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Abstract

We studyimage segmentation on thasis oflocally excitatory globally inhibitory oscillator
networks (LEGION), wherebyhe phases of oscillatorencode the binding opixels. We
introduce a potential for each oscillator so thaly those oscillators with strong connections from
their neighborhoodcan develophigh potentials. Based dhe concept of potential, solution to
removenoisy regions in aimage isproposed for LEGION, sthat it suppresseshe oscillators
corresponding to noisy regions, without affecting those corresponding to major regioss.oWe
analytically that the resulting oscillator network separates an image into severatagajos, plus

a background consisting @l noisy regions,and illustratenetwork properties bycomputer
simulation. The network exhibits anatural capacity in segmentirignages. The oscillatory
dynamics leads to a computer algorithm, whiclapplied successfully to segmentimgal gray-
level images. A number of issuesgarding biological plausibility and perceptual organization are
discussed. Wargue thatLEGION provides a novel anéffective framework for image
segmentation and figure-ground segregation.
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1. Introduction

The segmentation of a visual scene (image) into a set of coherent patterns (objects) is a
fundamental aspect of perception, which underliesréety of tasks such asnage processing,
figure-ground segregation, amadtomatic targetecognition. Scene segmentation playsritcal
role in theunderstanding of naturacenes. Although humans perform it with apparesdse, the
general problem of image segmentation remamsolved in sensornformationprocessing. As
the technology of single-object recognition becomes more and more advanced iryeacgenthe
demandfor a solution toimage segmentation igicreasing since both naturaicenes and
manufacturing applications of computer vision are rarely composed of a single object.

Objects appear in a natural scene as dgheuping of similar sensoryfeatures and the
segregation of dissimilar ones. Sensory features are generally taken to be localharsinmnplest
case may correspond to single pixels. To approach the problem of scene segmentation, three basic
issues must be addressed: What are the cues that determine grouping and segi&tatios the
proper representatiofor the result of segmentation™How are thecues used taive rise to
segmentation?

Much is known about sensory cuibsit are importantor segmentation. In particulaGestalt
psychology has uncovered a sefpahciples guiding thgrouping process ithe visual domain
(Wertheimerl923; Koffka 1935; Rock an&almer1990). Webriefly summarize some of the
most important principles (see also Rock and Palmer 1990):

* Proximity. The closer the features lie to each other, the easieatkelp begrouped into the
same segment.

« Similarity. Features that have similar attributes, suchragness, color, depth, textuedc.,
tend to group together.

» Common fate Featureghat have similar tempordlehavior tend t@roup together. For
instance, a group of featurésat move coherently (common motionpuld form a single object.
Notice that common fate may lvegarded as one aspect of similarity. We list it separately to
emphasize the importance of time as a separate dimension.

» Connnectednes# uniform, connectedegion, such as a spot, line, more extendearea,
tends to form a single segment.

» Good continuationA set of featurethatform a smooth and continuous curve tendjtoup
together.

The above principles conceamly the qualities within the inputmage. Such groupings may
be referred to as the bottom-up process. Another important aspect has to do with prior knowledge
(memory), i.e., if a set of features belong to the same familiar pattern, they tgrodipotogether.
Prior knowledge can strongly influence the grouping process in a top-down fashion, distied is
in the following.

* Prior knowledge

All of these principleqpossibly more) work together to give rise to segmentation. The
integration of these differing principles by itself can pose a significant computational problem.

In computer vision algorithm$or image segmentationthe result of segmentation can be
represented in manways. However, it isnot a trivial task to representhe outcome of
segmentation in a neuraktwork. One proposal isnaturally derived fronthe so-calledheuron
doctrine(Barlow 1972), where neurons at higher brain areas are assumed to becorselentive
and eventually a single neuron represents each single object. This representatiocalled/dwe
grandmother-cell representatioMultiple objects in a visual scengould be represented by the
coactivation of multiple units at some level of the nervous system. This representatiomdgees
theoreticaland neurobiological problemson der Malsburg 1981Abeles1991; Singer1993).
Another proposalrelies ontemporal correlationto encode the bindingMilner 1974; von der
Malsburg 1981Abeles1982). Inparticular,the correlation theory ofon der Malsburg (1981)
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assertghat an object igepresented by the temporal correlation of the firing activities of the
scattered cells that encode differésatures of theobject. Multiple objects are represented by
different correlated firing patterns that alternate in time, each corresponding to a single object.

Temporal correlation provides an elegant way to represent the result of segmentation. A special
form of temporal correlation isscillatory correlation wherethe basic unit is a neural oscillator
(seeTerman and Wan@995; Wang anderman1995). Howeverthis representatiodoesnot,
by itself, revealhow segmentation is achievesing Gestalt grouping principles. Asnaatter of
fact, despite an extensiMeody of literature dealingvith segmentatiorusing temporal correlation
(starting perhaps from von der Malsburg and Schnei@86), little progress haveen made in
building successful neural systems for image segmentation. There are two major challenges facing
the oscillatory correlation theory. The first challenge is how to aclf@stesynchronization within
a population of locally coupledscillators. Most of the modelgproposed forachieving phase
synchrony rely on all-to-all connections (seect. 2 formore details). However, agointed out
by Sporns et al. (Sporret al. 1991) andWang (Wangl993a), a network witliull connections
indiscriminately connects all the oscillators which are activated simultaneously by diffejects,
because theetwork is dimensionless and los®tical information about geometryThe second
challenge ishow to achieve fast desynchronization among differegtoups of oscillators
representing distinct objects. This is necessary in order to segment multiple objects simultaneously
presented.

We have previously proposedhaural network framework tdealwith the problem oimage
segmentation, called Locally Excitatory Globally Inhibitory Oscillator Networks (LEGION) (Wang
and Termarl995; Terman and Wan@995). Each oscillator is modeled asstandardrelaxation
oscillator. Local excitation is implemented kyositive coupling between neighboring oscillators
and global inhibition is realized by a global inhibitor. LEGION exhibits the mechaniselexdtive
gating whereby oscillatorstimulated by the same pattern tend sgnchronize due tdocal
excitation and oscillator groups stimulated by different patterns tend to desynchronize due to global
inhibition (Wang and Termaa995; Terman and Wand995). Wehave proverthat, with the
selective gatingnechanism, LEGION rapidly achieves both synchronization wighoups of
oscillatorsthat are stimulated by connecteegions and desynchronization between different
groups. In sum, LEGION provides an elegant solution to both challenges outlined above.

In this paper, we studyEGION for segmenting redmages. Before wdemonstratemage
segmentation, the original version of LEGION needs to be extended to handle imagasmnyith
tiny (noisy) regions. One suchexample isshown in Fig. 1,wherethree objects with @oisy
background form a visual image. Without extension, LEGION woelt eaclregion, nomatter
how small it is, as a separate segment. Thus, it weattito many tinfragments. Weall this
problemfragmentation Because different segments alternate in timarge number of fragments
slow downthe segmentatioprocess drastically Another and morseriousproblem is that it is
difficult to choose parameters sioat LEGION is able to achieve more than several (5 to 10)
segments (Terman and Wang 1995). Ndragmentsmay, thereforecompetewith majorimage
regions for becoming segments, so that it may not be posssible to alttcdahe major segments
from an image.The problem of fragmentation slved by introducing aoncept of potential for
eachoscillator. The stimulated oscillatorthat receive significant inpditom their neighborhoods
will develop high potentials, while otheatimulated oscillators wilhot. Shortlyafter they are
stimulated, low-potential oscillatorthat cannot be recruited by high-potentades will cease
oscillating. The extended dynamics is fullgnalyzed, andhe resulting LEGIONnetwork is
applied to gray-level images and yields successful segmentation.

In the next section we review prior worklevant to image segmentatiand neurahetworks,
particularly neural modelssing the representation of oscillatogprrelation. In Section 3, our
model is described in detail, and it is analyzed in Section 4. In Section 5, computer simulations of
the extended LEGION network are presented. Section 6 prélsergegmentatioresults orreal
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images. Further discussionsncerningour approaclare given in Section 7 Finally, Section 8
concludes our exposition.

2. Related Work
2.1 Image Segmentation Algorithms

Due toits critical importancefor computervision, image segmentatiomas been studied
extensively. Many techniques have been inventéar reviews ofthe subject see Zuckd976;
Haralick 1979; Lowe 1985; Haralick and Shapiro 1985; Sarkar and Boyer 1993b; Pal and Pal
1993). Broadly speaking, there are three categories of algorigimesclassification, edge-based
organization, or region-based segmentation. A simple classification technique is thresholding: a
pixel is assigned a specific label if some measure of the piesles aertainthreshold. Thisdea
can be extended to a complexm includingmultiple thresholds whichare determined by pixel
histograms (Kohler 1981).This way, aregion of pixels is grouped together if its pixddsl
between two threshold values. Some learning techniques may be introdumcakktalassification
more flexible (see Uchiyama and Arbib 1994, for example). Edge-based techniques generally start
with an edge-detection algorithm, which is followed by grougdge elements into rectilinear or
curvilinear lines. These lines are then grouped into boundaries that can be sesgahe¢at images
into various regions (see, for example, Geragal. 1990; Sarkar and Boyer 1993a; Forestal.

1994). Finally, region-based techniques operate directly on regiortdasgical method is region
growing/splitting (or split-and-merge, see Horowitz and Pavlidis 1Zi@ker 1976; Pavlidis
1977; Adams and@Bischof 1994), wheraterative stepsare taken togrow (split) pixels into a
connected region if all the pixels in the region satisfy soaralitions. One suchcondition isthat
the distance between the minimamd themaximum pixelvalues is within a pre-definedinge.
Most of the techniquegsse one omore Gestalgrouping principleghat emphasizeelationships
among object components (Mohan and Nevatia 1989; Sarkar and Boyer 1993b).

One of theapparent deficits with these algorithms is thiteirative (serial) nature (Liowet al.
1991). There aresomerecent algorithmsvhich are partially parallel. IrEha'ashuaand Ullman
(1988), a globally consistent curve structure is detected using a locally connected netiarld. In
et al (1991), aparallel technique isised to search partition space. InMohan and Nevatia
(1992), part of the segmentatigmrocess is performed byreeural networkfor costoptimization.
A similar approach is taken by Manjunath and Chellgig&3), who use aompetitivenetwork
for reducing noise antlumination effects. Aparallelizable inferencaetwork based on Baysian
statistics is used by Sarkar and Boyer for detecting a set of structures, such as ellipses, circles, and
ribbons (Sarkar and Boyer 1993a).

Most of these techniques rely on domain-specific heuristics to perform segmentation, and no
unified computational framework exists to explain the general phenomenon of scene segmentation
(Haralick and Shapiro 1985). The problem of scene segmentatomgutationally hardGurari
and Wechsler 1982), and largely regarded unsolved.

2.2 Neural Network Efforts

Neural networkshave proven to be successful approach fmattern recognition (Schalkoff
1992; Wang 1993b). Unfortunatelitile work hasbeen devoted to scene segmentation which is
generally regarded as part pfeprocessing (ofteitmeaning manualsegmentation). Scene
segmentation is a particularly challenging task for neural networks, partly because traditional neural
networkslack the representationpbwer for encodingnultiple objectssimultaneously.The two
most popular network architectures, namely multilayer perceptrons and associative memories, both
require learning or memory of patterfisst, whereasscene segmentatioexcept thatbased on
prior knowledge, seems to be @mmate andmmediateprocess, thuslifficult to be formulated in
these architectures.
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Sejnowski and Hinton proposed a scheme for separating a figure from a background using the
Bolzmann machine algorithm (Sejnowski and Hinton 1987). Their mettaydeversethe figure
and thebackground by shifting top-dowmput (they call it attention). Mozer et al (1992)
presented an interesting methodusfng multilayer perceptrons foscene segmentation, in which
each unit is extended to colleth intensity angphase. Grossbemnd Wyse (1991) proposed a
modelfor imagesegmentation, based ¢me contour detection model Gfrossbergand Mingolla
(1985). The modelusesfilling-in (dye-spreading) to restore regions from clossmhtours.
Computer simulations implementirgpme ofthe ideasproposed in Grossbergnd Mingolla
(Grossbergand Mingolla 1985) have been presented Boveet al (in press). Howeverall of
these methods were tested only simall synthetidmages, and it is notlear how they can be
extended to handle real images.

Since neurahetworkscan be readily applied to classificatibasks, they are applicable to
segmentation based qixel classification. In particulakKohonen'sself-organizing mapsave
been used for segmentation (Kohonen 1995). &atl (1995) have developed a system based on
self-organizing maps to segment rangeages. Raghwet al (1995) have studied texture
classificationusing a self-organizingnap followed by a multilayer perceptron. Aprimary
drawback of these methodstigt thenumber of segments (objects) is assumed tanmevn a
priori.

Because temporal (oscillatory) correlatioffers an elegantway of representingnultiple
objects in neurahetworks (von der Malsburg and Schnei@@B6), most of the neuralnetwork
efforts onimage segmentation have centeeedund this theme. In particulahe discovery of
synchronousscillations in the visual cortéxastriggered much interest in exploring oscillatory
correlation to solvehe problems of segmentation and figure-ground segregation (Vetarad.
1990; Baldi andMeir 1990; Sompolinsket al. 1991; Sporngt al. 1991; von der Malsburg and
Buhmann 1992; Hummel and Biederman 198Rrataand Shimizu 1993; Schillen arkibnig
1994). One type of model usak-to-all connections to reach synchronization (Wahgl. 1990;
Baldi andMeir 1990; Sompolinskyet al. 1991; von der Malsburg and Buhmatf92). As
explained inSect. 1,these models cannot extend very far in solvimg segmentation problem
because fundamental information concerning the geometry arsengory features islost.
Another type of modeliseslateralconnections to reackynchrony (Spornst al. 1991; Hummel
and Biederman 1992; Murata and Shimizu 1993; Schillenk&milg 1994). Unfortunately, it is
unclear to what extent these oscillat@tworkscansynchronize orhe basis oflocal connectivity
since no analysis is given and only simulation results on sreadlorksare provided. Moreover,
recentinsightsinto the contrasting behavior betwesimusoidal andelaxation oscillators makes
clear thatsinusoid-typed oscillators, which encompass moghefoscillator modelsised, have
severe limitations tsupport fast synchronizatiqiVang 1995 Terman and Wand995; Somers
and Kopell inpress). In fact, irall of theabovemodels, nothinglose to a realmage has ever
been used for testing these models.

3. Model Description

In this section, we providthe precise definition obur model. In Sect. 3.1 weescribe the
model in detailwhich will be studied in thigpaper. In Sect. 3.2 wgive somealternative
definitions that can be used without altering model dynamics.

