontal connections originate from
pyramidal cells, which are of excitatory type, and pyramidal cells are also the principal target of the
horizontal connections (Gilbert et al. 1990; Gilbert 1992).  Furthermore, at the functional level,
physiological recordings from monkeys suggest that motion-based visual segmentation may be
processed in the primary visual cortex (Stoner and Albright 1992; Lamme et al. 1993).  The global
inhibitor (see Fig. 3) receives input from the entire oscillator network, and feeds back inhibition
onto the network.  It serves to segment multiple patterns simultaneously present in a visual scene,
thus exerting a global coordination.  Crick has suggested that part of the thalamus, the thalamic
reticular complex in particular, may be involved in the global control of selective attention (Crick
1984; Crick 1994).  The thalamus is uniquely located in the brain: it receives input from and sends
projections to almost the entire cortex.  This suggestion and key anatomical and physiological
properties of the thalamus prompt us to speculate that the global inhibitor might correspond to a
neuronal group in the thalamus.  The activity of the global inhibitor should be interpreted as the
collective behavior of the neuronal group.

An often-cited theoretical problem with the grandmother-cell representation is exponential
explosion in cell use: The number of cells required grows exponentially with the number of
features which can be used to construct objects, and yet only a tiny fraction out of all possible
feature combinations are actually used to represent patterns (von der Malsburg 1981; Singer 1993;
Anderson 1995, Chapter 10).  However, as far as memory or learned patterns are concerned, this
problem can be solved by some computational trick.  For example, in Wang and Yuwono (1995),
a self-organization technique is proposed that automatically selects high-level units when needed.
So, theoretically speaking, we only need as many high-level units as the number of memory items
- no exponential explosion problem.  But the problem does arise following the observation that one
can segment an image into objects which are not necessarily familiar (learned).  Recall from Sect. 1
that for the grandmother-cell representation, every object, whether it is familiar or unfamiliar,
would need to use a neuron.  Otherwise, there would be no representation for unfamiliar objects.
Thus if we allocate neurons to all possible unfamiliar objects that just might occur in the future, the
problem of exponential cell use is bound to arise.

7.4 Perceptual Relevance
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In a recent theoretical account of perceptual organization, Palmer and Rock attached the special
importance to the so-called uniform connectedness, and regarded the formation of uniform and
connected regions as the first step in perceptual organization, the result of which is subject to later,
possibly interactive, stages of refinement (Palmer and Rock 1994b; Palmer and Rock 1994a).
Their emphasis on uniform connectedness agrees well with our emphasis on emergent synchrony
based on local connectivity, which reflects both connectedness and uniformity.  Selective gating
provides a neurocomputational foundation for generating uniform and connected regions,
accomplishing a fundamental part of their theoretical framework.  On the other hand, their theory
provides psychological justifications to our model, and gives useful suggestions about how to
improve the initial results by later stages of refinement.  The multistage processing discussed above
is a step in this direction.  

We regard the rates of synchrony and desynchrony as particularly important, not only because
speed is critical for real time scene segmentation but also because of the considerations of neural
plausibility.  It is known that human subjects can separate and identify an object in a visual scene in
less than 100 ms (Biederman 1987; Irving Biederman, personal communication, 1994).  This
suggests that both synchrony and desynchrony must be achieved in just a few cycles if 40 Hz
oscillations are taken to be the underlying mechanism.  Considering that the visual environment
may change quickly and the subject may move around, it is not surprising that perceptual
organization must be achieved rapidly in order for the subject to make sense of its visual
environment.  Physiological recordings of synchronous oscillations also suggest that synchrony
seems to be a transient event, lasting for only a few cycles (Murthy and Fetz 1992; Sanes and
Donoghue 1993; Bressler et al. 1993).

