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Perceiving Geometric Patterns: From Spirals to
Inside—Outside Relations
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Abstract—Since first proposed by Minsky and Papert, the spiral
problem is well known in neural networks. It receives much at-
tention as a benchmark for various learning algorithms. Unlike
previous work that emphasizes learning, we approach the problem ]
from a different perspective. We point out that the spiral problem
is intrinsically connected to the inside—outside problem proposed ]
by Ullman. We propose a solution to both problems based on os-
cillatory correlation using a time-delay network. Our simulation ]
results are qualitatively consistent with human performance, and
we interpret human limitations in terms of synchrony and time de-
lays. As a special case, our network without time delays can always |
distinguish these figures regardless of shape, position, size, and ori-
entation.

Index Terms—besynchronization, geometric patterns, inside—
outside relations, LEGION, oscillatory correlation, spiral problem, ()
synchronization, time delays, visual perception.

|I. INTRODUCTION

HE SPIRAL problem refers to distinguishing between a
connected single spiral and disconnected double spirals
on a two-dimensional plane, as illustrated in Fig. 1. Minsky ]
and Papert first introduced the problem in their influential
1969 book on perceptrons [29], and the problem belongs to
a class of geometric patterns systematically studied in the
book. As pointed out by Minsky and Papert [30], humans are
unable to solve the problem immediately, but can do it through
the use of some serial mental process. Since its introduction,
the spiral problem has received much attention from several (b)
different fields. In the neural-network community, a VarlanI!ig. 1. The spiral problem. (a) A connected single spiral. (b) Disconnected
of the problem has become a benchmark [10] to evaluate {febie spirals (adapted from [29] and [30]).
performance of alearning system on both nonlinear separability
and generalization, since Lang and_Witbrock [25] repor_ted th%todels 2, [5, [7], [11], [13], [25]. However, resulting
the problem could not be solved with a s_tandard multllayer(? ming systems are only able to produce decision regions
perceptron. Many papers have dealt with the problem a

luti h b " ted using diff 0] Nighly constrained by the spirals defined in a training set, thus
many solutions have been atiempted using difierent learnigde -iic in shape, position, size, orientation, etc. The problem

in the geometric form is still open for neural-network learning.
Manuscript received November 23, 1999; revised November 29, 20d6urthermore, no explanation is provided as to why the problem

This work was supported in part by NSF under Grants IRI-9423312 apd difficult for human subjects to solve. On the other hand,
11IS-0081058. The work of K. Chen in China was supported in part by an NSF

under Grant 60075017, a Chinese Education Ministry “Trans-Century Talen prc')ble'jn IS conS|dered as'an. instance of an Important
Professional” Award, and China National Key Fundamental Research Gratage in visual perception. This is the process whereby a

G1999032708. The work of D. Wang was supported by ONR under Youm%}ure, or object, in a scene is separated from other figures
Investigator Award N0O0014-96-1-0676. A preliminary version was presente . .
in NIPS-98. and background clutter, so-calligure—ground separatiqrin

K. Chen was with the Department of Computer and Information Scieng@erceptual psychology. Figure—ground separation is ubiquitous
and Center for Cognitive Science, The Ohio State University, Columbusnd immediate in general. However, the spiraI problem seems
OH 43210-1277 USA. He is now with the School of Computer Science, tfie b . | . it is difficult for h .
University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K. (e—mail.O e an exceptional case since It is dificult for humans to give
k.chen@cs.bham.ac.uk). a solution immediately. Therefore, spirals are often viewed

D. Wang is with the Department of Computer and Information Sciencgs anomalous perceptual stimuli [18]. Grossberg and Wyse

and Center for Cognitive Science, The Ohio State University, Columbus, %T7 d | K hi for fi d
43210-1277 USA (e-mail: dwang@cis.ohio-state.edu). ] proposed a neural-network architecture for figure-groun
Publisher Item Identifier S 1045-9227(01)06459-1. separation of connected scenic figures based on their earlier