3.1 Model Definition

The building block of LEGION, a single oscillatioris defined as a feedback loop between an
excitatory unit; and an inhibitory uniy;:

X =3 =X + 2=y + 1 H(p +exp-a ) —6) + S +p (1a)
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yi = €(y(1 +tanh(x /B)) - i) (1b)

HereH stands for the Heaviside step function, which is defindd(@s= 1 ifv= 0 andH(v) = 0
if v<O0. I; represent external stimulation which is assumed tppéed atime 0, andS; denotes

the coupling from other oscillators in the netwogkdenotes theamplitude ofGaussian noise, the

mean ofwhich is set top. The negative mean issed toreduce the chance of self-generating
oscillations, which will become clear in the n@eragraph. The noiseterm is introducedor two
purposes. The first one is obvious: to test the robustness of the sy&tersecond one, perhaps
more important, is to play an active role in separating different input pattermadffediscussions
see Sect. 4 and Terman and Wang 1995).

The parameteg is a small positivenumber. Hence(1), without any coupling or noise and
with constant stimulation, corresponds to a standard relaxation oscilldterx-nulicline of (1) is
a cubiccurve,while they-nulicline is a sigmoid function. If > 0 andH = 1, these curves

intersect along the middle branch of the cubieen 3 is small. In this case, weall theoscillator

enabledsee Fig. 2A). It produces a stable periodic orbit for all sufficiently small values dhe
periodic solution alternates betwesitent and active phases ohear steady-stateehavior. As
shown in Fig. 2Athe silent and thective phases correspond the left L and the rightR
branches othe cubic, respectively.The transitions betweethe two phasesoccur rapidly(thus

referred to agumping. The parameteyr is used tacontrol the ratio of the times that teelution

spends in these two phases. For a larger valydlod solution spends a shorter timeha active
phase. 1 <0 andH = 1, the nullclines of (1) intersect at a stable fixed point atbedeft branch
of the cubic (see Fig. 2B). In this case (1) produces no periodic orbit, aostilteor is referred
to asexcitable indicating the oscillatohas notyet been but can bexcited bystimulation. An
excitable oscillator may be oscillatory if receives, throughhe termS, largeenough coupling
from other oscillators. Because of this dependencxiarnal stimulationthe oscillations are
stimulus-dependent. We s#hat the oscillator istimulatedif | > 0, andunstimulatedif | < 0.

The parameteB specifies thesteepness ahe sigmoidfunction, and is chosen to be small. The
oscillator model (1) may be interpreted as a méalethe spiking behavior of a singleeuron, the
env: rstt r i imati etwar t

o ey AR b cR s EfiRig Te-iRaReRtr A SIS 2hE
introduction of the Heaviside function in whiah> 0 and 0 B< 1. The parameter is chosen to
be O(¢) so that the exponentiinction in (1a) decays onsdow time scale. It isthe Heaviside
termwhich allowsthe network to distinguish betweemajor blocks and noisy fragments. The
basic idea is that a major block must contain at leasbsai#éator, denoted asleader, which lies

in the center of a larggomogeneous region. Thoscillator will be able to receive lardateral

excitationfrom its neighborhood. A noisfragmentdoes notcontainsuch an oscillator. The
variablep; in (1a) determines whether or not an oscillator is a leader. It is referred to as the

potentialof the oscillator. We assume that satisfies the differential equation:

B=AQ-p)Hl T Tix HXxx—6x) —6pl —u By (2)
KON (i)

HereA > 0, Tj is thepermanentonnection weight (explained latdrpm oscillatork to i, and
N1(i) is some neighborhood pfcalled thepotential neighborhoad Notethat the outeHeaviside
function in (2) equals 1 ithe weightedsum oscillatori receives fronN,(i) exceeds théhreshold
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8. Hence, if this weighted sum exceeds the thresfjplg approaches 1. |If this weighted sum
is below6, pj relaxes to 0 on &me scale determined by, which is chosen to b®(¢) resulting

in a slow time scale. It follows thpt can only exceed the threshddh (1a) ifi is able to receive
a large enough lateral excitation from its potential neighborhood.

In order to develop a high potential, it is not sufficient that a large number of neighbase of
oscillatory. They must also have a certain degree of synchrahgirroscillations. In particular,
they must all exceed titareshold6, at the saméme in their oscillations. Although2) appears
complicated, itshould beclear by now that the equatiorand theidea behind it arequite
straightforward.

The purpose of introducintpe potential is that an oscillataith a highpotential carlead the
activation of an oscillator bloc&orresponding to an object. Though it is not nedtlatlahigh-
potential oscillator bestimulated, it must be stimulated ander to playthe role of leading an
oscillator block; otherwise, the oscillator will stay excitable according to (1). Thus, we régtire
a leader be always stimulated. More formally, an oscillatodefined as a leadergf= 8 andi is
stimulated. The potential of every oscillator is initialized to zero.

The network we study foimage segmentation isvo dimensional. Each oscillatorhas a
permanent connection witthe oscillators in its potentiaieighborhood. Figure 3 shows the
simplest case of permanent connectivity, where an oscillator is connected only wiblirits
immediate neighbors except on theundaries where no wrap-arounduged. Sucltonnectivity
forms a2-D grid. In general, howeveN(i) should be larger, anthe permanent connection

weights shouldtake on theform of a Gaussian distribution,e., the weight between two
oscillators should fall off exponentially

The coupling terng in (1) is given by

S= Y WyH(X—6)—W;H(z-6x) (3)
KON(i)

whereW;, is thedynamicconnection weight fronk to i, andNy(i) is another set of neighboring
oscillators ofi, called thecoupling neighborhoadUnlike the potential neighborhoaithe coupling
neighborhood affects the activity of an oscillator directly.

Why do we need two neighborhoodBs?(i) determines whetheércan become kader, while
No(i) determines which oscillatorsin affect the activity of. In general, we wan,(i) to be
relatively large, sothat only a sizable, homogeneous regioan producdeaders. Figure 4

illustrates this point. With the size bk (i) in Fig. 4, it iseasy toselect6, so thatonly the three

major regionscan producdeaders. Unlikehe oscillators lying in the three majoggions, the
oscillator whose N4 (i) lies in the upper-left part of thegure, for example, hashuch fewer

stimulated oscillators withiN,(i). Such a choice dfi(i) is desirable sincaoisy regionsare not
supposed to produce leaders. On the other haNg(i)fis the same ad4(i), then it isdifficult to

distinguish, for example, the two oscillators in Fig. 4, one lying insideree-like object but near
the border and another one lying outside of the objecalbatneathe border, interms of which
one should join the tree-like segment. This troubling situatgonberesolved by using amaller
No(i). As illustrated in thdigure, the choice of a smal,(i) makes itclear which of the two

oscillators lies inside the tree-like object. This analysis leads to our following assumption

N2(i) 5 Ny (i)
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Now let us explain theuse of permanent and dynamic connectieights. Tofacilitate
synchrony and desynchror{gnore discussions later), we assurtteat there ardwo kinds of
synaptic weight (link) betweetwo oscillators. The permanentveight, or T;,, embodies the

hardwired structure of a network, and doesci@ngé. On the othehand,the dynamioweight,
or Wi, rapidly changes. W, is formed on thebasis of Tj, according to the mechanism of

dynamic normalization (Wan§995). Dynamic normalizatiorwas previouslydefined as awo-
step procedure: First update dynamic links and then normalization (WangTE8%&n and Wang
1995). There are different ways to realize such normalizatiotheliollowing, we give one way
to implement dynamic normalization in differential equations,

U =n@-uwl —vuy (4a)

Wi = Wy Tig Ui ug = Wi 3 Tjj Ui U (4b)
JON(i)

The functionu; measures whether oscillatds stimulated, and it is initialized to 0. Tparameter
n determines the rate of updatiag and it is chosen so thatis O(1) with respect ta. Whenl; >

0,u; — 1 quickly; otherwise wheh = 0,u; = 0. For this equation we assuipe O if oscillatori
is unstimulated (otherwise it is easy to enforce this by applying a step functidy). orirhe

parametew is chosen to b©(¢), so thaty; slowly relaxes back to O after the extersamulus is

wit ea\évsns:umehatwik are initialized to or all i andk. It is easy to sethat if oscillatori is

unstimulatedW;,, remains to be @or all k, and if oscillatork is unstimulatedV;, = O for all i.
Otherwise, ifu; = 1 anduy, = 1 for at least onke [ Nx(i), then at equilibrium,

WTT'k Ui Uk

Wy=———— and > Wik =Wy
2 Tij Ui yj KON(i)
JON(i)

Thus the total dynamiaveights converging to a single oscillator equéls, which gives the
desired normalization. Noticéhat dynamicweights, not permanentweights, participate in

determiningS; (see(3)). Weight normalization othis type is commonlyused incompetitive

learning networks (von der Malsburg 1973; Goodhill and Bart6@4). Notice thatW;, can be

properly set up in one step at the beginning baseektainal stimulationwhich should be useful
for engineering applications.

It should be mentionethat weight normalization is not mecessary conditiofor the selective
gating mechanism taork. This conclusion habeen established previously (Terman &viang
1995). With normalizedweights, howeverthe quality of synchronization withirach oscillator
block is better (Terman and Wat§95). In Sect. 3.2, wgive an alternativesystem definition

1 To be more precise, a permanent weight may reflect the traces of long-term memory and thus may change on a
very slow time scale compared to a dynamic link.
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without weight normalization.Indeed, in aralgorithmicversion of LEGION to be introduced in
Sect. 6 for handling gray-level images, no weight normalization is employed.

In (3), W, is the weight ofnhibition from the global inhibitorz, whoseactivity, also denoted
by z, is defined as

Z = §0(O'oo - Z) (5)

whereo,, = 1 if x; = 6, for at least on®scillatori, ando,, = 0 otherwise. Hence#d,, represents
another threshold, and it is chosen so that only an oscillator jumpihg axtivephasecan trigger

the globalinhibitor. If o, equals 1,z - 1. The parametep representshe rate atvhich the

inhibitor reacts to the stimulation from the oscillator network. _ _
The introduction of a potential provides a solution to the problem of fragmentation. There is an

initial period when the terraxpga t) exceeds the threshofd During this periodevery stimulated
oscillator is enabled. This allows the leadereeteive sufficientateral excitation so that they can
achieve &high potential. After this initial period,the only oscillators whickcan jump up without
stimulation from other oscillators are the leaders. When a leader jumps up, it spraefilgtjtgo
other oscillators within its own block, so thegnalso jumpup. These oscillators are referred to
asfollowers Oscillators not in this blocre preventedrom jumpingup, because of the global
inhibitor. The oscillators which belong to the noisy fragments will nadlide to jump ugeyond
the initial period, because these oscillators will noable to develop a sufficientlyigh potential
by themselves and they cannot be recruited by leaders. These oscillators are refeloeets as

In order to be oscillatory beyond the initial time period, an oscillator must either be a leader or a
follower. This indicates that the oscillator is not part of a noisy fragment, bevaiggefragments
in an image tend to be small and isolateeeFig. 4). The collection of alhoisy regionsvhose
corresponding oscillatorare loners iscalled thebackground which is not a uniform region and
generally discontiguous.

The global inhibitor playshe same role of desynchronization as it did before (Terman and
Wang 1995; Wang anderman1995). Thus,this extended LEGION networkan still be
characterized as local cooperation via excitatory coupling among neighboring oscillators and global
competition via the global inhibitor. See Terman and Wa8§5) andWwang and Termafi1995)
for more discussions on other aspects of this model.

3.2 Alternative Definitions

There are alternative ways of defining the model without affecting its essymemnics. Here
we give some alternatives. First, the produadérnal stimulation and the Heaviside function in
(1a) can be replaced by a sum,

X = — x> +1-y+l; +H(p+exg-at)—6 +S +p (3.1)

In this case, we require that an oscillator be oscillatory if and omiyoifof the three termd;, H,
andsS are positive. This requirement canitmplemented by changing the constant Zlia) to 1
in the above equation. The same analysis as in Sect. 4 will apply to the resulting model.

Another possible change to (1a) is more substantial. Again, we change (1a) to the following,
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X =3 =X + 2=y +1j + W, H(p; + exp-a t) — 6) + W H(S — 69 —W, H(z - 6,,) + p
(3.2)

Here,W, and6fs are new parameters, awg andW, are as defined in (4b) and (3), respectively.
In addition,the z term in(3) is removed fromthe definition ofS;. More importantly, dynamic

normalization of connectiostrengths in (4) is noteeded in this modifiedhodel, because the
second Heaviside function {3.2) playsthe role of normalizing the overall couplirigpm other
oscillators. Because dtihis, the analysis in Sect. Will apply to the resulting model in the same
manner.

We choose not to include (3.2) in the main model described in S&diecause the quality of
synchrony within each block and the flexibility for choospagameters seem somewhegsened.
However, due to itselative simplicity, (3.2) may be more desirabfer engineering applications.
More discussions will be given in Sect. 5, along with some simulation results.

In (1a), there is an expliciise oftimet in the exponentiafunction. Explicit time makes it
difficult to segment a sequence of images, because every time a new image is ptdsastiedbe
reset to 0. The ability to deal with time-varying images is necessapefoeiving motion patterns
(see "common fate" in Sect. 1), and it is crucial for real-time segmentation of nonstaticeresg.
We can, however, eliminate explicit time by the following modification tc?(1a)

X =3 =X+ 2=y +1iHp + ¢ ~6) + S +p (3.3)

Whereg; is defined as

G =-ag+ 1)

Herea is a decay parameter. VEssume fosimplicity thatl;(t) is a step functiothat suddenly
turns on when external input stimulates oscillatdVith g; initialized to 0, g equals 1 whem(t)
turns on, andj decays to O exponentiallyhenl;(t) turns off, thusplaying the same role as the
exponential function in (1a).

As will be clear in Section 4, the precise nonlineams of the x-nulicline and they-nulicline
in (1) are not important for the system to work. The specific cubic and sigmoid functioksgsee
2) are used in the model because of their simplicity.

4. Analysis
4.1 Preliminaries

Before stating themain result, itwill be necessary tonake some definitions and introduce
some notation.Let g be any oscillator. Alockis defined to be a maximally connectset of

stimulatedoscillators. Thisdefinition of a block implies thal4(i) is assumed t@ontain only
immediate neighbors of Suppose that the oscilla®rbelongs to the blocB. According to(2),

§ is a leader i} \on,(i)nB Tik > 6p. Thatis, the maximumstimulusthat g can receive from

2 We thank P. Linsay for this suggestion.
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permanent connections with oscillator\Ni(i) n B is above thehreshold6,. A major block is
any block that contains at least one leader, anthar blockis a block with no leader.