7.5 Figure-Ground Segregation
This paper addresses the problem of fragmentation by introducing the concept of potential for

each oscillator, which increases when the oscillator receives significant input from its potential
neighborhood.  As a result, a scene is separated to a number of major segments and a background,
which corresponds to the rest of the scene.  The major segments combine to form the foreground,
whose corresponding oscillators are oscillatory until the input scene fades away.  The oscillators
corresponding to the background, after a brief beginning period, become excitable and stop
oscillating.  This dynamics effectively gets rid of noisy fragments without either preprocessing
(such as smoothing) or postprocessing (such as removing small regions), the methods often used
in segmentation algorithms.  With this dynamics, typical figure-ground segregation can be
characterized as a special case, where only one major segment is allowed to be separated from the
scene.  In this sense, we claim that our dynamics also provides a potential solution to the problem
of figure-ground segregation.  We allow a foreground to include multiple segments, because this
way both scene segmentation and figure-ground segregation are incorporated in a unified
framework.

7.6 Future Topics
In the present study, we have not addressed the role of prior knowledge in image

segmentation.  Knowledge has long been recognized as playing an important role in perceptual
organization by Gestalt psychologists (Koffka 1935; Rock and Palmer 1990; see Sect. 1).  For
example, when people segment the images of Fig. 16A and Fig. 17A, they inevitably use their
knowledge of human anatomy, which describes among other things the relative size and position
of major brain regions.  A more complete system of image segmentation must address this issue.
We note that studies have been conducted to segment a mixture of random patterns based on
oscillatory associative memories (Wang et al. 1990; Horn and Usher 1991; Sompolinsky and
Tsodyks 1994).

Besides prior knowledge, many grouping principles outlined in Sect. 1 have not been
incorporated into the system.  One of the main future topics is to incorporate more grouping cues
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into the system.  The way to do so in our approach is to embed them in connection weights
between oscillators.  A general issue in incorporating multiple cues is how to set relative
importance of each cue for segmentation.  Two simple strategies are winner-take-all and linearly
weighted combination.  The integration process gets tricky when different cues produce contrasting
results of segmentation.  The global inhibitory mechanism will play a key role in overall system
coordination: it makes various factors compete with each other, and a final segment is formed
because of strong binding within the segment.  The general criterion for the integration should be
that it must enhance the overall system performance.

Our study in this paper focuses exclusively on visual segmentation.  It should be noted that
neural oscillations occur in other modalities as well, including audition (Galambos et al. 1981;
Ribary et al. 1991) and olfaction (Freeman 1978).  Strikingly, these oscillations in different
modalities show comparable frequencies, all characterized by γ  rhythms.  In a recent study, Wang
extended LEGION to deal with auditory scene segregation, and modeled a number of
psychophysical findings regarding auditory scene analysis (Wang in press).  With its
computational properties and its biological relevance, the oscillatory correlation approach promises
to provide a general neurocomputational theory for scene segmentation and perceptual
organization.

8. Conclusion
We have proposed a mechanism for locally excitatory globally inhibitory oscillator networks so

that only those oscillators that receive substantial lateral excitation can lead oscillator blocks to jump
to the active phase.  The stimulated oscillators in the neighborhood of a leader can be recruited to
jump up as well, but those stimulated by noisy regions cannot oscillate after a short period of time.
This state of oscillatory dynamics is proven to be globally stable, and is demonstrated by computer
simulation.  The analysis is constructive in nature and shows how the parameters of the dynamical
system should be chosen to achieve image segmentation.  An algorithm has been abstracted from
the model, and it has been applied to real image segmentation.  The LEGION algorithm produces a
number of major homogeneous regions and puts the rest of the image into a background.  We have
discussed the model's biological plausibility, its theoretical role in perceptual organization, and its
possible extensions.  The mechanism of selective gating lays a neurocomputational foundation for
the theory of oscillatory correlation, and may provide an effective device for automatic scene
segmentation and figure-ground segregation.
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Figure Caption
Figure 1. A caricature of an image with three objects that appear on a noisy background. The

noiseless caricature is adapted from (Terman and Wang 1995).
Figure 2. Nullclines and orbits of a single oscillator (We thank S. Campbell for making this

figure). A . If I > 0 and H = 1, the oscillator is enabled.  The periodic orbit is shown with a
bold curve, and its direction of motion is indicated by the arrowheads.  The left and the right
branches of the x-nullcline are labeled as L  and R , respectively.  LK and RK indicate the left
and the right knees of the cubic, respectively.  B.  If I ≤ 0 and H = 1, the oscillator is excitable.
The fixed point PI on the left branch of the cubic is asymptotically stable.