1045-9227/01$10.00 © 2001 IEEE



CHEN AND WANG: PERCEIVING GEOMETRIC PATTERNS 1085

work called the FACADE theory [16]. It was reported that theilhe main discovery of these experiments can be briefly summa-
architecture can distinguish between connected and discomed as follows [23], [40]: 1) neural oscillations ranging from
nected spirals. In their paper, however, no demonstration wa&to 70 Hz (often referred to as 40 Hz oscillations) are triggered
given to the spiral problem. In the framework of cellular neurddy sensory stimulation; 2) synchronous oscillations occur across
networks (CNNs), Chua [8] demonstrated that a connectad extended brain region if the stimulus constitutes a coherent
image component can be distinguished from disconnected or@gect; and 3) no phase locking exists across regions stimulated
Both models, lacking a global control mechanism, encountley different stimuli if they are not related to each other.
difficulty in separating multiple components, and they do not The discovery of synchronous oscillations in the visual
exhibit the limitations that humans do. cortex has triggered much interest to develop computational
A related operation, called curve tracing, has been studigtbdels for oscillatory correlation. Recently, Terman and Wang
in psychological experiments, whereby subjects detect whetlpeoposed alocally excitatory globally inhibitory oscillator
two dots are on the same curve. The main result from a numietwork(LEGION) [42], [50]. They theoretically showed that
of studies is that the time to carry out the operation increaseSGION can rapidly achieve both synchronization in a locally
monotonically, and roughly linearly beyond a certain lengtltoupled oscillator group representing each object and desyn-
with the separation of the two dots along the curve [20], [21¢hronization among a number of oscillator groups representing
[38]. This result suggests that immediate detection is availabiriltiple simultaneously presented objects, thus providing a
for short dot separations along a curve but sequential tracimgchanism for oscillatory correlation. In particular, synchrony
along the curve is employed for long separations. These find-LEGION is achieved at an exponential rate. These features
ings support the notion that humans employ some sequenti@dke LEGION different from other oscillator networks which
operation in solving the spiral problem [30]. Interestingly, irither show indiscriminate synchrony of multiple objects
the case of apparent sequential tracing, subjects are unawaréusf to long-range connections as pointed out by Spetns
the tracing process [38]. Further experiments on curve traciay [41] and Wang [48] or lack an effective mechanism for
reveal that the speed of tracing decreases systematically whdesynchronization. Motivated by the consideration that time
curve curvature increases, and tracing time is, to a consideradiégays are inevitable in signal transmission in both neural and
extent, invariant to the absolute size of the pattern [19], [21]. physical systems, Campbell and Wang have recently studied
There is a related problem in the study of visual perceptiotime delays in networks of relaxation oscillators and analyzed
i.e., the perception of spatial relations. For the human visuhke behavior of LEGION with time delays [4]. Their studies
system, the perception of spatial properties and relations apow that loosely synchronous solutions can be achieved under
pears to be immediate and effortless, and the response is wsbroad range of initial conditions and time delays [4].
ally fast and accurate [46]. However, the immediate perceptionWe explore both the spiral problem and the inside—outside
of spatial relations is subject to some limitations. For instangesoblem by oscillatory correlation. We attempt to address the
perceiving theinside—outside relatioris one such task. Con- following questions. Why humans cannot immediately distin-
sidering the visual input of a single closed curve, the task gliish between connected and disconnected spirals? What is the
perceiving the inside—outside relation is to determine whethewsnnection between the spiral problem and the inside—outside
a specific pixel lies inside or outside the closed curve. The peelation? How to perceive the inside—outside relation in neural
ception of the inside—outside relation is usually effortless for hnetworks? We show that computation through LEGION with
mans [46]. However, the immediate perception is not availattiene delays yields a solution to these problems. This investi-
when the bounding contour becomes highly convoluted [43]Jation leads to the interpretation that perceptual performance
[44]. In fact, one can make the bounding contour as convolutaguld be limited if local activation cannot be rapidly propagated
as a spiral. Ullman [43] suggested the computation of spatial ihie to time delays. As a special case, we demonstrate that LE-
lations through the use of visual routines. Visual routines res®ION without time delays reliably distinguishes between con-
in the conjecture that the inside-outside is inherently sequentia¢cted and disconnected spirals and discriminates the inside and
As pointed out recently by Ullman [44], the processes undetie outside regardless of shape, position, size, and orientation.
lying the perception of inside-outside relations are as yet un-The remainder of this paper is organized as follows. Section I
known and applying visual routines is simply one alternative.overviews the architecture and dynamics of LEGION networks.
There are many cortex areas in the mammalian visual syst&action Il presents the methodology and reports simulation re-
and an everyday object will excite cells in most of these areas dults. Further discussions are given in Section IV, and conclu-
vision, therefore, binding is viewed as a way of integrating fragions are drawn in Section V.
mentary neural events at multiple locations in the brain to pro-
duce unified perceptual experience and behavior. Binding im-
plies that with activity spread across the cortex areas, visual per-
ception cannot occur until the activity associated with one objectin this section, we first review the architecture and dynamics
can be labeled somehow so as to make those relevant neurarisEGION. It is followed by an introduction to a variant with
act like a functional unit [35]. Theoretical investigations of braitime delaysBoth of them will be used to deal with the problems
functions indicate that timing of neuronal activity is a key to thin this paper.
construction of neuronal assemblies [27], [47]. In particular, a As illustrated in Fig. 2(a), the architecture of LEGION is a
binding mechanism that uses neural oscillations to encode tame-dimensional network (it can be extended to other dimen-
poral correlation has received considerable support biologicaltjons). Each oscillator is typically connected to only its neigh-

Il. LEGION MODEL
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Fig. 3. Nullclines and periodic orbit of a relaxation oscillator as defined in (1)

in phase plane. The-nulicline is shown by the dotted curve, and thaulicline
is shown by the dash-dot curve. The thick solid curve is the periodic orbit.

(b)

Fig. 2. Architecture of LEGION. (a) Two-dimensional network with four
nearest neighbor coupling. The global inhibitor is indicated by the black circle.
(b) Structure of a single relaxation oscillator.

Fig. 4. Two coupled relaxation oscillators with a time defay
bors (four nearest neighbors used in this paper), and the global
inhibitor receives excitation from each oscillator on the networtli<qe active phasef the oscillator, and a phase of relatively low
and in turn inhibits each oscillator [42], [50]. As depicted in '

. . ; .~ values ofz(—2 < x < —1) on the left branch (LB) called
F'g' 2.(b)’ the building block of LEGION, a smgle OSC'"‘?‘W the silent phase Within these two phases, (1) exhibits near
is defined as a feedback loop between an excitatoryayrand

an inhibitory unity; [42], [50] steady-state behavior. In contrast, the transition between the
y Yi ’ phases takes place on a fast time scale; i.e., when the oscillator

dz; reaches one extreme point & —1) of the cubic along LB it
o = S@hy) H i+ Sitp (18)  will rapidly jump up from LB to RB, and the oscillator will
dy: rapidly jump down from RB to LB when it reaches the other
d; =eg(x;, ;) (1b) extreme point£ = 1) along RB. In this case, the oscillator
is called enabled For an inputl; < A — v + 2, the two
where f(zi, i) = 3z — 4% — y, and g(z;, %) = nullclines also intersect on the left branch of the cubic, and (1)

A + ytanh(Bz;) — y; are used in this papet; repre- produces a stable fixed point at a low valuesgf < 1). In this
sents external stimulation to the oscillator, afidrepresents case, the oscillator is callegkcitable The parameters and
overall coupling from other oscillators in the network. The are introduced to control the relative times that an enabled
symbol p denotes the amplitude of a Gaussian noise ter@scillator spends in the two phases, and a larger summation of
which is introduced both to test the robustness of the systeénand~ yields a relatively shorter active phase.

and to actively desynchronize different input patterns. The In LEGION, the coupling terns; in (1a) is defined by
parameterk is chosen to be smal} < ¢ < 1. In this case,

(1) without any coupling and noise, corresponds to a standard S; = Z Wit Soo(r; 02) — WoSeo(2, 02) 2
relaxation oscillator [45]. The-nulicline of (1a),dx/ dt = 0, kCN(3)

is a cubic function, while thg-nullcline of (1b), dy/ dt = 0,

is a sigmoid function. The parametércontrols the steepness’VNere
of the sigmoid function and is chosen to be large,;> 1. 1

For an inputZ; > A — v + 2, the two nuliclines intersect Seol@, 0) = 1+ exp|—r(z — 0)]
only on the middle branch of the cubic, and (1) gives rise to

a stable periodic orbit as illustrated in Fig. 3. The periodiV;; is a synaptic weight from oscillatdr to oscillatorz, and
solution alternates between a phase of relatively high valudgs) is the set of adjacent oscillators that connect.tm this

of z(1 < z < 2) on the right branch (RB) of the cubic, calledpaper,N (¢) is four imnmediate neighbors on a two-dimensional

®3)
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Fig. 5. Results of LEGION with a time delay= 0.0027" (7" is the period of oscillation) to the spiral problem. The parameter values used in this simulation are
e = 0.003, 8 =500, v = 24.0, A = 21.5, azr = 6.0, p = 0.03, k = 500, 0, = —0.5,6. =0.1, ¢ = 3.0, W, = 1.5,I, = 1.0,and], = —1.0 where

I, andI, are external input to stimulated and unstimulated oscillators, respectively. (a) Visual stimulus. (b) A sequence of snapshots. (c) Tenipoed ofajec
activities of the oscillator groups representing the spiral, the background, and the global inhibitor, respectively. The simulation tooke2@&t@thisteps.