The analysis will take extensive advantage of the singular nature of solutions to the model. We
dissect the solutions into fast and slow components using the small paraméles allows us to

construct singular solutions of (1)-(5) in whiehs formally set tazero. Here wdoriefly review
the singular perturbation construction of a single oscillator. This will nedpivate the notation
andég(rjlg?d%(r)m licated constru }ions which follow.

the relaxation oscillator
X' =f(x,y) + I
(4.1)
y =€9(X, y)

where f(x, y) = 3x —=x3+ 2 —y and g(x, y) = y(1 +tanh(x/B)) —y. If | > 0 andg is sufficiently
small, then the-nullcline C = {(x, y): f(x, y) + | = 0} intersects thg-nullclineH = {(x, y): g(x,

y) = 0} at a unique point which lies dhe middle branch o€, and(4.1) gives rise to astable
periodic solution for ale > 0. The singular solution @#.1) is shown in Fig. 2A. It consists of
four pieces. The pieces which lie on the left brdncand the right brancR of C correspond to
the silent andactive phasesrespectively. The othertwo pieces conneck. with R. The piece
which connectshe left kneeLK of L with R corresponds to wheihe singular solution jumps

up. The piece which connects the right kRg€ of R with L corresponds to whethie singular
solution jumps down.

If | < 0, then the nullclines intersect at a pairftich lies onthe leftbranch ofC. This is a
stable fixed point of (4.1), and the system is excitable. This situation is illustrated in Fig. 2B.

In the analysis that follows, we construct singular solutionsnfane generahetworks. Each
oscillator will lie on the left or the right branch of some cubic, or will be inptloeeess ojumping
up or jumpingdown betweensuch branches.The relevant cubic is determined by the level of
stimulus which the oscillataeceives. Iwill be convenient to introduce tHellowing notations.
Referring to (1a) and (3), we set

S=liHE+exa) -6 SE= 3 Wi HOow =60, S;= Wy H(z —6x)
KONL(1)
Let (S, S ) ={(x, Y): f(x, ) + § + Se — S = 0} and denote thieft and right branches of
this cubic byL (S, &, &) andR(S, &, ), respectively. Denote the lefhd the righknees of
this cubic byLK(S, &, &) andRK(S, &, $), respectively.

We will assume that the paramefgiakes one of two values. In othgords, the inputimage

is assumed to be a binapne. This assumption simplifieghe following analysis, but, as
discussed in Sect. @he analysiscan be extended to gray-levehages. Ifthe oscillatore is

stimulated, the; =1+ > 0, while ife is unstimulated, thel = I-< 0.

Assumethat the leftoranch ofL = L(1*, 0, 0) is given byL = {(x, y): x = h(y)}, and
consider the scalar equation

11
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y =g(h(y), ) (4.2)

This equation determines the evolution of singular solutions dthmgilentphase. Forx, y) O
L, let Y(y, ©) be thesolution of(4.2) suchthat gy, 0 =y. Fory; <Yy,, define 1(y;, y») by
W(y2, T(Y1, Vo)) =Yy1- Thatis,1(yq, Yp) is the time of excursion fromy, toy;.

4.2 Main Result

We now formally stateour main result. Itbasically stateshat it is possible to choose the
parameters so that the network quickly evolves to a state in whichihenbscillators belonging to
a major block oscillate All of the oscillators within a major block oscillate sgnchrony,while
distinct majorblocks oscillate out ofphase fromeachother. The unstimulated oscillators never
oscillate, and after an initial transient period, loners do not oscillate either.

The following theorem is concerned with singukolutions of (1)-(5) in whicle is formally
set to zero. The precise definition of a singular solution is very similar to that given in Terman and
Wang (1995). Irthe theorent is considered to be treow time. Using analysisimilar tothat
given in Terman and Wang (1995, Section 4.5), careshow that thefollowing theorem extends
to solutions of (1)-(5) i€ > 0 is sufficiently small. We will ignore the role of noise in the proof of
the theorem. While this simplifies the proofsraall amount ofSaussian noise not only does not
disrupt oscillatory dynamics but also aids fitecess okeparating oscillatdolocks, asllustrated
in the numerical simulations of Section 5.

Theorem: Fix M > 0. Assumehat each oscillatdnegins, whert = 0, onL . Moreover, if

(X1, y1) and &, y,) are distinct oscillators theny # y,, and ify; < y», thent(ys, yo) < M.

There exists T > 0 suchthat if the parameters i(il)-(5) are chosen appropriately, then the
following hold:

A) Let B be any major block. For eathk @jther every oscillator if8 is in a silenphase,
in an active phase, or every oscillatoBn is jumping up or jumping down.

B) If t > T, then at most one block can be in the active phase.

C) Every loner is in the silent phase for everyT.

D) Every unstimulated oscillator is in the silent phase for ever.

Remarks: a) Theproof demonstratethat it ispossible to choosthe parameters so that the
time T corresponds to nmore tharNy, + 1 cycles wheré\y, is equal to the number @hajor
blocks.

b) We assume that every oscillator begins in the silent phase. The choice of parameters depends
on the constari! which measures howlose the oscillators begin to eacther. Our numerical

simulations indicate that these restrictions are not necessary. For the numerical simulations, we use
random initial conditions.

c) Theproof is very constructive, and giveather precise estimates tiow the parameters
need to be chosen. We comment on this later after the analysis.

The proof of the Theorem is carried out in a number of steps. We first prove a weaker result in
which T may correspond to more thhky + 1 cycles. For thisveakerresult, wemakevery few

restrictions on the parameters. We then prove the stronger result by clibegpagameters more

12
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carefully. The approach wke isvery similar tothe proofs given in Terman and Wan{ 995).
We will not giveall of thedetails of theanalysis here whenever an argumenidentical to that
given in Terman and Wang (1995).

4.3 Unstimulated Oscillators

We require that unstimulatemscillators never jump up to tlaetive phase. This will be the
case if certairconditions on the parameters aatisfied. Recall that ife is an unstimulated
oscillator, thenl; = 1= < 0. The maximainput thate; can receive due to couplifigom its
neighbors idVy. Then we require that

| +Wy <0 (4.3)

From the discussion in the preceding section, this implies that the cubic corresporelialyveys
has afixed point on itsleft branch. Thiscubic maychange because the inputhich e receives
may change. Howeveg, will always tend towards the fixed point dme leftbranch which ities
on.

4.4 Synchronization of Oscillators within a Major Block

LetB be any major block. We demonstrate that if dflevbscillators irB begin sufficiently
close to each other, then they will synchronize in the following sense: at any(gmen time, all
of the oscillators ilB are either in their silent phase, in their agihase jumping up, orjumping
down. Moreover, the maximum distance between any two leadBrs an anywo followers inB

approaches zero at an exponenigé as timeapproaches infinity. Thisvill only be true for
appropriate choices of the parameters, thiecanalysis will clarifyhow to choosehe parameters.

For this analysis, there may or may not exist other oscillators besides thbse in

The oscillators ilB begin in the silent phase on teét branch ofL(1*, 0, 0). Here weneed

the termexd-at) in (1a). This guarantees that every stimulated oscillator is initially enabled. If

is sufficiently small, then the oscillators B remain enabletbr at least thefirst cycle. Hence
these oscillators must eventually jump up, and there are two ways in whicarthiappen. Here
we briefly describe both mechanismg:or this, itwill be necessary tanake thefollowing

definition. Lete ande be any stimulated oscillatorsih We say thag is acoupling neighboof
g if j ONy(i) n B . Referring to(3), this impliesthat thecoupling neighbors o& arethose
oscillators in the same block gawhich receive input frong; wheneves, is active.

The first mechanism by whiclthe oscillators inB  may jump up is calledast threshold
modulation (Somers and Kopell 1993). One oscillatoresady B reaches the left knee bf(l+,

0, 0) and then jumps up tbe activephase. When x; crossesfy, €;'s coupling neighborgeel

excitation. This hathe effect of raising the cubic®rresponding to theseeighbors. |If, athis
time, the neighbors lie below the left knee of their new cubic, then they must jumphgoactive
phase. InTerman and Wang1995), we provdhat this will be the case if the parameters are
chosen appropriately. We must bareful inchoosingthe parameters becausealso turns on

inhibition; this has the effect of lowering the cubics. We assume that

minoN, inB {Wji} > Wz (4.4)
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so that the net effect dfoth excitation and inhibition is to raise ascillator's cubic. Onceeg;'s
coupling neighbors jump up, then they will cause their coupling neighbors to jumptbp bgme
mechanism. Continuing in this way, every oscillatd8inwill jump up at the same (slow) time.

The second mechanism by which that the oscillatoB8 imay jump up is often referred to as
rebound(Perkel and Mulloneyt974). Supposthat theoscillators inB are in their silenphase
and some other oscillatosse active. Then the oscillatorsBh lie onL(1*, 0, W,). When the
active oscillators jump down, they turn off inhibition so that the oscillatoE8 ijump towards the
cubicL(1*, 0, 0). If, at this time, anscillator inB lies belowLK(I*, 0, 0),then that oscillator

must jump up to the active phase. If thighis case thenall of theoscillators inB will jump up
because of fast threshold modulation.

We now consider what happens wha#hof the oscillators inB lie in their activephase. We
still assume that this is the first cycle so that every oscillatBr is still enabled. Our assumption
of normalizedweightsimplies that each oscillator iB receives the same inpiMtvy from its
couplingneighbors. This ikecause the equatioa) and (4b) respond ahe fast time scale.
Hence, duringhe activephaseeach oscillator iB lies onR(I*, Wy, W,). This active phase
continues until one of the oscillators, sgy in B reaches its right knee and then jundipsvn to
the silentphase. Weclaim thatbecause of fast threshold modulation, this caublesother
oscillators inB  to jummlown. Whenx, crosses,, the excitation te,'s coupling neighbors is
reduced. This has the effect of lowering the cubics correspond&g wupling neighbors. The

analysis in Terman and Wang (1995) demonstrates that if the parametenesae appropriately,
then these neighbors mus above the righknees oftheir new cubics. Hencehese neighbors
must jump down. In a similar way, the coupling neighbors,tsf coupling neighbors mugimp

down and so on until all of the oscillatorsBn jump down to the silent phase.

We have shown that during the first cycle, all of the oscillatols ijump up and jummglown
together. We now show whis is truefor every cycle. The leadersvill, in fact, continue to
behave in thisnanner. This idbecause eadime theoscillators inB jump up, the leaders irB
receive enough input from their neighbordNip n B so that they achievetagh potential. Each
leader, therefore, remaimmabledfor atleast the nextycle. It followsthat every leader lies on
eitherL(I*, 0, 0) orL(I*, 0, W) during the silent phase and Bl*, Wy, W) duringthe active
phase.

Thefollowers inB, however, musbecome excitable.This is becaus¢he followers must
eventually have low potential so that the tegon¥ exp(-a't) in (1a) mustall below the threshold

6. This is not completely obviousnce while theollowers are in the activgphase there may be
other oscillators besides thoseBnwhich lie in the activgphase. Hencahe followers inB may

achieve a high potential by receiving input from other oscillators nBt inn the nextsubsection,
however, we will shovithat eventually no other oscillatbesides those iB will jump up while

the oscillators irB are active. Since tHellowers inB can theronly receive inputfrom other

oscillators inB , their potential must decay to zero at a rate determingd by

The followers become excitable when their potential falls b&lowhey then lie on eithdc (0,
0, 0) orL(0, 0,W5) during the silent phase and B0, Wy, W) duringthe activephase. Since
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they-nullcline intersectd (0, 0, 0) along its left branch, the followeare never able to reach their
left knee. Hencegpne difference between thist and later cycles is that after thiellowers
become excitable, the silent phase cannot terminate by a follower readéihgreeeand jumping
up. The silent phase can only terminate if a lead& ijumps upeither because of its reaching a

left knee or because oébound. All of the oscillators inB still jump uptogether,however,
because of fast threshold modulatiolnother difference is that after tHellowers become
excitable, they lie on the right branch of a different cubic than the leddeng) the activephase.
The same considerations lasfore, however, shothat all of theoscillators inB jump down at
the same (slow) time because of fast threshold modulation.

It is not hard to show that if two oscillatdis on thesame branch of the saroabic, then the
distance between them must decrease at an exponential rate. Siiotlewlses or leaders always
lie on thesame left or righbranch,the maximal distancbetween thdollowers or leaders must
decrease at an exponentiate. Wenote that there islso a compression dhe "time metric"
(LoFaro 1994) between oscillators when they jump up fiteensilent to the activphase. This is
because the rate at which the oscillators move along the left and right branches is determined by the
nonlinear functiorg(x, y). If the oscillatordie near the lefknee,and this knee is close they-
nulicline, then theg values of the oscillatorsnust be small. In particulagven though the
Euclidean distance betweéno oscillatorsnear the left knee may appear to dmeall, the actual
time it takesfor oneoscillator to reach the other may la@ge. Immediately after the oscillators
jump up to the right branch, the Euclidean distance betife@ndoes not changeHowever, the
rate at which they evolve along the right branchas determined by the values gfx, y) along
the right branch. The oscillators are nowch further fronthe y-nulicline than they were before
the jump. Hencethe time ittakes the trailing oscillator to reach the leading one is nshanter
after thejump. This compression ithe time metric can besed to provehat both the followers
and leaders must synchronize at an exponenatial Notethat while theoscillators evolve along
the same branch, the time metric remains invariant, although the Euclidean metric must decrease.

4.5 Separation of Blocks

In the precedingsection, wedemonstrated that thescillators within each blockremain
synchronized in the sense that they jump up and jdown together. This analysapplies to all
blocks, including minor ones, as long as they continue to oscillate. Here, we shewethétthe
blocks are initially close to eadther,they eventuallyseparate. By this weean that aftesome
transient period there can be at most one major block iacthes phase at anparticulartime, and
these blocks take turns to jump up to the active phase. This is whatm bydesynchronization
of the blocks. The analysis is vesynilar to that in Termaand Wang(1995), and we will only
sketch the proof of this result.

Recall that there are two mechanisms by which a bckan jump up to the active phatke
first is if one ofthe oscillators inB reaches itdeft knee, jumpsup, and then the remaining
oscillators inB  jump up because of fast threshold modulatiée.claim thatthis mechanisnwill
causeB to separate from the remaining blocks. That is, no other oscillator besides fBoselin

be able to jump up during this active phase or any ddertimeduring whichB is in the active
phase. Thereason why this irue is because once one oscillatorBn crosses,,, the global

inhibitor is turned on. This lowers the cubic corresponding to an oscillator BotaneitherC(I+,
0, W,), if the oscillator is enabled, or €50, 0,W,), if the oscillator is excitable. We assume that

I* —W, <0 (4.5)
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This implies that the-nullcline intersects both of these cubics at a pointhenleftbranch of the
cubic. The oscillators not 8 must then tend towards one of these fixed points vidilis in the

active phase and will not kable to jump up untiB returns tathe silentphase. This process of
separation of the blocks is referred to as selective gating in Terman and Wang (1995).

The second mechanism by whittie oscillators iB can jump up ighrough rebound.That
is, oscillators inB jump upwhenother oscillators not i3 jump down and release the global
inhibition. It is perfectlypossiblethat otheroscillators, besides those B, will jump up at this

time. This isthe major difficulty inproving that theblocks musteventually separate fromach
other.