Figure 3. Architecture of a two dimensional LEGION network with four nearest-neighbor
coupling.  An oscillator is indicated by an open circle, and the global inhibitor is indicated by
the filled circle.

Figure 4. The effects of two neighborhoods.  N1(i) is the potential neighborhood, and N2(i) is
the coupling neighborhood.

Figure 5. A An image composed of four patterns which are presented to a 25x25 LEGION
network (adapted from Wang and Terman 1995).  Each square corresponds to an oscillator.
Filled squares indicate stimulated oscillators, while open squares indicate unstimulated
oscillators. B  The image in A is corrupted by 10% noise. C A snapshot of the activities of the
network at the beginning of dynamic evolution.  D Another snapshot taken shortly after C.  E
Another snapshot taken shortly after D.  F Another snapshot taken shortly after E.  G Another
snapshot taken shortly after F.

Figure 6. Temporal evolution of every stimulated oscillator.  The upper four traces show the
combined temporal activities of the four oscillator blocks representing the four corresponding
patterns indicated by their respective labels.  The fifth trace shows the temporal activities of the
loners corresponding to the background, and the bottom trace shows the activity of the global
inhibitor.  The ordinates except for the bottom one in the figure indicate the normalized x-
activity of an oscillator, and the inhibitor trace is drawn according to the normalized activity.
The simulation took 8,000 integration steps.

Figure 7. Another simulation with an alternative definition for a single oscillator.  See the legend
of Fig. 6 for explanations.  As in Fig. 6, this simulation took 8,000 integration steps.

Figure 8. A An image composed of nine patterns which are presented to a 30x30 LEGION
network. See the legend of Fig. 5 for explanations. B A snapshot of network activity at the
beginning of dynamic evolution.  C Another snapshot taken shortly after B .  D Another
snapshot taken shortly after C.  E Another snapshot taken shortly after D.  F Another snapshot
taken shortly after E.  G Another snapshot taken shortly after F.

Figure 9. Temporal evolution of every stimulated oscillator.  The upper nine traces show the
combined temporal activities of the oscillator blocks representing the nine corresponding
patterns indicated by their respective labels.  The bottom trace shows the activity of the global
inhibitor.  See the legend of Fig. 6 for further explanations.  The simulation took 8,000
integration steps.

Figure 10. A scenario for producing overlapping segments.  A square indicates a pixel with its
value shown in the middle.

Figure 11. A: A gray-level image consisting of 160x160 pixels (by courtesy of K. Boyer).  The
image is presented to a 160x160 LEGION network.  B One segment pops out from the
network shortly after the LEGION algorithm is executed.  C Another segment pops out shortly
after B.  D Another segment pops out shortly after C.  E Another segment popped out shortly
after D.  F Another segment pops out shortly after E.  G Another segment pops out shortly
after F. (We thank E. Cesmeli for his assistance in making this figure)
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Figure 12: A gray map showing the result of segmenting Fig. 11A.  The algorithm produces 16
segments plus a background.  The algorithm was run for 1,000 time steps.

Figure 13. A gray map showing the result of segmenting Fig. 11A.  Maximization is used to
compute Si.  The algorithm produces 17 segments plus a background.  The algorithm was run
for 1,000 steps.

Figure 14.  Comparison between summation and maximization in computing Si. A and B show
two different scenarios.

Figure 15. A gray map showing the result of segmenting Fig. 11A with a different value for θp.
The system produces 23 segments plus a background.  The algorithm was run for 1,000 steps.

Figure 16. A A gray-level image consisting of 256x256 pixels (by courtesy of N. Shareef). B A
gray map showing the result of segmenting the image in A by a 256x256 LEGION network.
The system produces 21 segments plus a background.  C A gray map showing the result of
segmenting the image in A with different values of Wz and θp.  The system produces 25
segments plus a background.  The algorithm was run for 1,200 steps in both B and C.

Figure 17. A A gray-level image consisting of 256x256 pixels (by courtesy of N. Shareef). B A
gray map showing the result of segmenting the image in A by a 256x256 LEGION network.
The system produces 17 segments plus a background.  C A gray map showing the result of
segmenting the image in A with different values of Wz and θp.  The system produces 13
segments plus a background.  The algorithm was run for 1,200 steps in both B and C.
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Figure 1
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