TABLE | the activity of every oscillator is below this threshold, then the
MIN-MaX MEASURE FOR THESPIRAL PROBLEM (rp = T4.4) global inhibitor will not receive any input. In this case, the oscil-

- - - - lators on the network will receive no inhibition from the global
measure | Figure 5 | Figure 6 | Figure 7 | Figure 8 inhibitor. If, on the other hand, the activity of at least one os-
Tae 283.4 34.9 201.5 23.8 cillator is above the threshold, the global inhibitor will receive
Tonin 97.4 187.3 101.4 134.5 input. In this case, all of oscillators on the network receive in-
Mi hibition from the global inhibitor when is above the threshold
in-Max no yes no yes

8. [cf. (2)]. The parametes determines the rate at which the
inhibitor reacts to such stimulation and the parameter(3) is
network, except on the boundaries whe¥&:) may be ei- chosen to be large;, > 1, to produce a steep sigmoid function.
ther two or three immediate neighbors [no wrap-around, seeThe computation of LEGION can be briefly summarized as
Fig. 2(a)].6,, is a threshold above which an oscillator can affed@llows. Once an oscillator enters the active phase, it triggers the
its neighborsW, is a positive weight used for inhibition from global inhibitor. As a result, the global inhibitor affects the en-

the global inhibitorz, whose activity is defined as tire network by exerting inhibition on all oscillators according
4 to (2). On the other hand, an active oscillator propagates its ac-
d_j = (000 — 2) (4) tivation to its nearest neighbors also according to (2), and the

propagation of the activation extends to other oscillators in this
wheres,, = 0if z; < 6. for every oscillator, and., = 1 manner until all the oscillators representing the same object are
if z; > 6. for at least one oscillator. Hert is a threshold. If activated. Thus, the dynamics underlying LEGION is a process
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Fig. 6. Results of LEGION without time delays to the spiral problem. The parameter values used in this simulation are the same as listed in th€igaption of
(a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the oscillator groups representing the spirgrahedyacid the
global inhibitor, respectively. The simulation took 32 000 integration steps.

of both synchronization by local cooperation through excitatolyound, 7z5,, loose synchrony of two oscillators is achieved
coupling among neighboring oscillators, and desynchronizatienthin a considerable range of initial time differences and
by global competition via the global inhibitor. A mechanisncoupling strengths [4]. Herégyi = min {715, 7rz}, Where
called dynamic normalization has been suggested to ensure that and g are the times that an oscillator spends to traverse
the quality of synchrony is not influenced by boundary effectsB and RB (see Fig. 3), respectively. They also showed that
[49]. During dynamic normalization weights are updated wheor = > gy, l00Se synchrony is rarely achieved. For locally
a new stimulus pattern is presented and quickly converge t@@upled networks of relaxation oscillators, their empirical
steady state, in which the total dynamic weights converging taravestigation indicates that loosely synchronous solutions are
single oscillator are equal to a constant. Such weight dynamatsained under similar conditions [4].
should be differentiated from neural network learning, where As illustrated in Fig. 4, time delays affect the coupling of cou-
training patterns are repeatedly presented. In the simulationspked oscillators, but the architecture of LEGION remains un-
ported in the paper, such a mechanism is adopted. changed though the behavior of LEGION with time delays can
Recently, Campbell and Wang studied time delays in ndie different [4]. Equations (1)-(4), therefore, can be still used
works of relaxation oscillators and analyzed LEGION network&ith @ modified coupling term [(2)] as follows:
with time delays [4]. Their inyestigation consi's'ts of formal S, = Z WinSoo(@r(t —7), 02) — W.So(z, 6.)  (5)
analysis of two coupled oscillators and empirical study of
networks of relaxation oscillators. Due to time delays, perfec
synchrony may not be achieved for coupled oscillators. Cam
bell and Wang introduced a concept calledse synchrony
to describe the behavior of relaxation oscillators with time
delays [4]; that is, two oscillators are loosely synchronous if the
phase difference between them is less than or equal to the timén this section, we first present our methodology for simula-
delay. Based on the definition, Campbell and Wang analyticalipns. Then, we report simulation results in details. Some anal-
showed that when a time delay is less than a specific uppesis for simulation results is also given.

kKEN(4)
herer (7 > 0) is a time delay in lateral interactions and other
arameters are the same as defined in (2).

Ill. SIMULATION RESULTS
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Fig. 7. Results of LEGION with a time delay = 0.002T to the spiral problem. The parameter values used in this simulation are the same as listed in the
caption of Fig. 5. (a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the oscillator groups represaotibig tpirals,
the background, and the global inhibitor, respectively. The simulation took 36 000 integration steps.

A. Methodology correspond to either figure or background (both are white in out-

For a given image consisting 8f x N pixels, a two-dimen- line patterns), and white pixels correspond to outlines (bound-
sional LEGION network withV x NN oscillators is employed aries separating figures and the background). This convention
so that each oscillator in the network corresponds to a pixelfcilitates presentations on white paper, and does not affect the
the image. In this paper, all images are binary to be consistéjstem outcome. For filled-in patterns on a white background
with typical stimuli used in the original problems. In convertinguch as Fig. 9, however, black pixels correspond to figures and
outline patterns such as Fig. 1 to an image representation usivigite pixels correspond to the background. In this case, unlike
binary pixels, we adopt the following convention. Black pixelsutline patterns, a human subject can readily realize and ignore
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Fig. 8. Results of LEGION without time delays to the spiral problem. The parameter values used in this simulation are the same as listed in th€igaption of
(a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the oscillator groups representing the doubiie gicatsound,
and the global inhibitor, respectively. The simulation took 36 000 integration steps.