In Terman and Wang (1995), we prove that during each cycle at leasewri®ock jumps up
because some oscillator in that block reaches its left knee, i.e. nebdynd. Fronthe previous
discussionthis impliesthat until thesystem reaches full separation lbbcks, atleast one new
block separates itself frorthe remainingblocks duringeachcycle. Hence, ifNg is the total

number of blocks (major aninor), thenall of theblocksare separateffom each other afteNg

cycles. Here wénclude the minoblocks, becauseunless further restrictionare placed on the
parameters, they may be oscillatory for uplgpcycles before they are no longer able to jump up.

For the proof of this result, we require that the time each oscillator spendsactiveg@hase is

small compared to the time it spends in the silent phase. More prelesedyand 7, equal to the
times that thesingular solution 0o{4.1) spends ithe silent andactive phasesrespectively. We
require thatrg > Ng7a. It is not hard to sethat this will be the case if the parametgr is

sufficiently large. This can also be achievedchgosingl* so that the left knee of amcoupled
oscillator is close to thgnulicline. This condition guarantees that there must be siomeluring

each cycle when every oscillator lies in the silg@mase orthe leftbranch ofC. Hencethe next
oscillator which jumps up must do so by reachirgftknee. The block containinghis oscillator
must then separate itself from the remaining blocks.

We must stillshowthat once @lock, sayB , separates itself frorthe remainingblocks, it
must alwaysemainbounded away fronthe otherblocks. This is proved iferman and Wang
(1995, Theorem 4.3.1). The basic idea of the proof is the following. First consider a timg, say
whenB  jumps down to the silent phase after being in the active phase with no othét Hisk.
time, B beunded away fronthe other oscillators bgome distance determined bgw longB
spent inthe activephase. This time is bounded below by some constdrf which does not
depend on the particular blo€k . It is actually more convenient to consider thetimie. That
is, let1(yy, ¥») be as defined in Section 4.1. jf= (x;, ¥;) is anyoscillator inB ande = (xj, ¥))

is any oscillator not iB , thenwhent = t, yj <y and1(y;, i) > Ta. The time metric is
convenient because it remains invariant as long as two oscillators remain on tHeftshraach in
the silentphase. One technicalifficulty is that oscillators may jump back anidrth between
different left branches while thewre in the silenphase. These jumps occur whenever other
oscillators jump to and from trective phase. Weequire that the times @Xxcursion on different
left branches are not too much different from each other. This will be the case if the pafaimeter
(1b) is sufficiently small. With this assumption, weanshowthat if g ande; are asabove,then

1(yj, ¥i) > Ta/2 as long ashe oscillators iB remain in the silenphase. Hencdd remains
bounded away fronthe otherblocks as long as it remains the silentphase. Eventually the
oscillators inB jump up to the activphase,and thisentire analysis repeats itself ovéine next
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cycle. The conditiong> NgT, is needed to insurihat onceB is separated frorthe remaining
blocks it will not jump up at the same time with any other block because of rebound.

4.6 Minor Blocks

We assume throughout this subsection ¢hit a loner which belongs to a minor bloBk It

is possible thag; is the only oscillator i3 . We first demonstrate thgtcajump up to theactive
phase for at most a finite number of cycles. After #ggahust remain in the silent phase.

We prove that the oscillators B eventually remain silent bghowingthat there issometime
after which every oscillator iB  is excitable. After this time the oscillatorsBnwill not &igle to
jump to the activgphase forthe following reason. If astimulated oscillator is excitable, then
during the silent phase it lies on eithg0, 0, 0) if no other oscillator is ithe activephase, or on
L (0, 0,W,) if some other oscillator is in the active phadée y-nullcline intersects both of these
branches. Hencéhe oscillators irB will always beattractedtowards one othese intersection
points. They will never be able to jump up by reaching the left knee of one of these cubics. It may
be possible that the oscillatorsBh  jump up because of rebound, but the left kne€(6f 0/i€3
below the fixed point o (0, 0, W). This impliesthat if theoscillators inB are released from
inhibition because some other oscillator jumps down, the oscillat@srimust jump fromL (0, 0,
W5) to L (0, 0, 0). They will not be able to jump up to the active phase.

It remains to prove that there is sotimee after which all of the oscillators inB are excitable.
The difficulty here is that whil& is in the activgphase,other blocksmay also be inthe active
phase. Hencepscillators ifB  may achieve aigh potential by receiving inpufrom other
oscillators besides those B (cf. the discussion regardindl;(i) vs. No(i) in Sect. 3). In the
precedingsubsection, however, we sdhat afterNg cycles,all of theblocks must be separated
from each other; there can be at most one block iadtiee phase at any time. In particulafter
Ng cycles,B can only be in the active phase by itself. Sidce hiself, cannot developeaders,

after thistime, the potential of each oscillator Bx must decay by aate determined byu.

Eventually, these potentials mudatl below threshold anthe oscillators changfom enabled to
excitable.

4.7 Stronger Result

We now prove that if the parameters are chosen more carefully, then the Thetaewith T
corresponding ttNy; + 1 cycles. From our analysis, tmdl be the case if the mindslocks are
not able to jump up to thactive phaseafter thefirst cycle. This, in turnwill follow if all of the
loners become excitable after st cycle. Referring t§la), weseethat there aréwo ways in

which a loner can be oscillatory. The first igX(-a t) > 6. The second is if the loner has a high
potential.

We chooseax so that ift corresponds to soméne after thefirst cycle, thenexpg-at) < 6.

More precisely, consider the singular periodic solutio(¥at). Again, let g and 7, equal to the
times that this singular solution spends in the silent and active phases, respectively. In addition, let

T equal to the time between the system start and when the first oscillator jumps to thehadae
Chooser so that
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O<exg-a(rg+ 1p)) and exg-a(rg+ 1o+ 1)) < 6 (4.6)

This guaranteethat all thestimulated oscillators remain enablddring the first cycle, but only
those oscillators with higpotential remain enabledhenthey are ready to jump uguring the
second cycle.

It follows that the only way that a loner can jump up dutimgsecondcycle is if ithas a high
potential. Recall that the onlyay thatthis can happen is if the loner receivasough input from
oscillators not in itsown block. We now show how to chooe parameters so thdiis is
impossible.

We assumehat thenetwork is weakly isotropic ithe following sense. Suppodshat the
quantity 3 ko, i) Tik = Q is independent of the oscillator We thenlet 6, = Q — 4, whered is

sufficiently small. In particular, we assuntigat o < minkDNl(i){Tik}. It then follows that the

oscillatori which belongs tthe blockB is a leader if ananly if the entireneighborhood\N(i)
belongs tdB. Moreover, ifi is in the active phase and there is at least one oscillakdy(iip which
is not in theactive phase then 2 KONy (i) Tik H(xx — 6 < 6. Clearly, this isthe case ifi is a

loner. It followsthat a loner can never havénigh potential. Fronthe abovediscussionthis
completes the proof of the Theorem.

4.8 Choosing the Parameters

We havenow demonstrated that the Theorémlds if the parameters in the model atesen
appropriately. The analysis is constructive ithe sensethat it leads to precise estimates that the
parameters musatisfy. It alsoshowsthat the Theorenmolds for a robustange of parameter
values. Moreoverthe analysis does not depend the precisdorms of the nonlinearfunctions
f(x, y) andg(x, y). Here, we summarize what estimates the parameters must satisfy.

First consider the parameters in (1a). We require tha &<, anda satisfies(4.6). Recall
thatl; = 1" > 0 if i corresponds to stimulatedoscillator, and; = 1= < 0 if i corresponds to an
unstimulated oscillator. The conditions neededifaamdI— will be discussed shortly.

Next considet(1b). Werequire thatg is sufficiently small so that the times ekcursion on

different left branchesare not too much differerfftom eachother. We alsaneed thaty is
sufficiently large so that theme of excursion inthe activephase is much shorter th#rat in the
silent phase. More precise conditions on these parameters are given earlier in this section.

We next turn tq2). Wesimply requirethat A is O(1), with respect tce, andu is O(g). The

thresholdf, must be chosen te between the values of at the leftand right branches of the

CUbIK?S\'N Eg]r%%’e\fv?s?sgrlljﬁ?.thﬁév @éi&htswik, Wz, and Wt must satisfy(4.3), (4.4), and
(4.5). These also give conditionsidrandl—. We require that O €,, < 1. The parametey in
(4) and the parameterin (5) simply need to b@(1), andv to beO(¢)

5. Computer Simulation

To illustratehow the LEGION network is used foimage segmentatiowhile eliminating
fragmentation, we have simulated a 25x25 grid of oscillators with a global inhibitor as defined by
(2)-(5). Inthe simulation,N;(i) is simply thefour nearest-neighbors without boundary wrap-

around, andNy(i) is setequal toN,(i). We arbitrarily selected an imagath four binaryobjects
(patterns): twdD's, oneH, and ond; and they fornthe word OHIO as shown in Fig. 54see
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also Wang and Terman 1995). We then injected 10% noise to the image: each uncovered box has a
10% chance of becoming covered (stimulated). The resutiage isshown in Fig. 5B. For all

the stimulated oscillators = 0.2, while for the others| = 0. Notice that if oscillator is
unstimulated Wi, = W,; = 0 for all k, andl; does notheed to be negative to preventrom

oscillating. Thughe oscillatorsunder stimulatiorbecomeenabled, and those withostimulation

become excitable and unable to oscillate. The amplpudithe Gaussian noise waset t00.02.
This represents a 10% noiswel compared to the exterrgtimulation. We observed during the
simulations that noise facilitated the process of desynchronization.

The differential equationgl)-(5) were solved using both a fourth-order Runge-Kuotéthod
and the adaptive grid o.d.e. solver LSODE. Permanent connections betweem a@yghboring
oscillators were set t8.0, and fortotal dynamicconnections (seé4b)), Wt = 6.0. Dynamic

weightsW;,, were set up ahe beginning according t@}). The following values forthe other
parameters in (1)-(5) were used for the simulation results shown in Fégs B:02,a = 0.005, 3
=0.1,y=6.0,6=09,1=0.1,6,=-05,6,=5.0,W, =157 = 1.0, u=v=0.01, = 3.0,

and 6,y = 6y, = 0.1. The value off, is chosen so that, in order achieve eigh potential, an
oscillator must have at least thraetive neighbors out of four possible neighbors o&-B grid.

Ther i HIALou" Gt (RGBS U0 GRgRIFSIaRLS ShABARS AR RARIC8E Bt Show the
instantaneousctivity (snapshot) othe network at various stages dfynamic evolution. The

diameter of each black circle representsxthetivity of thecorresponding oscillator. Specifically,
if the range ofx values ofall the oscillators is given by,in andxmyax then the diameter of the

black circle corresponding to one oscillator is set to be proportioneQif)/ (XmaxXmin -

Fig. 5C showghe snapshot athe beginning of the dynamievolution. This isincluded to
illustrate the random initial conditions. Fig. Shows a snapshot shortgter Fig. 5C. One can
clearly see the effect of synchrony and desynchralhyhe stimulated oscillatorsvhich belong to
or are the couplingeighbors ofthe rightO are entrained and have large activities (in dabtve
phase). Atthe same time, the oscillators stimulated by the rést wbisy image havesery small
activities (in the silent phase). Thus the noisy righs segmented frorthe rest oftheimage. A
short time later, ashown in Fig. 5Ethe oscillators in thgroup representinthe noisy H reach
their activephase andre separateftom the rest oftheimage. Fig. 5F showanothersnapshot
after Fig. 5E. At this time, the noisy I€ has its turn to bactivatedand separates frothe rest
of the input. Finally, in Fig. 5G, the oscillators representing the nasg in the active phase and
the rest ofthe scene remains inactivdhis successive "pop-out" tfie segments continues in a
stable periodic fashion until the input image is withdrawn.

To illustrate the entire segmentatiprocess, Figure 6 shovise temporal evolution of every
stimulatedoscillator. The activities of the oscillators stimulated by each object are combined
together as ontace in thefigure, and so ardor the background. If any group ajfscillators
synchronizes, then together they apgdi@r a single oscillator. Sincéhe oscillators receiving no
external stimulation remained excitalalled unable to oscillathroughoutthe simulationprocess,
they are excluded from the displayfify. 6. Thefour uppertraces represent the activities of the
four oscillator blocks corresponding tthhe four objects, andthe fifth one represents the
background consisting @l of the scattereddots. Because ofow potentials,these oscillators
quickly become excitable evaimough theyare enabled at thbeginning. The bottomtrace
represents the activity of the global inhibitor. Shortly afterstiaet,the patterrH and the righO
are in their active phase, together with soméhebackground oscillatorsThen the leftO andl
jump uptogether. After about one cyclethe loners fadeaway, and H and the rightO start to
separate. After about three cycles, the@efindl start to separate. The noisy imagd-if. 5B is
completely segmented infour objects, corresponding tach of thefour letters inOHIO, in
aboutfour cycles. The speed of segmentation is consistent witd analysis of Sect. 4.After
completesegmentationthe quality ofsynchrony withinthe right O improves markedly. The
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dynamic evolutionprocess iswell indicated by the activity of the globaihibitor, which is
activated when an oscillator block reaches its active phase.

As a comparison withthe alternative definition o{3.2) for asingle oscillator, wehave
simulated the same network for segmenting the same noisy image 5BFiJ-he simulation was
done in exactly the same waydere, forall stimulated oscillator$ = 0.2, while for unstimulated

oscillatorsl = -7.0. In additionWy = 6.0, 65 = 1.0, andW, = 0.2. The other parameters have

the same values as in tpeevious simulation. Figure Showsthe simulatiorresult, inthe same

format as inFig. 6. Forthis task, the network takes aboubur cycles to fully segmenall four

noisy objects. This rate of segmentation is again consistent with our analysis in Sect. 4. Also, the
simulation reveals that after full separation the qualitgysichrony withineach oscillator block is

not as good as ifig. 6. Note that the lateralnput each oscillator receives isbaary value,
whereas in (1) the lateral input is a graded value depending on how many oscillag(i$ are in

the activephase. Gradetateral input tends to promotsynchrony injumping down and thus
overall synchrony, because an oscillator can immediately feel rethiesdinput (seeSect.4.4).
During thesimulation, we also observdtat the definition(3.2) seems todlimit the range of
parameter values for lateral interactions, again because of binary lateral interaction.

With a fixed set oparametersthe dynamicakystem of LEGIONcan segmenbnly alimited
number of patterns because of the reasons given in SectheSumber of patterrdepends, to

a large extent, on the ratrg/7p of the times that aingle oscillatorspends irthe silent andactive

phases. Let us refer to thislimit as the segmentatiorncapacity of LEGION. In the above
simulation,the number of the majdolocks to be segmented is withime segmentation capacity.
What happens if this number exceedtie segmentation capacity?rom the previous section, we
know that the rebound mechanism nsgychronize oscillator blockbat have no intrinsiceason

to be grouped togetherSo, intuitively, the system shouldeparate the entire image into as many
segments as the capacity allows, whesieh segment magorrespond to onenajor block (called
simple segmehbr a number of majdolocks (called congregatesegment This is confirmed by
our numerical simulations. To illustrate this point, we show the following simulation resuits
the system (1)-(5). Weresent to a 30x30 LEGION network with arbitrary image containing
nine binary patterns, which together form the ph@is¢O STATE . These patternare arranged
as shown in Fig. 8A. We usxactly the same parametalues as in the simulation presented in
Figs. 5and 6. For thisset of parameters, owarlier experimentshowedthat thesystem's
segmentation capacity lsssthan 9. The simulationesultsare presented ifkig. 8B-G, in the
same format as ifrig. 5. Shortlyafter the start ofsystem evolutionthe LEGION network
segmented the input &fig. 8A into five segments, shown in Fig. 8C-8@spectively. Among
these fivesegments, twaare simplesegments(Figs. 8Cand 8D) and three are congregate
segments (Figs. 8E, 8and8G). Toillustrate the entire segmentatipnocess, Figure Shows
the temporal activity of every stimulated oscillashpwn inthe same format as igs. 6and 7.
For thistask, the network takedessthan three cycles to segment the entire scene into the five
segments shown in Fig. 8.

Besidesthe simulation illustrated irFigs. 8 and 9, many other simulations have been
performed forthe input ofFig. 8A with different randominitial conditions, andhe results are
comparable with Figs. 8 and 9There are differentvays, howeverthat thesystem separates the
nine patterns into fivesegments. For thiparticular set ofparameters, wean say that the
segmentation capacity of the LEGION network is 5. In facthaxe not seen a single simulation
trial where more than 5 segmerae produced. Thismportant property othe system, i.e. it
naturally exhibits a segmentation capacity, igaod accord withthe well-known psychological
principle that there are fundamental limits on thember of simultaneously perceivedjects.
Imagine that you walk into aew house. Thougthere are many interestinigings inthe house,
you can attend t@nly a few things at a time. Sonmaplications of thisproperty, aswvell as its
psychological link, shall be further discussed in Sect. 7.2.

The order of activation among segmented pattetvesars noparticular semantics. It is
determined by the randomitial conditions and systemoise. The LEGION networkssimulated
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above can be readily applied to segmenting binary images of much $zger Inthe next
section, we consider gray-level images.

6. Real Images

LEGION can segment gray-level images iway similar to segmenting binaiynages. For a
given image, a LEGION network die same size as the imagih a global inhibitor isused to
perform segmentationEach pixel of the imageorresponds to aoscillator of thenetwork, and
we assume that every oscillator is stimulated whenntlage is applied to theetwork. The main
difference between gray-level and binary images lies in how to set up connedimngray-level
images, the coupling strength between two neighboring oscillators is determined by the disparity of
two corresponding pixels.

6.1 Algorithm

To segment real images with large numbers of pixels involves integrating a large number of the
differential equations of1)-(5). Toreduce numerical computations on a secamputer, an
algorithm is extracteffom theseequations. The algorithmfollows major steps inthe numerical
simulation of the equations, and it exhibits the essential properties of releostibators, such as
two time scales (fast arglow) and the properties afynchrony and desynchrony inpapulation
of oscillators. Such extraction is quite straightforward becausetdlaeaation oscillatonetwork,
much of the dynamics tak@tace when oscillatorsare jumping up or jumpinglown. Besides
reducing numerical computatiortbe algorithmalso overcomethe segmentation capacityhich
may be desired in applicatiomgere many patterns need to be segmented from an inhAge
specifically, the following approximations have been made.

(&) When no oscillator is in the active phase (see Fig. 2), the leader cldbesjumping point
(left knee) among all enabled oscillators is selected to jump up to the active phase.

(b) An oscillator takes onéme step to jump up tehe activephase ifthe net input it receives
from neighboring oscillators and the global inhibitor is positive.

(c) The alternation between the active phase and the silent phase of a single oscillator takes one
time step only.

(d) All of the oscillators in thactive phase jumpdown if no more oscillators can jump up.
This situation occurs when the oscillators stimulated by the same pattern have all jumped up.

In the aboveactions, (a) and (dare particularly effective in cuttingown integration time,
because they dramatically shorten tinee ablock stays inthe activephase or irthe silentphase,
the two relatively stable and time-consuming stages in dynamical evolution (see Fid=ig.aéy
Despite thessimplifications, it is easy to sdbat thebehavior of thefollowing algorithm well
approximates that of the dynamical system defined in (1)-(5).

In the following, we first presenthe precise algorithnused inlater segmentatiortasks.
Further simplifications made in the algorithm will be explained in Sect. 6.2.

LEGION algorithm

Only thex value of oscillatoi, X, is used irthe algorithm. N4(i) is assumed to biae eight

nearest neighbors ofon the 2-Dnetwork, except on théoundaries where no wrap-around is
used. Itis further assumed t\l(i) = N4(i). LKy, RK, LC, represent th& values of three of

four corner points of a typical limit cycle (see Fig. 2A), whHekeandRK denote thdeft knee and
the right kneg(see Sect4), and LC denotes thgupper) left corner of thelimit cycle. By
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straightforward calculations, we obtadiK, = -1, LCy = -2, RKy = 1. In thealgorithm, I;
indicates the value of pixglandly, indicates the maximum possible pixel value.

1. Initialize
1.1Set z(0)=0;
1.2 Form effective connections

W= Ip@+l 1= kD kO M)
1.3 Find leaders

pi = H > Wi — 6pl

KON (7))
1.4 Place all the oscillators randomly on the left branch. Namely Xx;j (0)
takes a random value between LCyand LKj.
2. Find one oscillator J so that (1) Xj (t) = xg(t), where k is currently on
the left branch; (2) pj = 1. Then
Xj(t+l)= RK; z(t+1)=1 {jlump up}

Xp(t+1) = xp(t)+( LKy-x j(t)),for k #j.

In this step, the leader on the left branch which is closest to the left
knee is selected. This leader jumps up to the right branch, and all the other
oscillators move towards LK.

3. lterate until stop
If( xj(t)= RK¢and 2z(t) >z (t- 1))

xj(t+l)= x(t) {stay on the right branch}
else if ( xj(t)= RK¢and z(t) < z(t- 1))
xj(t)= LCy; z(t+l)= z(t)-1 {jump down}

If( z(t+1)=0)gotostep?2
else

Si(t+l)= 3 Wi Hixg(t) -LK x)-  WHz(t)-0.5)

kON(1)
if( Sj(t+1)>0)
Xj(t+l)= RK; z(t+l)= z(t) +1 {jump up}
else
xj(t+1) = xj(t) {stay on the left branch}

6.2. Further Remarks

Comparing the above algorithmith the dynamicalsystem of (1)-(5),one canfind the
following simplifications additionally.

(a) The dynamic weighty;j is directly set toV;; = Iiy/(1 + |; — I[). The intuitivereason for
this choice of weights is that the more pikand pixelj are similar to eacbther,the stronger the
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connection between the two corresponding oscillators, and thus the easier the two osc#ldtors
synchronize witheachother. Thisselection ofweights promotes gray-level homogeneity as a
determining factor in grouping. Compared to binary pixels, it is less straightforward to derive this
weight from neural dynamics of the kind in (4). But it is possible gikierfact that thérequency

of a relaxation oscillator, to a certain degree, increases monotonically when the external stimulation
increases (sekig. 3 of Terman and Wang995). The weightWj; can then be computed as a

frequency correlation between the presynaptic oscillator andassynaptic oscillator. It is also
worth notingthat the algorithndoes notcompute normalizedeights. Whether an oscillator can
be recruited to jump up depends solely on the net input the oscillator refteimess neighboring
oscillators and the globahhibitor. Asmentioned inSect. 3,the weight setting ithis casedoes
not prevent the selective gating mechanism from taking place.

(b) The leaders are chosen during initialization. Accordinpeodynamics described Bect.
3, potentials, and thus leadease determinedliuring a fewinitial cycles ofoscillatory dynamics.
Since every oscillator is stimulated, &M is set athe beginning, itcan be precisely predicted at

the beginning which oscillators will become leaders. Thus, to save computationahéneaders
are determined in the initialization step. Notibat, according ta(2), p; = H[ZkDNl(i)Tik H(X, —

8, — 6yl at equilibrium {1 is ignored here). Givethat Ny(i) is 8 nearesheighbors, it is
reasonable to assuntieat T; is a constant (sa¥). Thus,p; depends orthe extent that the
oscillators withinN4(i) synchronize, or whetherlies at the center of lBsomogeneous region of a
certain size. The latter is the idea behind the concept of potential, and this is effectively captured by

pi = H[X ko, ()Wik — Bpl. the formulaused inthe algorithm. One alternativefor computing

potentials ig; = H[szNl(i)H(V\/ik —W,)— 6], which computes the number of oscillatorsNii)

thati can potentially recruit to jump up (ndfé, = W,;). This formula appears closer ({8), and

has been tested during simulations. Our tests indicate that this formulafiexieds than the one

used in the a_Itgorithm and tends to need a lax ﬁ) to achieve comparable results. _
The condition for the oscillators in tim:tlveg ase to jumglown' is anmportantone, and is

based on the observation that the number of oscillators in the active phase increasesesstery
when anoscillator block is in thgrocess ofjumping up to theactive phase. Thus, when the
oscillators in the block has all jumped up, the number of the oscillators attikiephase does not
increase any longer. When all of the oscillators in a single block have jumped to thpraleat
i.e. Z(t) = 0, another leader is selectedféom another block in step 2. In step tBe system
maintains the specific values »f to ensureahat every bloclcorresponding to a segmems the

chance to jump up once before any block jumpswipe. Thatis, the system keeps an order in
jumping up.

For image segmentatioapplicationsthe algorithm can bstopped wherevery leader has
jumped up once (Aisercan of course presethe number oftime steps forthe algorithm to
execute). It should be noticed, howewblgt some oscillatorsnay jump up more than once in a
cycle of oscillations, because of the summation in the couplingSefseethe algorithm and3)).

This is illustrated in Fig. 10, with amageconsisting ofthreeregions ofequal pixelvalue. It is
easy to choose the paramaitérso that if the left segment with= 30 jumps up, then this segment

will recruit the stripe witH = 50 to jump up. This is becausetbé summated excitatidnom the
five oscillators of thdeft 30-segment. The |l = 50 stripe, howevewill not recruit the right 30-
region. When the right 30-segmejumpsup, it recruits the middle stripe to jump wgmilarly.

Thus, the stripe with= 50 jumps up twice in one oscillation cycle.

This observation raises @sue,that aregion of anmage may participate in more than one
segment. In Fig. 10, it is possible that the 50-region is part of two segments: otteevti 30-
region and one with the right 30-region. It shoulchbied thathis phenomenon is ledikely to
occur in the original dynamical system of LEGION, because an oscillator has to evolve in the silent
for awhile before it can jump up agafgeeFig. 2A), resembling the refractory period ofreal
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neuron. Although this phenomenon violatdbe basic definition ofimage segmentation in
computer vision (Schalkoff 1989), there exist interesting parallels with human percephtierso
calledduplex perceptionefers to the phenomenon that some sensory features play a double role by
participating intwo organizations. In speech perception, for exanpad, of a spectrum can be
heard as a separaseund; atthe sameime, it also joins other parts to form a speedund
(Libermanet al. 1981; Reppet al. 1983).

There are two critical parameters in the algoritidpand 6,, wherethe former is the strength
of global inhibition and théatter is thethreshold for forming higlpotentials(leaders). FoWw,,
higher values make the algorithm more difficulgroup pixelsinto regions. Thus, irder for a

region to be grouped togethdéng algorithm demands a higher degree of homogeneity within the
region. Generallyspeaking,given a gray-level image, high&¥, leads to more and smaller

regions. Foif, higher values makthe algorithm more difficult to develdeaders. Thus fewer
leaders will be developed, and fewer regions result from the algorithm. On théartkeregions

produced with a higheé, tend to be moréromogeneous.The abovediscussionwill become
clearer when the test results are presented next.

6.3 Segmenting Real Images
6.3.1 Sum vs. Max: an aerial image

Thefirst image the algorithm is tested on is an aenelge,calledLake, which is shown in
Fig. 11A. As inthefollowing images to beised,this is atypical gray-levelimage, wheresach
pixel is an 8-bit number ranging from O to 255 (also called intensity), and pixels with higher values
appearbrighter. The imagehas 160x160 pixelsand is presented to a LEGION network of

160x160 oscillators plus a global inhibitor. For this simulatih= 40 andf, = 1200. Quickly

after the image ipresentedthe algorithmproduces different segments at differémte steps, as
though the segments "pop out" sequentially from the oscillator network. Fig. 11B-11G display the
first six segment¢hat have beeproduced sequentially, whereb&ack pixel corresponds to an
oscillator in the active phase and a blank poalresponds to aoscillator in the silenphase. As
shown inthe figure, each segmentorresponds to aeaningful region in the originamage: a
segment is either a lake, a field, or a parkway. The region in Fig. 11B corresponds to a lake. The
region inFig. 11C corresponds tilve mainlake, exceptfor the lower-left partwherethe lake
region extends to a non-lakart, and forthe rightside wherehe lakeextends to itbank. The
parkway segment in Fig. 11G picks up a partial parkway network in the original ini&geother
segments match well with the fields of the image.

The entire image is separated intoré§ions and a background. $wonplify the display, we
put all the segments anthe background together into origure, using grayevels to indicate
phases of oscillator blocks. Such a displagaited agray map Thegray map of theresults of
this simulation is shown in Fig. 1%herethe background is shown e black scatteredreas.
The segments besides those shown in Fig. 11 all have good correspondence with the regions in the
image. Generallypeaking,the background corresponds to partstieé image that havaigh
intensity variations.Due to themechanism of fragmememoval, thes@oisy regions stay in the
background, as opposed teany segmentthat would have been the result without fragment
removal.

In the abovealgorithm, an oscillator summatedl the input it receives from its coupling
neighborhood, and ithe overall input is greater than the global inhibition the oscillatmps to
the activephase (see ald8)). Another reasonableray of grouping is toeplace summation by
maximization when computing:

S = Maxeon,(i){ Wik Hx — 80} — W, H(z —64) (6.1)
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Intuitively, the maximum operation concentrates on the relationvah the oscillator inNo(i) that
hasthe strongest coupling with, but omits the relation betweemndN,(i) as a whole. Thus,
grouping bymaximization emphasizgmirwise pixelrelations, whereas grouping Bymmation
emphasizes pixel relations in a local field.