the (white) background. In simulations, we let the external inpate desynchronous. Terman and Wang have analytically shown
of an oscillator corresponding to a black pixel be positive, artlat pattern formation can be achieved in LEGION without time
the external input corresponding to a white pixel be negativedelays [42]. However, it may not be achieved when time delays
An effective connection refers to the connection between tvase introduced. Although the loose synchrony concept has been
oscillators through which they can directly affect each otheéntroduced to describe time delay behavior [4], it does not in-
Since each oscillator in LEGION is connected to only its fouticate pattern formation in an entire network even when loose
nearest neighbors, an effective connection can be only estayachrony is achieved. This is because loose synchrony is a local
lished if and only if two oscillators are adjacent and both of thegoncept defined in terms of pairs of neighboring oscillators.
are activated by external stimulation; otherwise, there is no ef-Here we introduce a measure calleih—max differencén
fective connection between them. Suppose that an osciliator, order to examine whether pattern formation is achieved. Sup-
hasK; neighbors with positive input ang is a constant used pose that oscillator®; andO; represent two pixels in the same
for dynamic normalization. Then, the effective strendtfy;, object, and the oscillatoD;, represents a pixel in a different
between any two oscillator®; and O; is dynamically deter- object. Moreover, let® denote the time at which oscillator,

mined as enters the active phase. The min—-max difference measure is de-
ap/K; if O;is aneighbor of); fined as
Wi = { and external input to both is positive
0 otherwise. (6) Thax < TRB and Tmin > TRB (7)

Note that due to this dynamic normalization [49], the overallhereT},.x. = maxo,,0;in same object |t — | and Tipin =
sum of coupling strengths of any stimulated oscillator with ahine, o, in diderent objects [t — ¢*|. In other words, the min-
least one effective connection ég-. Other parameters in LE- imum difference in jumping times between any two oscillators
GION can be chosen according to the theoretical analysisrepresenting different objects is greater than or equal to an ac-
Terman and Wang [42]. tive phase, whereas the maximum difference in jumping times
We use pattern formation in oscillator networks to refer to th@f the same period) between any two oscillators representing
behavior that all the oscillators representing the same object Hre same object is less than an active phase. When (7) is satis-
synchronous, while the oscillators representing different objedisd, we say that pattern formation takes place. Intuitively, this
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measure suggests that pattern formation is achieved if any two
oscillators representing two pixels in the same object have some
overlap in the active phase, while any two oscillators repre-
senting two pixels belonging to different objects never stay in
the active phase simultaneously. As a result, pattern formation
is achieved by a LEGION network withiR x 7" whereT' is the
period of oscillation which can be calculated explicitly in terms
of system parameters (see the Appendix) &nid the number

of objects in the presented image. This statement is derived by
Terman and Wang [42].

We adopt two methods to display our simulation results. One
is the combined: activities of the oscillators representing the
same object as well as the global inhibitor over time, and the (a)
other is a set of snapshots to show instantaneous activity of the

entire network at various stages of dynamic evolution. For snap-
shots, we use black circles to showactivities of oscillators and
stipulate that the diameter of a black circle is proportional to
(2 — Zmin) /(Zmax — Tmin), Wherez values of all oscillators lie

in the interval[z,in, Tmax]-

It is well known that information transmission in a biological
system is inevitably associated with time delays which may alter
the behavior of the system. Thus, itis desirable to use LEGION
with time delays. The performance of LEGION without time

delays is shown as a special case to illustrate its capabilities of
solving problems.

B. Results (b)

In the following simulations, the differential equationsig. 9. Two-spiral problem. (a) Two spirals with many turns. (b) Two spirals
in (1)—(5) are numerically solved using the fourth-ordewrith few turns.

Runge—Kutta method with a step size 0.2 (smaller steps were

used to verify the results). We illustrate stimulated oscillatohs5 activation to its two immediate neighbors with some time

with black squares. All oscillators are initialized randomly. Yelay, and the process of propagation forms a traveling wave

large number of simulations have been conducted, and simi ar g the spiral. We emphasize that, at any time, only the
fi

results as reported here are produced with a broad range,Qillators corresponding to a portion of the spiral stay in the

parameter values and network sizes. Here we report typ'%\%ltive phase together, and the entire spiral can never be in the

results using a specific set_of paramet.er vqlues. . active phase simultaneously. Pattern formation is examined
1) Spiral Problem: As illustrated in Fig. 1, the spiral

problem consists of two images proposed by Minsky a l;g;\sed on the min-max measure. In Tabléih..c and Ly
Papert [29], [30]. In Fig. 1(a), it is a connected single spir ee (7)] are given, together with the valuergfs. In this case,

. ! . . 4 ttern f tion i t achieved b . Thus,
while Fig. 1(b) contains disconnected double spirals. F F‘ ern formation Is not achieved becalsg.. > Trs us

imulati th led as two bi . ity 29 ased on the oscillatory correlation theory, our system cannot
simulations, they areé sampled as two bihary Images wi §rapp the whole spiral together. The system’s limitation is
i

29 pixels. For these images, two questions can be addres litatively consistent with that of human performance in this

1) When an Image 1S presented, can one detgrmlne wheth ituation (see Section I). Also, the process that our model traces
contains a single spiral or double spirals? 2) Given a point oqd:ae
two-d;m:jensmnal pflane,_ C"Tg one determine whether it is insi %ce the spiral for identificatiohNote that the convoluted part
or ou Sf'. €a SpTC' IC spirals h i del he singl of the background behaves similarly.

We _|rst apply LEGIQN with time elays tf) the single 1, jiustrate the effects of time delays, we apply LEGION
spiral image. Fig. 5(a) illustrates the visual stimulus, Whe(ﬁithout time delays to the same image, and Fig. 6 shows the

black pixels correspond to stimulated oscillators and whilg,is Fig. 6(a) illustrates the same visual stimulus. Fig. 6(b)

ones unstimulated oscillators. Fig. 5(b) shows a sequenceggt s three snapshots corresponding to the random initial state

snapshots after the network is stal_ail_i;ed except for the fif the network, the separated spiral and the background, respec-
snapshot which shows the ra”dom initial state of the f_‘etWO'E ely. Fig. 6(c) illustrates the temporal trajectories of the stim-
These snapshots are arranged in temporal order first from

left to right and then from top to bottom. Fig. 5(c) shows e recognize that eye movements may be involved in tracing convoluted spi-
the temporal trajectories of the combinedactivities of the rals by humans. Eye movements are usually preceded by covert shift of attention

oscillators representing the spiral and the background as We|[§§. Thus, a more rigorous treatment of sequential tracing likely involves an
Iinterplay between covert attentional shifts, whose time scales are roughly com-

the temporal activity of the global inhibitor. We observe from, apie with those of neural oscillations, and eye movements (or overt shits),
these snapshots that an active oscillator in the spiral propagatesse time scales are substantially slower.