By using (6.1) inthe LEGION algorithm, the Lake image is segmentegain. In this

simulation,W, = 20 andf, = 1200. Fig. 13 showthe result of segmentation bygaay map.
The entire image is segmented into regions and a background, whichimglicated by black
areas. Each segmentorrespondswell with a relatively homogeneous region ithe image.
Interestingly, except for the parkway region in the lower part of the image, every regian h3
has a corresponding onehing. 12. Acareful comparison between theo figuresreveals the
difference between summation amaéximization insegmentation. The fact that théwo figures
correspondalmost exactlydemonstratethat thetwo schemes producgmilar results. Acloser
comparison, howeveiindicates that the maximum schelyields alittle more faithful regions.
One can see this by comparing the leégions,the parkway regionsand by thefact that another
extended parkway region is segmented in Fig. 13. The problem of the main lake extending to non-
lake parts in Fig. 11 is almost eliminated in Fig. 13. t@notherhand, regions in Fig. 1@ppear
smoother and have fewer "blablles" - parts ofthe background. The smoothingeffect of
summation is generallgositive, but itmay lose importantletails. For exampldhe sizable hole
inside themain lakeregion ofFig. 13 corresponds to asland in the originaimage, which is
neglected in the main lakegion ofFig. 12. Because the maximum schewrggpears to produce
better results, it will be used in all of the following simulations.

The reasonthat summation in oscillataroupling has aole of smoothing whilanaximization
does notcan beseen fromthe following example. InFig. 14A, the centerpixel, under the
summationschemecan begrouped by its surrounding pixels with appropriateW,. This

grouping effectively smoothens the difference between the center pixel andrdsnd. But, the
center pixel cannot be grouped with the surround under the maximum scheme. On tharather
in Fig. 14B, the center pixel tends riecruited by the right oneith | = 40, but it does not under
the summatiorscheme. Another distinction is that thphenomenon of one region belonging to
multiple segments (see Fig. 10) does not occur utndemaximumscheme, whereby grouping is
symmetrical in thesensethat if pixela can recruit pixeb, thenb can recruita as well. This is
because effective weights are symmetrical, namMgly Wj; (see the algorithm).

To showthe effects oparameters, we redutiee value of6j, from 1200 inFig. 13 t01000.

As a result,more regionsare segmented, as shown in Fig. ¥#here 23 segments plus a
backgroundare produced bythe algorithm. Compared witlrig. 13, the notablenew segments
include an open-theater-like region to th# of the mainlake, and its nearbffeld region. Other
newly produced segments are also meaningful regiotigeioriginalimage. The Lake image has
been used in the study of Sarkar and Boyer (Sarkar and Boyer 1993a). As mentionedril Sect.
their approach i®dge-based.One of theresults produced btheir system is a set of closed
boundaries, which implies segmented regionthefmage. The reader is encouraged to compare
our results with theirs.

6.3.2 MR images

The next image to test our algorithm is a magnetic resonance image (MRI) of almesdaras
shown in Fig. 16A. MRmages constitute a larggass ofmedicalimages, andheir automatic
processing is of a great deal of practical value. This particoége, which we denote as "Brain-
1", is amidsagittalsection, consisting of 256x256 pixelSalientregions of thigpicture include
the cerebral cortex, the cerebellum, the brainstem, the corpus callosum, the fornix (the bright stripe
below the corpus callosum), the septum pellucidum (the region surrounttegidoypuscallosum
and the fornix), the extracranial soft tissue (the bright stripe on top dfethd),the bone marrow
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(scattered stripes undtre extracranialissue),and several other structur@fer the nomenclature
see p. 318 of Kandet al. 1991). For this image, a LEGION network of 256x256 oscillators plus
a global inhibitor is used. The algorithm is performed as spedi@éote. Figure 16B shows the

result of one simulation by a gray map. In this simulaip= 25 andf, = 800. The Brain-1
image is segmented into 21 regions, plus a background whictlicgated by the blackreas. Of
particular interest arevo parts ofthe brain: theupper part,and the brainsterwith part of the
spinal cord (to bealled"brainstem” forshort), parts othe extracraniatissue,and parts of the
bone marrow. Other interestingegments includéhe neckpart, the chinpart, the nose part, and
the vertebral segment.

Though it is useful to treat the brain as a whole in some circumstances, @soaye desirable
to segment the brain into more detaigtdictures. Ta@chievethis in LEGION, one can increase

W,. But in order not to produce too mamggions, 6, should usually bencreased asV,
increases. To shothe combineceffects, Fig. 16C displaythe result of anotheun with W, =

40 and6, = 1000. With these parameteralues, Brain-1 issegmented to 25 regiomdus a
background. The background is again indicated by black aiaw., the upper part othe brain

is further segmented into the cerebraltex, the cerebellum, the callosum/fornix region and its
surrounding septum.Because of the highaw,, regions in Fig. 16Gend to contain more
background (compare, for example, the twainstenregions). However, ithe cortex segment
in Fig. 16C,the noisy stripesactually havephysical meanings: they tend moatchwith various

fissures orthe cerebratortex. With the higher 6,, some segments fig. 16Bcannot generate
any leaders anthusbecome théackground. See, faxamplethe segments corresponding to

the ‘%ter%rglné%lgt}ﬁ%lﬁ?ation to be presented uses another MRI of a human head, showh7A.Fig.
This image is denoted drain 2, consisting oR56x256 gray-level pixels. Similar to Brain-1,
Brain-2 is a sagittatection, but through oneye instead of along thaidline. Salientegions of
this picture includehe cortex, the cerebellum, théateral ventricle (the black holeithin the
cortex), the eye, the sinus (the black hole below the #ye)xxtracraniasoft tissueand the bone
marrow. ALEGION network with 256x256 oscillators andg#&bal inhibitor isused for the

segmentation task. In the first simulativv, = 20 andg, = 800,and Fig. 17B showshe result

by a gray map. Brain-2 segmented into 1liegions, plus a background whichimglicated by
black scatteredreas. One carnsee fromthe figurethat the entire braiforms a single segment.
Other significansegments includéhe eye, the sinus, parts ofthe bone marrowand parts of the
extracranial tissue. The chin and the neck madsiso twolargesegments.The lateral ventricle
is put into the background.

In order togenerate finestructuresW, is raised to 35 in theecond simulation. As ifig.

16, 8, is increased as well to avoid too many segments, and it is set to 1000. Fig. 17C shows the
result of this simulation, where Brain-2 is segmented into 13 regiossa backgroundhe latter
indicated by the black areas. As expected, the segmeiitg. il 7B become further segmented or
shrunk, and the background becomes more extensive. Worth mentiottiag) tise brain segment

in Fig. 17B issegmented into three segments: oogesponding tdéhe cortex and the other two
corresponding tehe cerebellum.Due to theincrease offy,, the segments corresponding to the
extracranial tissue and the marrow in Fig. 17B disappear in Fig. 17C.

In the segmentation experimentstbifs section, ougoal was toillustrate the mechanism of
oscillatory correlation and the potential effectiveness of derived algorithms. We dittenagpt to
produce best possible results fine tuning of parametersOne careasilytell this by the simple
rule of settingWijj, the simple choice dfi;(i) andNy(i), and the values d, and 6, that have

been used in the simulations. Therefore, better results can be expected by using more sophisticated
schemes of choosing these parameters. For example, a more extended neighbdwhtddhah

26



DelLiang Wang and David Terman Image Segmentation

8 nearest neighborsan remove smakegmentghat occuroccasionally. Se&ect. 7 formore
discussions on choosing parameters. Inde@bra elaborateersion ofthe LEGION algorithm
hasbeen applied to segment 3-dimensional MR and CT (computerized tomography) images from
the medicaldomain, and goodegmentation results have been obtained (ShareeWamd), in
preparation). On the othbiand,the parameter valuased inthe above experiments demonstrate
that the results thus achieved are robust to considerable parameter variations.

Two important distinctions between the algorithmiersion of LEGION andhe dynamical
version have not beediscussed earlier.One is that the algorithmigersion does nohave a
segmentation capacity; it cggroduce an arbitrary number gkgments. The number of the
segments produced by the algorithm odépends orthe pixeldistributions of an image. On the
other hand, as discussed in Sect. @ith a fixed set of parametetbe dynamicalsystem of
LEGION can segmenbnly a limited number of patterns. The second distinction ighat the
algorithm, though having many parallel components, is not a fully parallel algorithmitetais/e
in nature, requiringylobal operationsuch asselecting aleader,the test ofwhen ablock of
oscillators jumps down, and a central clock. These sequential comparemnttroduced tgpeed
up simulations on a seriabmputer. The dynamicakystem of LEGION, orthe otherhand, is
fully parallel, and does not require synchronous operations (thus a central clock).

7. Discussion

7.1 Further Remarks on LEGION Computation

The analysis in Section 4 demonstrates that the oscillatory dynamics described in this paper is a
robust property of the model. It is insensitive to considerable changjes prarameters arekists
for alarge class ofinitial conditions. Moreover, very few assumptioaie required on the
nonlinear functions i(1). This helps toexplain why relaxation-typeoscillators,together with
synaptic couplingare more appropriat®r scene segmentation than other models wimclude
phase oscillators, for exampleThese differences aralso discussed elsewhef@/ang 1995;
Terman and Wang 1995; Somers and Kopell in press).

The analysis is constructive and clearly indicates how the parameters need to be chosen. It also
indicateshow instabilities can arise as parameters \aged. The discussion in Sect4.5, for
example, demonstrates that the oscillators within different blocks may not separatgaifatheter

y Is too small. The analysis does not depend the fact that weconsidered a two-dimensional
LEGION network. Itextends in a straightforward way &wbitrary dimensions, because, in the
analysis, oscillator blocks are formed on the basis of kxatation and globahhibition, without
reference to the dimension of the network.

In the simulations oBect. 6,N4(i) is set to the eightearest-neighbors of LargerN4(i)'s

entail morecomputationsfor determiningleaders. Butlarger N4(i)'s have more flexibility in

specifying the conditionfor creatingleaders, which tends to produbetterresults. Also, the
order of pop-out of different segments is currently random. In some situations, howsght it
be useful to influence the order of pop-out by some criteria, suttte a&sze of eachegion. This
is room in LEGION to incorporate differewtiteria by ordering leaders accordinglgither by
using the global inhibitor in different ways or by introducing other processing units.

The main difference betweepur approach tamage segmentatioand other segmentation
algorithms reviewed in Sect. 2 is that ours is nheurocomputational, building on the strengths and the
constraints of neural computatiorOur approach relies on emergent behavior of LEGION to
embody the computation involved imagesegmentation. Methodologicallthe computation is
performed by a population @ictiveagents - oscillators in this casehat aredriven by pixels,
whereas, in @ypical segmentatioalgorithm, pixelsare data to bprocessed by eentral agent -
the algorithm or the neuraletwork trained as a pixetlassifier. That LEGION is a massively
parallel network of dynamical systems with mainly local coupling makes it particularly feasible for
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analog VLSI implementation, theuccess of which would be raajor steptowards real time
processing of scene segmentation.

7.2 Multi-stage Segmentation

A thorny issue withscene segmentation is that oftenumaque answeexists. A house, for
example, may be grouped into a single segment if viewed afar. The same house, iheergd
may bebroken intomultiple segments including door, a roof, windows, etc.This situation
demands a flexible treatment of scene segmentation, i.e., a system should be ablegeneaaity
multiple sets of segmentation, each of which should be reasonable. In LEGIOf&xthikty is

reflected to a certain degree by the effects of the paramet{saofd 6,, as discussed in Sect. 6.

As noted there, both Fig. 16B and 16f& arguably reasonahlesults, scareFig. 17BandFig.

17C. These parameters are currently determined by simulaiads. It should be amteresting

issue of future study to search for an adaptive scheme that can automatically find appropriate values
of the parameters.

Psychological and biological evidenseggeststhat humanand animal visual processing
involves multiple stages (Marr 1982; Watt 1987; Zeki 1993), where later stages refine the results of
earlierones. The LEGIONnetwork used so far has only olager of oscillators, representing a
single stage oprocessing. Wexpect that the ability cEEGION improves significantliywhen
multiple layers areused. More specifically, thefollowing methodmay beused for multistage
segmentation from coarse to figeains. Atthe first stage, wesegment the entire image into a
limited number of large regions by choosinlgeel of global inhibitionwhich we denote byvzl.

Each of the largesegments from stage 1 is processethatnext stage by another LEGIO&yer
with the inhibition IeveNVZZ, with Wz, > Wa,. Subsequent stagesntinue in a similafashion.

Note that the size of each segment can be easily detected by augibbdlhe backgroundcan be
treated in the sam@ay, although it is generallgiscontiguous. With multistageprocessing, the
hierarchical system can provide results of both coarse- and fine-grain segmentation.

In Sect. 5, wementioned that the oscillatogynamics of one-layer LEGIONMas alimited
segmentation capacitfseeFigs. 8and9). It isinteresting to note that the human perceptual
system is alsdimited in simultaneously attending to the objects iacane the capacity ofvhich
seems to be around sev@Miller 1956). The multistageprocessingoutlined aboveprovides a
natural way out of this fundamental limitation. In multistpgecessingeach layedoes noneed
to segregate more than several segmentsyetnithesystem as a wholean segregate many more
segments thathe segmentation capacity - an idea reminiscerghoihking proposed biiller
(Miller 1956). When the number ofegments in ammage is greater than the segmentation
capacity, one-layer LEGION will produce a number of segments (simple or congregate) up to the
segmentation capacitisee Figs. 8 and 9). Congregatesegments, howevergan be further
segmented with another layer bEGION, whereassimple segments will not segmehuirther.
Thus, weexpect that thesegments separated frapach image irSect. 6,despite they number
higher than the segmentation capacity, will still be vakgments when multilayer LEGION
network is used.

7.3 Biological Relevance

The relaxation-type oscillatarsed in LEGION isdynamically very similar tamumerousother
oscillators used itmmodeling neuronalbehavior. Examples include theFitzHugh-Nagumo
equations (FitzHugh 1961; Nagurabal. 1962), and the Morris-Lecanodelfor electrical activity
in the barnacle muscle fiber (Morris and Lecar 1981). These can all be viewed as simplifications of
the Hodgkin-Huxley equations (Hodgkin and Huxley 1952). Int{®,variablex corresponds to
the membrane potential of timeuron,andy corresponds tthe channel activation or inactivation
state variable which evolves on the slowest time scale. The reduction fromHadgkin-Huxley
model to thetwo variable model is achieved ssumingthat the other, faster,channel state
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variables are instantaneous. Of coutke,behavior of a singleeuroncan be quite complicated.

It may, for example, exhibit bursting oscillations in which the dynamics alternates between a silent
phase of near steadyate behavior and active phase of rapigpiking. In this casethe two
variable model in (1) can be viewed as a model for the envelope of a bursting neuron.

The mechanism of selective gating is consisterth the growing body ofevidencethat
supportsthe existence of neural oscillations in the visual cortex and other fegions. In the
visual system, synchronousscillations have beeabserved incell recordings ofthe catvisual
cortex (Eckhorret al. 1988; Grayet al. 1989). The maindiscovery of these experimerdan be
summarized in théollowing. First, neural oscillations are triggered bgnsory stimulation, thus
known as stimulus-dependent. These oscillations range from 30Ha, @iten referred to ag0

Hz oscillations(or y rhythms). Second, synchronooscillations (locking with zero phadag)
occur across an extended brain region if the stimulus constitutes a coherent object. Third, no phase
locking exists across regions stimulated by different stimuli if they aresladédwith eachother.
These basic findinghave been confirmed repeatedly in different bragions and in different
animal species (Engekt al. 1991b; Engel et al. 1991a; Murthy and Fetz 199&anes and
Donoghue 1993; Bresslet al. 1993; Sillitoet al. 1994; Buzsakiet al. 1994; Whittingtonet al.
1995; Singer and Gra$995). Similar phenomena have also bedserved irthe olfactory and
auditory systems.

The local excitatory connections assumed in LEGION conform with vaateralconnections
in the brain. Relating to the visuatortex,these excitatorgonnections, whiclink the excitatory
elements ofoscillators, could benterpreted as the horizontal connections in the visual cortex
(Gilbert and Wiesell989; Gilbert1992). It is knowrthat horizontalconnections originate from
pyramidal cells, which are of excitatory type, and pyramidal cells are also the principal target of the
horizontal connections (Gilbeet al. 1990; Gilbert1992). Furthermore, dhe functionallevel,
physiological recordings from monkegsiggestthat motion-based visual segmentation may be
processed in the primary visual cortex (Stoner and Albright 1992; Laahale1993). The global
inhibitor (seeFig. 3) receives input fronthe entire oscillatonetwork, and feeds back inhibition
onto the network. It serves to segmanmtltiple patterns simultaneously present in a visedne,
thusexerting a global coordination. Cridlas suggestethat part of thehalamus,the thalamic
reticular complex irparticular,may be involved in the global control of selective attention (Crick
1984; Crick 1994). The thalamus is uniquely located in the brain: it receives input froseradsl
projections to almost the entimdrtex. This suggestion and keyatomicaland physiological
properties of the thalamus prompt us to spectietethe global inhibitor mightorrespond to a
neuronal group ithe thalamus. The activity of the global inhibitoshould beinterpreted as the
collective behavior of the neuronal group.

An often-cited theoretical problemwith the grandmother-cell representation is exponential
explosion incell use: The number of cells requiregrows exponentially withthe number of
features whicltcan beused to construct objects, agdt only a tiny fraction out ofall possible
feature combinations are actually used to represent paftenmsier Malsburg 1981; Singer 1993;
Anderson 1995, Chapter 10). However, as famamory or learned patterns arencerned, this
problem can be solved by some computational triekr example, ilWang and Yuwon@1995),

a self-organization technique psoposedhat automatically selects high-lewatits when needed.
So, theoretically speaking, we only need as many high-level unite asimber of memorigems

- no exponential explosion problem. But the problem does arise following the obsetivattione
can segment an image into objects which are not necessarily familiar (learned). Reca#dtorh
that for the grandmother-cellepresentation, every object, whether itfasiliar or unfamiliar,
would need to use a neuron. Otherwiberewould be norepresentatiofior unfamiliar objects.
Thus if we allocate neurons to all possible unfamiliar objects that just might occurfiriuiree the
problem of exponential cell use is bound to arise.

7.4 Perceptual Relevance
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In a recent theoretical account of perceptual organization, Palmer andifRmtied the special
importance to the so-called uniforoonnectedness, and regardbd formation of uniform and
connected regions as the first step in perceptual organization, the result of which is subject to later,
possiblyinteractive, stages akfinement (Palmer and Rod®94b; Palmer and Rock994a).

Their emphasis on uniform connectedness agrees wellowitemphasis oemergensynchrony

based orlocal connectivity, which reflects both connectedness amifiormity. Selective gating
provides aneurocomputational foundatiofor generating uniform and connecte@gions,
accomplishing a fundamental part of their theorefiGahework. Orthe otherhand,their theory
provides psychological justifications tmr model, and gives useful suggestiam®ut how to

improve the initial results by later stages of refinement. The multistage processing discussed above
is a step in this direction.

We regard the rates of synchrony and desynchrompawisularlyimportant, not only because
speed igritical for real timescene segmentation but also becausthefconsiderations of neural
plausibility. It is known that human subjects can separate and identify an object in a visual scene in
lessthan 100 ms(Biederman 1987; Irving Biederman, personal communicatl®®4). This
suggestghat both synchrony and desynchrony mustdohieved in just dew cycles if 40 Hz
oscillations are taken to be the underlymgchanism. Considerintpat thevisual environment
may change quickly and the subject may mareund, it isnot surprisingthat perceptual
organization must be achieved rapidly ander for the subject to makeense of itsvisual
environment. Physiological recordings of synchronossillations alscsuggestthat synchrony
seems to be a transiesent, lasting for only a fewcycles (Murthy and Fetz 199&8anes and
Donoghue 1993; Bresslet al. 1993).

7.5 Figure-Ground Segregation

This paper addresséise problem of fragmentation by introducing the concept of potential for
eachoscillator, which increases whehe oscillator receives significant inpiitom its potential
neighborhood. As a result, a scene is separated to a number of major segmeiigcagdoand,
which corresponds to the rest of the scefike majorsegments combine to forthe foreground,
whose correspondingscillators are oscillatory until the input scdades away. The oscillators
corresponding tahe background,after a brief beginningeriod, become excitableand stop
oscillating. This dynamics effectively gets rid mbisy fragments withougither preprocessing
(such as smoothing) or postprocessing (such as remsniatjregions),the methods oftensed
in segmentationalgorithms. With this dynamics,typical figure-ground segregatiosan be
characterized as a special case, where only one major segment is allowed to be separated from the
scene. In this sense, we claim that our dynamics also provEerdialsolution tothe problem
of figure-ground segregation. We allow a foregrounthttude multiplesegmentspecause this
way both scene segmentation and figure-ground segregadi@n incorporated in a unified
framework.

7.6 Future Topics

In the presentstudy, we have notaddressedthe role of prior knowledge inimage
segmentation. Knowledge has lohgen recognized as playing an important role in perceptual
organization by Gestafisychologists (Koffka 1935; Rock arlehlmer 1990; se8&ect. 1). For
example, whempeople segment the imageskf). 16A andFig. 17A, they inevitablyuse their
knowledge of human anatomy, which describes among other tiiegslative sizeind position
of major brainregions. Amore completesystem ofimage segmentatiomust address thissue.

We note thattudies have been conducted to segmemixéure of random patternbased on
oscillatory associative memories (Waagal. 1990; Hornand Usher 1991; Sompolinsky and
Tsodyks 1994).

Besides prior knowledgemany grouping principlesoutlined in Sect. 1 have not been
incorporated into the systenOne of the mairiuture topics is to incorporate mogeouping cues
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into the system. The way to do so in our approach is émbed them in connectioweights
between oscillators. Ageneralissue in incorporatingnultiple cues is how toset relative
importance of each cder segmentation. Tweimple strategies are winner-take-all dmearly
weighted combination. The integration process gets tricky when different cues produce contrasting
results of segmentationThe global inhibitory mechanism will play a key role in oveslstem
coordination: it makes various factocempetewith eachother, and a final segment is formed
because of strong binding withihe segment. The general criteriofor the integratiorshould be

that it must enhance the overall system performance.

Our study in thispaperfocusesexclusively on visual segmentation. should benoted that
neural oscillations occur in other modalitiesvaall, including audition (Galambost al. 1981;
Ribary et al. 1991) andolfaction (Freemanl978). Strikingly,these oscillations in different

modalities show comparable frequencies, all characterizgdrbythms. In a recergtudy, Wang
extended LEGION todeal with auditory scene segregation, amdodeled a number of
psychophysical findings regarding auditory scene analysis (Wangress). With its
computational properties and its biological relevance, the oscillatory correlation approatses

to provide a general neurocomputational thedor scene segmentation and perceptual
organization.

8. Conclusion

We have proposed a mechanism for locally excitatory globally inhibitory oscilataworks so
that only those oscillators that receive substantial lateral excitation can lead oscillator blocks to jump
to the active phase. The stimulated oscillators im#ighborhood of éeader can be recruited to
jump up as well, but those stimulated by noisy regions cannot oscillate after a short period of time.
This state of oscillatory dynamics is proven to be globally stable, and is demonstrated by computer
simulation. The analysis is constructive in nature and showstl®warameters of the dynamical
system should be chosendochieve imagsegmentation. An algorithimasbeen abstracted from
the model, and it has been applied to real image segmentation. The LEGION algooithutes a
number of major homogeneous regions and puts the rest of the image into a backgrodnaye We
discussed the model's biological plausibility,titeoretical role in perceptuarganization, and its
possible extensions. The mechanisnsealéctive gatindays a neurocomputational foundation for
the theory of oscillatoryorrelation, andmay provide an effective devider automatic scene
segmentation and figure-ground segregation.

Acknowledgments DLW was supported ipart by theNSF grantIRI-9423312 andhe ONR
grant NO0014-93-1-0335. DT was supported in part by the NSF grant DMS-9423796.

31



DelLiang Wang and David Terman Image Segmentation

References
Abeles, M. 1982l ocal cortical circuits Springer, New York.

Abeles, M. 1991Corticonics: Neural circuits of theerebralcortex Cambridge Universityress,
New York.

Adams,R., andBischof, L. 1994.Seeded regiogrowing. IEEE Trans. Pattern Anal. Machine
Intell. 16, 641-647.

Anderson, J.A. 199%An introduction to neural networkMIT Press, Cambridge MA.

Baldi, P., and Meir, R.1990. Computing with arrays of coupled oscillators: Application to
preattentive texture discriminatioNeural Comp2, 458-471.

Barlow, H. B. 1972.Single units and cognition: A neurone doctriioe perceptualpsychology.
Percept.1, 371-394.

Biederman, I.1987. Recognition-by-component. A theory of humamage understanding.
Psychol. Rew4, 115-147.

Bressler, S. L., Coppol&., and Nakamura, R1993. Episodic multiregionatortical coherence
at multiple frequencies during visual task performahegure366 153-156.

Buhmann, J. 1989. Oscillations and low firing rates in associative memory neural nefNorgs.
Rev. A40, 4145-4148.

Buzsaki, G., Llinas, R., Singer, W.,Berthoz, A., and Christen, Y. (ed.). 1994. Temporal
coding in the brain. Springer-Verlag, Berlin Heidelberg.

Crick, F. 1984. Function of the thalamic reticular complex: The searchlight hypothregisNatl.
Acad. Sci. USA1, 4586-4590.

Crick, F. 1994The astonishing hypothesiScribner, New York.

Eckhorn,R., et al 1988. Coherent oscillations: A mechanism of feature linking in the visual
cortex.Biol. Cybern60, 121-130.

Engel, A. K., Konig, P., Kreiter, A. K., and Singer, W. 1991a. Interhemisplgnichronization
of oscillatory neuronal responses in cat visual co®eience252 1177-1179.

Engel, A.K., Konig, P.,Kreiter, A. K., andSinger, W. 1991bSynchronization of oscillatory
neuronal responses betwestrate and extrastriate visuabrtical areas of theat. Proc. Natl.
Acad. Sci. USAS8, 6048-6052.

FitzHugh, R. 1961. Impulses and physiological states in mode&lsreé membranaBiophys. J.
1, 445-466.

Foresti,G., Murino, V., Regazzoni, C.S., and Vernazza, G1994. Grouping ofrectilinear
segments by the labeled Hough transfd@WiGIP: Image Understandingd(3), 22-42.

Freeman, W. J. 1978Spatial properties of an EEG event in the olfactonyb and cortex.
Electroencephalogr. Clin. Neurophysid4, 586-605.

Galambos, R., Makeig, S., and Talmachoff, P. J. 1981. A 40-Hz auditory potential recorded from
the human scalg@?roc. Natl. Acad. Sci. USA8, 2643-2647.

Geman, D., Gemar§., Graffigne,C., andDong, P. 1990. Boundargetection by constrained
optimization.IEEE Trans. Pattern Anal. Machine Intel2, 609-628.

Gilbert, C. D. 1992. Horizontal integration and cortical dynanNesiron9, 1-13.

Gilbert, C. D., Hirsch, J. A.and Wiesel, T. N1990. Lateral interactions iwisual cortex.Cold
Spring Harbor Symposia on Quantitative Bioldgy, 663-677.

Gilbert, C. D., and Wiesel, T. N.1989. Columnar specificity of intrinsic horizontal and
corticocortical connections in cat visual cortéxNeurosci9, 2432-2442.

32



DelLiang Wang and David Terman Image Segmentation

Goodhill, G. J., and Barrow, H. G. 1994.The role of weight normalization icompetitive
learning.Neural Comp6, 255-269.

Gove, A., Grossberg, S., and Mingolla, E. in press. Brightness perception, illusory contours, and
corticogeniculate feedbacWisual Neurosci

Gray, C. M., Konig, P., Engel, A. KandSinger, W. 19890scillatoryresponses igat visual
cortex exhibit inter-columnar synchronization which reflects global stinprdogerties Nature
338, 334-337.

Grossberg, S.and Mingolla, E.1985. Neural dynamics of perceptual groupingextures,
boundaries, and emergent computatiétescept. Psychophy38, 141-171.

Grossberg, S., and Wyse, L. 1991. A neural netvaockitecturefor figure-groundseparation of
connected scenic figureNeural Net4, 723-742.

Gurari, E. M., and Wechsler, H.1982. Onthe difficulties involved in the segmentation of
pictures|EEE Trans. Pattern Anal. Machine Inted(3), 304-306.

Haralick, R. M. 1979. Statistical and structural approaches to teftxge. IEEE67, 786-804.

Haralick, R.M., andShapiro, L. G. 1985Image segmentatiotechniquesComput.Graphics
Image Proces229, 100-132.

Hodgkin, A. L., and Huxley, A. F. 1952. duantitative description of membrane current and its
application to conduction and excitation in neiePhysiol. (Lond.117, 500-544.

Horn, D.,andUsher, M. 1991 Parallel activation of memories in an oscillatory neaetiwvork.
Neural Comp3, 31-44.

Horowitz, S. L.,and Pavlidis, T. 1976.Picture segmentation by a tree travewgorithm. J.
ACM 23, 368-388.

Hummel, J.E., and Biederman, 11992. Dynamic binding in a neural networkor shape
recognition.Psychol. Rev99, 480-517.

Kandel, E.R., Schwartz, JH., andJessell, T. M. 1991Principles of neural science 3rd ed.
Elsevier, New York.

Koffka, K. 1935.Principles of Gestalt psychologkiarcourt, New York.

Koh, J., Suk, M.,and Bhandarkar, S. ML995. Amultilayer self-organizing feature map for
range image segmentatidseural Net.8, 67-86.