spiral bears resemblance to the way humans sequentially



1092 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001

P |

=1

(@)

0000000000000 S0000000800000000000

0000000000000000000
0080000000000 ¢s

000000 00060000080 se0ses

L4
°
*
°
3
*
3 ®
* e
L1

0008000000000 000 00050000000 0000

Hlv B )
‘” N’WH«M‘ | \‘\l\‘

\ H‘I‘

Inhibitor WW v v v V v ' v v v

(©

Fig. 10. Results of LEGION with a time delay = 0.0027 to the two-spiral problem of Fig. 9(a). The parameter values used in this simulatien-are

0.004, v = 14.0, A = 11.5 and the other parameter values are the same as listed in the caption of Fig. 5. (a) Visual stimulus. (b) A sequence of snapshots.
(c) Temporal trajectories of activities of the oscillator groups representing the two spirals and the global inhibitor, respectively. Thenstonka®4 000
integration steps.

ulated oscillators. From Table |, it is clear that pattern formahe behavior of the system for the convoluted part of the
tion is achieved, and the single spiral can be segregated froackground is similar to that for the double spirals. Fig. 7(c)
the background by the second period. Thus, LEGION withoillustrates the temporal trajectories. Our observation beyond the
time delays can readily solve the spiral problem in this case. Tteration of Fig. 7(c) shows that the system is stabilized by the
failure to group the spiral in Fig. 5 is caused by time delays fiourth period of oscillations. As indicated by Table |, pattern
the coupling of neighboring oscillators. formation is not achieved after the network is stabilized.

We also apply LEGION with time delays to the double We also apply LEGION without time delays to the double spi-
spirals image. Fig. 7(a) shows the visual stimulus. Fig. 7(bAls image for the same purpose as described before, and Fig. 8
shows a sequence of snapshots. Similar behavior as illustrasbdws the results in the same manner as in Fig. 6. As shown
in Fig. 5 occurs here. The results show that the pixels in airy Table I, pattern formation is achieved, and one spiral can be
one of double spirals cannot be grouped to the same pattesegregated from both the other spiral and the background by
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Fig. 11. Results of LEGION with a time delay = 0.0027 to the two-spiral problem of 9(b). The parameter values used in this simulation are the same as
listed in the caption of Fig. 10. (a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the oscillatopgesepsimg the two
spirals and the global inhibitor, respectively. The simulation took 24 000 integration steps.

TABLE I
MIN-MAX MEASURE FOR THETWO-SPIRAL PROBLEM (Trp = 106.0)

cannot solve the spiral problem in general. Only under the
special condition of no time delay can the system solve the

- - - - problem.
measure | Figure 10 | Figure 11 | Figure 12 | Figure 13 2) Two-Spiral Problem:A variant of the spiral problem,
Trnozx 318.5 18.7 125 15.8 called two-spiral problem, is well known as a benchmark
Toin 112.8 132.6 242.8 234.5 task in neural networks [10]. Fig. 9 illustrates two cases of
MinMax o yos yos s the two spirals with different_complexities; ie., many turns in
Fig. 9(a) and few turns in Fig. 9(b). The two-spiral problem

may be viewed as a modified version of the double spirals
the second period. Thus, LEGION without time delays readiignage in Fig. 1(b), where two spirals are distinguished from
solves the spiral problem in this case, and it indicates that tie background through the use of color. The benchmark
failure to group the double spirals in Fig. 7 results from timproblem is described as follows: given a point in one of two
delays. spirals, identify which spiral it belongs to? The problem may
For the spiral problem, pattern formation means that ofee converted into a problem of perceiving the inside—outside
can provide the answers to the aforementioned questionsrelfition: whether a point is inside a specific spiral? The human
counting the number of objects or identifying whether twperformance to the problem is that perceiving the inside—out-
pixels belong to the same spiral or not. No answer is availaldigle relation is effortless when spirals have few turns, but
when pattern formation is not achieved. Hence, our systesffortful when spirals have many turns [46], [44].
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Fig. 12. Results of LEGION without time delays to the two-spiral problem of Fig. 9(a). The parameter values used in this simulation are the salrireths liste
caption of Fig. 10. (a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the oscillator groups repnedertispgitals and
the global inhibitor, respectively. The simulation took 12 000 integration steps.

For simulations, pictures in Fig. 9 are sampled as binary irfew turns in the spiral. However, it fails to group a whole spiral
ages with 23x 23 and 11x 11 pixels, respectively. LEGION when there are more turns in the spiral. This is because the more
with time delays is first applied to both images, and Figs. @rns in a spiral lead to the longer propagation time along the
and 11 show the results, respectively. Figs. 10(a) and 11(a)spiral, and there is no sufficient time to allow all the oscilla-
lustrate the visual stimuli, where black pixels represent two sgérs representing the spiral to stay in the active phase simulta-
rals and white pixels represent the background. Note that thisously. This limitation of our system qualitatively matches that
convention is somewhat different from Section 111-B1 (see exf human performance.
planation in Section IlI-A). Figs. 10(b) and 11(b) show a se- To illustrate the effects of time delays, we apply LEGION
guence of snapshots after the networks are stabilized, exceptfithout time delays to the two images in Fig. 9, and Figs. 12 and
the first snapshot which shows the random initial states of nét3 show the corresponding results. Pattern formation is achieved
works. Figs. 10(c) and 11(c) show the temporal trajectories. Asboth cases regardless of the spiral complexity (see Table 1),
indicated in Table II, pattern formation cannot be achieved fand the two spirals are segregated in both cases by the second
the case in Fig. 9(a), but is achieved for the case in Fig. 9(b).period.