Kohler, R. 1981. Asegmentation system based twesholding. Comput. Graphics Image
Process15, 319-338.

Kohonen, T. 1995Self-organizing mapsSpringer, Berlin Heidelberg.

Lamme, V. A.F., van Dijk, B. W., and Spekreijse, H1993. Coutoufrom motion processing
occurs in primary visual cortekature363 541-543.

Liberman, A. M., Isenberg, D.,and Rakerd, B. 1981Duplex percepton oftues for stop
consonants: Evidence for a phonetic mdercept. Psychophy30, 133-143.

Liou, S. P., Chiu, A. H., andJain, R. C. 1991. Aarallel techniquéor signal-level perceptual
organizationlEEE Trans. Pattern Anal. Machine Intell3, 317-325.

LoFaro, T. 1994. Aeriod adding bifurcation in a pair of coupladurons.Ph.D dissertation
Boston University.

Lowe, D. G. 1985.Perceptual organization andisual recognition Kluwer Academic, Boston
MA.

Manjunath, B.S., and Chellappa, R1993. Aunified approach to boundaperception:Edges,
textures, and illusory contoud&EE Trans. Neural Ned, 96-108.

Marr, D. 1982 Vision Freeman, New York.

33



DelLiang Wang and David Terman Image Segmentation

Miller, G. A. 1956. The magicahumberseven, plus or minusvo: Somelimits on our capacity
for processing informatiorPsychol. Rew63, 81-97.

Milner, P. M. 1974. A model for visual shape recognitidaychol. Rev81(6), 521-535.

Mohan, R.,and Nevatia, R1989. Usingperceptual organization to extract 3sBucturesIEEE
Trans. Pattern Anal. Machine Intell1(11), 1121-1139.

Mohan, R., and Nevatia, R. 1992. Perceptual organization for scene segmentation and description.
IEEE Trans. Pattern Anal. Machine Intel¥, 616-635.

Morris, C., and Lecar, H. 198Yoltage oscillations in the barnacle giant mustilger. Biophys.
J. 35, 193-213.

Mozer, M. C., Zemel, RS., Behrmann, M., and Williams, C. K. 1.1992. Learning to segment
images using dynamic feature binditngural Comp4, 650-665.

Murata, T., and Shimizu, H.1993. Oscillatory binocularsystem andemporal segmentation of
stereoscopic depth surfac&ol. Cybern.68, 381-390.

Murthy, V. N., and Fetz, E. E. 1992Coherent 25- to 35-Hpscillations in thesensorimotor
cortex of awake behaving monkeysoc. Natl. Acad. Sci. US89, 5670-5674.

Nagumo, J., Arimoto, Sand Yoshizawa, S1962. Anactive pulse transmissioline simulating
nerve axonProc. IRE50, 2061-2070.

Pal, N. R., and Pal, S. K. 1993. A review on image segmentation techrifgittesn Recognition
26(9), 1277-1294.

Palmer, S., and Rock, I. 1994a. e nature andrder oforganizationaprocessing: A reply to
PetersonPsychol. Bull. Rewvl, 515-519.

Palmer, S., and Rock, I. 1994b.Rethinking perceptual organization: the role of uniform
connectednes®sychol. Bull. Rev, 29-55.

Pavlidis, T. 1977Structural pattern recognitiarSpringer, New York.

Perkel, D. H., and Mulloney, B. 1974. Motor pattern production in reciprocally inhibitory neurons
exhibiting post-inhibitory rebouncciencel85 181-183.

Raghu, P. P., Poongodi, R., and Yegnanarayana, B. 1966mBined neural network approach
for texture classificatiorNeural Net.8, 975-987.

Repp, B.H., Milburn, C., andAshkenas, J. 198Duplex perception: Confirmation dtision.
Percept. Psychophy83, 333-337.

Ribary, U.,et al. 1991. Magnetidield tomography of coheretihalamocorticak0-Hz oscillations
in humansProc. Natl. Acad. Sci. US88, 11037-11041.

Rock, 1., and Palmer, S. 1990. The legacy of Gestalt psychdbmgyAm263, 84-90.

Sanes, J. N., and Donoghue, J. P. 1993. Oscillations inflelchpotentials of the primate motor
cortex during voluntary movemerRroc. Natl. Acad. Sci. US®0, 4470-4474.

Sarkar, S., and Boyer, K. L. 1993a. Integration, inferencand management of spatial
information using Bayesian network$?erceptual organizationEEE Trans. Pattern Anal.
Machine Intell.15, 256-274.

Sarkar,S., andBoyer, K. L. 1993bPerceptual organization in computer vision: a review and a
proposal for a classificatory structutEEE Trans. Syst. Man Cyber23, 382-399.

Schalkoff, R. 1989Digital image processing and computer visidviley & Sons, New York.

Schalkoff, R. 1992 Pattern recognition: Statisticalstructural and neurabpproaches Wiley &
Sons, New York.

Schillen, T. B., and Koénig, P. 1994. Binding by temporal structurautiple featuredomains of
an oscillatory neuronal networBiol. Cybern.70, 397-405.

34



DelLiang Wang and David Terman Image Segmentation

Sejnowski, T.J., andHinton, G. E. 1987 Separating figure fronground with aBoltzmann
machine. IrVision, brain, and cooperative computatidn. A. Arbib, and A. R. Hansorgd.,
pp. 703-724. MIT Press, Cambridge MA.

Sha'ashua, A.and Ullman, S.1988. Structural saliency: The detection of globally salient
structures using kcally connectedhetwork. InProc. Int. Conf. Comput.Vision, pp. 321-
327.

Sillito, A. M., Jones, H. E., Gerstein, G. Land West, D. C. 1994 .Feature-linked
synchronization of thalamic relay cell firing induced by feedback from the \Gsui@x. Nature
369, 479-482.

Singer, W. 1993.Synchronization ofcortical activity and its putative role in information
processing and learningnn. Rev. Physiob5, 349-374.

Singer, W.,and Gray, C. M. 1995.Visual feature integration and the temporal correlation
hypothesisAnn. Rev. Neursci8, 555-586.

Somers, D.,and Kopell, N. 1993.Rapid synchrony through fast threshold modulatid@iol.
Cybern.68, 393-407.

Somers, D.,and Kopell, N. in press.Waves andsynchrony in networks of oscillators of
relaxation and non-relaxation tygehysica D

Sompolinsky, H., Golomb, D., and Kleinfeld, D. 1991. Cooperative dynamics in visual
processingPhys. Rev. A3, 6990-7011.

Sompolinsky,H., andTsodyks, M. 1994Segmentation by a network of oscillators with stored
memoriesNeural Comp6(4), 642-657.

Sporns, O., Gally, J. AReekeJr., G. N.,and Edelman, G. M1989. Reentrant signaling
among simulated neurongtoupsleads to coherency in their oscillatory activiBroc. Natl.
Acad. Sci. USA6, 7265-7269.

Sporns, O., TononiG., and Edelman, G. M1991. Modeling perceptuagrouping and figure-
ground segregation by means of active re-entrant conneddmts.Natl. Acad. Sci. US88,
129-133.

Stoner, G. R., and Albright, T. D. 1992. Neural correlates of perceptual motion coh&tature.
358, 412-414.

Terman,D., andWang, D. L. 1995.Global competition andbcal cooperation in aetwork of
neural oscillatorsPhysica D81, 148-176.

Uchiyama,T., and Arbib, M. A.1994. Color image segmentationsing competitive learning.
IEEE Trans. Pattern Anal. Machine Intell6(12), 1197-1206.

von der Malsburg, C1973. Self-organization of orientation sensitive cells in the strcatex.
Kybernetikl4, 85-100.

von der Malsburg, C. 198The correlation theory of braininction. Internal Repor81-2, Max-
Planck-Institute for Biophysical Chemistry.

von der MalsburgC., and Buhmann, J. 1992. Sensogegmentation with coupled neural
oscillators.Biol. Cybern.54, 29-40.

von der Malsburg, C., and Schneider, W. 198@edral cocktail-partyprocessorBiol. Cybern.
54, 29-40.

Wang, D. L. 1993aModeling globalsynchrony inthe visual cortex byocally coupled neural
oscillators. InProc. of 15th Ann. Conf. Cognit. Sci. Sqap. 1058-1063. Boulder CO.

Wang, D. L. 1993bPattern recognition: Neuraletworks in perspectivéEEE Expert8, 52-60,
August.

Wang, D. L. 1995. Emergent synchrony in locally coupiedraloscillators.IEEE Trans. Neural
Net.6(4), 941-948.

35



DelLiang Wang and David Terman Image Segmentation

Wang, D. L. in press. Primitive auditory segregation based on oscillatory correGagmit. Sci

Wang, D. L., Buhmann]., and Malsburg, C. v. d1990. Pattern segmentation in associative
memory.Neural Comp.2, 95-107.Reprinted in Olfaction].L. Davis and H. Eichenbaum,
ed. Cambridge MA: MIT Press, pp. 213-224, 1991.

Wang, D. L.,and Terman, D1995. Locally excitatory globally inhibitory oscillatonetworks.
IEEE Trans. Neural Ne6(1), 283-286.

Wang, D. L., and Yuwono, B. 1995. Anticipation-based temporal pattern genetgi@hT rans.
Syst. Man Cyberr25, 615-628.

Watt, R. J. 1987. Scanning from coarsdine spatial scales in the human visagstemafter the
onset of a stimulusl. Opt. Soc. AmA4, 2006-2021.

Wertheimer, M.1923. Untersuchungezur Lehrevon der Gestaltll. Psychol. Forsch4, 301-
350.

Whittington, M. A., Traub, R. D.,and Jefferys, J. G. R. 199%ynchronized oscillations in
interneuron networks driven byietabotropic glutamate receptstivation.Nature373, 612-
615.

Zeki, S. 1993A vision of the brainBlackwell Scientific, Oxford, England.

Zucker, S. W. 1976Region growing: Childhood and adolescenCemput. Graphics Image
Process5, 382-399.

36



DelLiang Wang and David Terman Image Segmentation

Figure Caption

Figure 1. A caricature of an imageith three objectghat appear on aoisy background. The
noiseless caricature is adapted from (Terman and Wang 1995).

Figure 2. Nuliclines and orbits of a single oscillattiVe thank S. Campbefbr making this
figure). A. If | > 0 andH = 1, the oscillator i€nabled. The periodic orbit ishownwith a
bold curve, and itglirection of motion is indicated by tleerowheads. The leftand the right

branches of the-nullcline are labeled ds andR, respectively. LK andRK indicate the left

and the right knees of the cubic, respectivédy.If | <0 andH = 1, the oscillator is excitable.
The fixed pointP; on the left branch of the cubic is asymptotically stable.

Figure 3. Architecture of atwo dimensional LEGION network wittfour nearest-neighbor
coupling. An oscillator isndicated by aropen circle, andhe global inhibitor is indicated by
the filled circle.

Figure 4. The effects otwo neighborhoods.N,(i) is the potentiaheighborhood, andll,(i) is
the coupling neighborhood.

Figure 5. A An imagecomposed of four patterns whiate presented to 25x25 LEGION
network (adapted from Wang afi@érmanl1995). Eachsquare corresponds to an oscillator.
Filled squaresindicate stimulatedoscillators, while opensquaresindicate unstimulated
oscillators.B The image iA is corrupted by 10% nois€. A snapshot othe activities of the
network at the beginning of dynamic evolutidd.Anothersnapshotakenshortly afterC. E
Another snapshot taken shortly afiler F Another snapshot taken shortly afier G Another
snapshot taken shortly aftér

Figure 6. Temporal evolution of every stimulatextcillator. The upper fourtracesshow the
combined temporal activities of tiieur oscillator blocks representirthe four corresponding
patterns indicated by their respective labels. The fifth trace shows the temporal activities of the
loners corresponding to the background, tredbottom tracshowsthe activity of the global
inhibitor. The ordinates excegor the bottom one in the figuradicate the normalized-
activity of anoscillator, andhe inhibitor trace isirawnaccording to the normalized activity.

The simulation took 8,000 integration steps.

Figure 7. Another simulation with an alternative definition for a single oscillator. tBedegend
of Fig. 6 for explanations. As in Fig. 6, this simulation took 8,000 integration steps.

Figure 8. A An imagecomposed of nine patterns whiene presented to 30x30 LEGION
network. See the legend dfig. 5 for explanationd8 A snhapshot of networlactivity at the
beginning of dynami@volution. C Another snapshottaken shortly after B. D Another
snapshot taken shortly aft€r E Another snapshot taken shortly afier F Another snapshot
taken shortly afteE. G Another snapshot taken shortly affer

Figure 9. Temporal evolution of every stimulatextcillator. The upper nine traceshow the
combined temporal activities of the oscillatblocks representinghe nine corresponding
patterns indicated by their respectlabels. The bottom tracshowsthe activity of the global
inhibitor. Seethe legend ofFig. 6 for further explanations. The simulationtook 8,000
integration steps.

Figure 10. A scenario for producing overlappisggments. A squaradicates a pixel with its
value shown in the middle.

Figure 11 A: A gray-level image consisting of 160x1pels (by courtesy of KBoyer). The
image ispresented to a 160x160 LEGIOhetwork. B One segmentpops out from the
network shortly after the LEGION algorithm is execut€@lAnother segmenpopsout shortly
afterB. D Another segment pops out shortly afier E Another segmenpopped out shortly
afterD. F Another segmenpopsout shortlyafterE. G Another segmernpops out shortly
afterF. (We thank E. Cesmeli for his assistance in making this figure)
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Figure 12 A gray map showing theesult of segmentingig. 11A. The algorithmproduces 16
segments plus a background. The algorithm was run for 1,000 time steps.

Figure 13. A gray mapshowingthe result of segmentingig. 11A. Maximization isused to
computeS. The algorithm produces 17 segments plus a backgrotihd.algorithmwas run
for 1,000 steps.

Figure 14 Comparison between summation amaximization in computing;. A andB show
two different scenarios.

Figure 15. A gray map showing the result of segmenting EIA with a different valudor 6,
The system produces 23 segments plus a background. The algorithm was run for 1,000 steps.

Figure 16. A A gray-level image consisting of 256x256 pixels (by courtesy of N. ShaieX).
gray mapshowingthe result of segmenting tlmage inA by a 256x256 LEGIONetwork.
The system produces 21 segments plus a backgro@hé gray mapshowingthe result of
segmenting themage inA with different values ofV, and 6,. Thesystem produces 25
segments plus a background. The algorithm was run for 1,200 steps B dadic.

Figure 17. A A gray-level image consisting of 256x256 pixels (by courtesy of N. ShaieX).
gray mapshowingthe result of segmenting tlmage inA by a 256x256 LEGIONetwork.
The system produces 17 segments plus a backgrohé gray mapshowingthe result of
segmenting themage inA with different values ofV, and 6,. Thesystem produces 13
segments plus a background. The algorithm was run for 1,200 steps B dadic.
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Figure 1
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