We observe from those shapshots that, like its behavior for the3) Inside—Outside RelationsThe inside—outside problem
spiral problem, an active oscillator in a spiral only propagates itsfers to whether a dot belongs to area A or to area B, as
activation to its immediate neighbors with some time delay, ailtlstrated in Fig. 14. The perception of inside—outside relations
the process of propagation forms a traveling wave along edshusually performed by humans with intriguing efficiency.
spiral. The snapshots in Fig. 10(b) reveal that at any time orff§g. 14(a) is such an example, where humans can effortlessly
the oscillators corresponding to a portion of a specific spiral stagcognize the dot is inside area A rather than area B though the
in the active phase together, and the entire spiral is never in t® areas are separated by a convoluted boundary. However,
active phase at the same time. In contrast, however, Fig. 11fbpmediate perception is subject to limitations. For instance,
reveals that all the oscillators corresponding to a specific spifaimans cannot immediately identify whether the dot is inside
can stay in the active phase simultaneously though they maga A or area B for the visual stimulus in Fig. 14(b). For
enter the active phase at different times in the same period. Thiahulations, the two pictures are sampled as binary images
is, the system can group a whole spiral together when there aiith 43 x 43 pixels. Here, we report our typical results.
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Fig. 13. Results of LEGION without time delays to the two-spiral problem in Fig. 9(b). The parameter values used in this simulation are the sahetag liste
caption of Fig. 10. (a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the oscillator groups repneserispgitals and
the global inhibitor, respectively. The simulation took 12 000 integration steps.

We first apply LEGION with time delays to the two imagesThese figures show that LEGION without time delays readily
in Fig. 14, and Figs. 15 and 16 show the results. Note that the segregates two areas, and pattern formation is achieved in both
sual stimuli here are represented following the same conventicases (see Table Ill). Area A is separated from area B by the
as in Section IlI-B1. We observe from Fig. 15(b) that the actsecond period in both cases. Thus, the failure to group each area
vation of an oscillator can rapidly propagate through its neight Fig. 16 is attributed to time delays in the coupling.
bors to other oscillators representing the same area, and evern general, the above simulations suggest that oscillatory cor-
tually all the oscillators representing the same area (A or Bglation provides a way to address inside—outside relations by
stay together in the active phase, though they generally ersemeural network; when pattern formation is achieved, a single
the active phase at different times due to time delays. As shoarea segregates from other areas that appear in the same image.
in Table lll, pattern formation is achieved, and area A is sepor a specific dot on the two-dimensional plane, the inside—out-
arated from area B by the second period. In contrast, we alide relations can be identified by examining whether the oscil-
serve from Fig. 16(b) that although an active oscillator rapidlgtor representing the dot synchronizes with the oscillators rep-
propagates its activation in open regions as shown in the lassenting a specific area.
three snapshots, propagation is limited once the traveling wavel) Role of Time Delay:As described in Section I, the LE-
propagates in spiral-like regions as shown in earlier snapsh@4$ON model with the time delay was first described by Camp-
This is because it takes longer or much longer to travel a cdrell and Wang [4], who carried out a comprehensive analysis
voluted region from one end to another. As a result, the osailf such a system. In terms of oscillatory dynamics, this paper
lators representing the whole area are never in the active phiasa direct application of their analysis. The interested reader
simultaneously, and pattern formation is not achieved after tisereferred to their paper for an extensive treatment. Relating
network is stabilized (see Table Ill). Thus, our system cannm the present study, we point out that the same value, of
group the whole area and fails to identify the pixels of one are#ich equals 0.2% of the period of oscillation, is used in all
as belonging to the same pattern. Again, this limitation is quahe above simulations. The choice of this relatively smab
itatively consistent with that of human performance in this sifustified by the fact that only adjacent oscillators are coupled.
uation (see Section I). As we mentioned earlier, similar results were obtained in our

We also apply LEGION without time delays to the two imsimulations when is varied within a reasonable range. Fixing
ages in Fig. 14 (see Section I). Figs. 17 and 18 show the resuttther system parameters, increasingrolongs the traveling
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group. On the other hand, recent theoretical studies on percep-
tual organization have shown that the formation of uniform
and connected regions is probably the first step in perceptual
organization [36]. This suggestion agrees with the emphasis on
emergent synchrony based on local connectivity, which reflects
both connectedness and uniformity. The binding mechanism
in LEGION provides a neurocomputational foundation to
A B generate uniform and connected regions.

Physiological studies also show that there are waves of
neural activity traveling with velocities of 10-90 cm/s in the
hippocampus and other cortical areas [26], [28]. One mecha-
nism of generating traveling waves is time delays caused by
(@) nerve conduction [28]. In local cortical circuits, for instance,
the speed of nerve conduction is less than 1 m/s [32] such
that connected neurons with 1 mm apart have a time delay
of more than 4% of the period of oscillation assuming 40 Hz
oscillations. Therefore, the use of LEGION with time delays
represents a general case, while the use of LEGION without
time delays should be regarded as a special case.

From simulations, we have observed that it is often difficult
for LEGION with time delays to group a long and narrow region
such as a spiral. For such visual stimuli, our network can achieve
pattern formation only if a spiral-like structure has relatively few
turns. Our simulation results can be interpreted as follows. In

) a locally coupled neural network, an active oscillator can only
propagate its activation to its neighbors. Thus, the spiral-like re-
Fig. 14. Inside—outside relations. (2) An example where immediate_percept'gbns constrain propagation of the local activation so that activa-
's available (adapted from Julesz [22). (b) An example where Immec]l'anon slowly spreads along the spiral structure. Such propagation
perception is not available (adapted from Ullman [43]).
may take too long for the oscillators representing the spiral-like

: . region to stay in the active phase simultaneously. On the other
wave going through the same input pattern [see, for examp| J y P y

e LT . X
. . . . . and, all the problems studied in this paper are associated with

Fig. 5(c)], thus increasing the likelihood that the pgttern vx_nII nz%aking a decFi)sion ononnectednesSe.pgR/en any two points

be group.ed together. In other.words_, the patterr_1 IS less IIkeb’w?]ether or not there is a path in the figure through adjacent

be perceived as a whole at a time. Similarly, whas fixed, the

. . ints th nn he twi ints [2 . To mak r-
more convoluted an input pattern is, the longer the system taPPO ts that connects the two points [29], [30]. To make a co

; . rett decision, global information is necessary. However, global
to propagate a traveling wave through the entire pattern and th N . : L h

) . . information is not available until pattern formation is achieved
the pattern is less likely to be perceived as a whole.

in the framework of oscillatory correlation. The dilemma be-
tween local activation propagation and need of global informa-
tion might be responsible for human limitations in perceiving
The relaxation oscillator, the building block of LE-such visual stimuli.

GION, is dynamically very similar to numerous other With additional information discriminating spirals and back-
oscillators used in modeling neuronal behavior, such as thmund, humans can solve the spiral problem efficiently. Fig. 19
FitzHugh—Nagumo model [12], [33], and the Morris—Lecaitlustrates such an example where two spirals and the back-
model [31]. These models can all be viewed as simplificatioggound can be distinguished on the basis of texture. How is
of the Hodgkin—Huxley equations of neuronal activity. Resuch facilitation obtained? We explain this facilitation in terms
cently, Campbell showed that equations [such as (1)] defininflong-range connections that may be established between os-
relaxation oscillations can generate in different parameteitlators. In our simulations, only nearest neighbor connections
regimes different classes of oscillations, including harmonare employed. With longer connections, we expect that syn-
(sinusoidal) and integrate-and-fire oscillations, and thus thefironization between remote oscillators is facilitated and thus
are of generic nature [3]. Oscillatory correlation is consistegtouping between pixels corresponding to the same structure
with growing evidence that supports the existence of neuialimproved. In fact, there exist long-range lateral connections
oscillation in the visual cortex and other brain regions [40fhmong neurons in the visual cortex and other brain regions.
Furthermore, the local excitatory connections adopted in thwwever, such long-range connection would need to be con-
network are motivated by various lateral connections in tietrained in perceiving spiral-like structures as in the original
brain, in particular, the horizontal connections in the visuérm of Fig. 9, because pixels constituting figure and back-
cortex [14], [15]. The global inhibitor on the other hand, mighground are identical and both figure and background are narrow
be viewed as a neuronal group in the thalamus, and its activityuctures. In this situation long-range connections would con-
may be interpreted as the collective behavior of the neurorae figure and background. This is part of the justification for

IV. DISCUSSION
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Fig. 15. Results of LEGION with a time delay = 0.0027" to the inside—outside relation of Fig. 14(a). The parameter values used in this simulation are the
same as listed in the caption of Fig. 10. (a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the aagkat®p@senting
areas A and B as well as the global inhibitor, respectively. The simulation took 24 000 integration steps.

our use of nearest neighbor coupling, which is a gross simplifire left to future research for a more comprehensive treatment
cation of local cortical circuitry. On the other hand, informationf the spiral problem under various variations.

such as texture, motion, color can facilitate the effective use ofAs described earlier, as a benchmark task the two-spiral
long-range connections. With long-range connections, we g¢oblem is well known in the neural-network community.
pect that our network with time delays can solve the type @fithough it has been reported that many neural network models
the spiral problem exemplified in Fig. 19. In light of the abovean solve the problem through learning, their solutions are
discussions, it is clear that, besides the length of a spiral, fiited because generalization abilities of resulting learning
difficulty of telling the spiral apart is determined by how consystems highly depend on the training set. When slightly
voluted (such as the number of turns as illustrated in Fig. 9) d#fferent spirals (e.g., shape, position, size, or orientation) are
boundary is and how easily it distinguishes from the rest of thised as input to learned systems, the correct solution cannot
figure in terms of color, texture, etc. These factors affect the else generated. As pointed out by Minsky and Papert [29],
tent of lateral connections, and thus the range of synchrony[80], solving the spiral problem is equivalent to detecting
the network. On the other hand, the use of longer connecticmennectedness, and connectedness cannot be computed by
in a network would introduce new issues, such as what appeosty diameter-limited or order-limited perceptrons. This limi-
priate connection scales should be used and how it can be d@t®n holds for multilayer perceptrons regardless of learning
automatically without rewiring. Another issue concerns size ischeme [30, p. 252]. Unfortunately, few authors have discussed
variance. As mentioned in Section I, the time for humans to payenerality of their solutions. In contrast, LEGION provides
form curve tracing is, within a considerable range, invariant @ generic solution to the spiral problem. Our simulations
the size of the input pattern. This calls for a mechanism that hdrave shown that LEGION without time delays can always
dles size variations before our network is applied. These issutstinguish these figures regardless of shape, position, size, and
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Fig. 16. Results of LEGION with a time delay = 0.0027T to the inside—outside relation of Fig. 14(b). The parameter values used in this simulation are the
same as listed in the caption of Fig. 10. (a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the aaglat®pgsenting
areas A and B as well as the global inhibitor, respectively. The simulation took 24 000 integration steps.

MIN-MAX MEASURE FOR THEINSIDE/OUTSIDE PROBLEM (trp = 106.0)

TABLE 1l

measure | Figure 15 | Figure 16 | Figure 17 | Figure 18
ez 78.2 3284 324 35.8
Tonin 142.6 119.7 167.5 228.2

Min-Max yes no yes yes

the oscillatory correlation representation than by supervised
learning from examples. The latter approach, when dealing with
geometric patterns, faces the challenge that there potentially
are exponentially many instances of a geometric pattern (e.g.,
connectedness), too many to be feasible for generalization
from a limited set of training examples (see also [30]). By this
suggestion, we do not mean to downplay the importance of
supervised learning; rather, we emphasize that architecture and
representation, along with learning, are all important for neural

orientation. In particular, no learning is involved in LEGION computation.
Therefore, we suggest that this kind of geometric problemsAccording to Ullman [43], [44], the perception of in-
may be better solved by a properly connected architecture witile—outside relation involves a complicated procedure of
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Fig. 17. Results of LEGION without time delays to the inside—outside relation of Fig. 14(a). The parameter values used in this simulation arestlistedme a

in the caption of Fig. 10. (a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the oscillator grougingepreasri and
B as well as the global inhibitor, respectively. The simulation took 16 000 integration steps.

visual information processing beyond early representatiotsough its emergent behavior reflects a degree of serial nature
He suggested that the related computation consists of taebthe problems. Second, the coloring method does not make a
main stages [43]. The first stage is the bottom—up creation gfialitative distinction between rapid effortless perception that
certain representations of the visual environment. The secarairesponds to simple boundaries and slow effortful perception
stage involves serial applications of visual routines on thkat corresponds to convoluted boundaries. In contrast, our
representations constructed in the first stage. In particulaystem makes such a distinction: effortless perception with
Uliman proposed a so-callemloring method for computation simple boundaries corresponds to when pattern formation is
of inside—outside relations [43]. It can be summarized aghieved, and effortful perception with convoluted boundaries
follows. Starting from a given point, its surrounding area inorresponds to when pattern formation is not achieved. Third,
the internal representation is activated. The activation stretclpeshaps more importantly conceptually, our system does not
out until a boundary is reached. Depending on the startiimyoke high-level serial processes to solve such problems
point, either the inside or the outside of the boundary will bike inside—outside relations; its solution involves the same
activated, but simultaneous activation of both is prohibitechechanism as it does for parallel image segmentation (see
The coloring scheme continues until the activation cannfgl] and [52]). On the other hand, visual routines belong to
spread. This provides a basis of separating the inside from 8erond-stage processing, which operates on representations
outside. Our simulation results show that activity propagati@momputed from first-stage, bottom-up processing.

in LEGION with time delays forms a traveling wave within a From the computational standpoint, LEGION dynamics
specific object. When an object is a spiral-like structure as without time delays amounts to segmentation of connected
Fig. 14(b), activation spreads slowly, while activation spread®mponents, a task that can well be solved by serial algo-
rapidly when the object is a wide open structure. This behaviothms (e.g., see [29, Ch. 9]). On the other hand, LEGION
of LEGION is similar to the process of the coloring schemés a neural network that performs segmentation in a parallel
However, there are a number of important differences. Firsind distributed way. The LEGION dynamics described here
the coloring method is described as a serial algorithm, while a simple version tailored to the problems addressed in this
our system is an inherently parallel and distributed procegaper, which works on binary input and uses only four nearest
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Fig. 18. Results of LEGION without time delays to the inside—outside relation of Fig. 14(b). The parameter values used in this simulation aresttistedme a
in the caption of Fig. 10. (a) Visual stimulus. (b) A sequence of snapshots. (¢) Temporal trajectories of activities of the oscillator grougigepreasr and
B as well as the global inhibitor, respectively. The simulation took 16 000 integration steps.

processing. Similar solutions are possible with different oscil-
lator models and different coupling methods.

V. CONCLUSION

Based on oscillatory correlation, we have given a generic so-
lution to the spiral and inside—outside problems. Our simula-
tion results of LEGION with time delays qualitatively resemble
human performance. We find that the spiral problem and the
inside—outside problem share an intrinsic property, i.e., imme-
diate perception is unavailable if local activation cannot rapidly
spread, as synchrony would not be established in the presence
Fig. 19. Two spirals with differing textures. of time delays. As a special case, LEGION without time delays

always solves these problems regardless of shape, position, size,
neighbor coupling. Extended versions have been proposed and orientation. Given limited success from numerous attempts
applied to segmenting a variety of challenging real imagery the framework of learning, we suggest that such geometric
such as medical imagery [39] and aerial imagery [6]. Theggoblems may be better solved by a properly connected archi-
studies also show favorable comparisons with other imatggture with the oscillatory correlation representation than by
segmentation algorithms. Because of its parallel and distributgigpervised learning.
nature and its continuous-time dynamics, LEGION has been
implemented on very large scale integration (VLSI) chips for
segmentation purposes [9], [1].

Finally, the style of computation performed by LEGION can
be characterized as spatiotemporal processing, a topic that hds this Appendix, we describe how to calculate the period
been extensively studied in the literature (see, for example, [8f,oscillation in terms of system parameters in LEGION. This
[24], [34]). Obviously, the LEGION networks described in thisalculation is similar to that of Campbell and Wang [4], which
paper represent one solution in the paradigm of spatiotempasatione with time delays.

APPENDIX
PERIOD OF OSCILLATION IN LEGION
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In order to calculate the period of oscillation, itis useful toex 2 e -
plain the behavior of two coupled relaxation oscillators. Fig. 2 i
shows the behavior of two enabled oscillators coupled throu |
mutual excitation. It can be regarded as the case of a network j
LEGION only with two oscillators but omitting the global in- - '
hibitor. Let; andO, denote the two oscillators. Suppose the ° :
both oscillators are initially on the lower left branch (LLB) ancy '" i
O is closer to the lower left knee (LLK). The leading oscillator f
O4, will reach LLK first, and jump up to the lower right branch !
(LRB). Since(; has crossed a specific threshold of the inte :
action termd, O, will receive excitation through the coupling !
term. Let the coupling strength ke If O, is below LLK,, + «
(LLK , is they value of LLK), it will immediately jump up to
the upper right branch (URB). When, crosses the threshold
8, O, will receive excitation fromDs, and then hop from LRB
to URB. If, however(), is above |_|_KJ +a whenOq jumps up, Fig. 20. _Nu_IIcIines and period_ic orbits of a pair of relaxat_ion oscilla_tors. LLK
Oz will first hop to the upper left branch (ULB) and then jumpfs R et o e S om0 el IR B Feapectivly. LK
up to URB when it is below LLK + «. On the other hand),  and URK indicate the left and right knee of the upper cubic, respectively. ULB
will jump down to ULB when it reaches the upper right kne@nd URB ir)dicate the left and right branch of the upper cubic, respectively. See
(URK) along URB, and then hop down to LLB whew, also 9- 3 caption for curve conventions.
jumps down. Each jump results in a significant phase contrac- . _
tion between two oscillators such that fast synchrony is achievaid the time it takes to travel from URK to LLK, along LLB, is
at an exponential rate as shown by Terman and Wang [42]. Off@iculated by (8) as
synchrony is achieved, the period of oscillation is the time that 1 log <URKy +v - A)

an oscillator traverses the periodic orbit depicted in Fig. 20. TLLB = LLK, +~ — A

Recently, Terman and Wang have carried out an analysis gfere | Lk, and URK, are, respectively values of LLK and
LEGION in the singular limit ¢ = 0) and, moreover, extended gy Both LK, and URK, will be fixed once a set of param-
their outcome t® < ¢ < 1 with singular perturbation analysis atars in LEGION is specified; in this paper, LLK= —2 and

[42]. Basically, the process of synchronization on two couplqglRKy — I, + ay — W, + 2 in terms of parameters as defined
oscillators can be generalized to LEGION. The perturbatig (1)—(6). Therefore, the period of oscillatidhis
analysis of LEGION indicates that the exact fornwefiullcline '

&

11)

is not important as long as a general cubic shape is maintained T = ryrp + 7LLB- (12)
and evolution of the system is critically determined by solving
the differential equations on thevariable [42]. Whens > 1, ACKNOWLEDGMENT

we can analytically solve (1b) in terms of two different branches

by utilizing tanh(8z) ~ —1 whenz < —1 andtanh(fz) =~ 1 The authors would like to thank S. Campbell for many dis-

whenz > 1. As a result, the equation describipg(t) along CUSSIONs.
one of the LBs¢; < —1) is
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