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Perceiving Geometric Patterns: From Spirals to
Inside–Outside Relations

Ke Chen, Senior Member, IEEE,and DeLiang Wang, Senior Member, IEEE

Abstract—Since first proposed by Minsky and Papert, the spiral
problem is well known in neural networks. It receives much at-
tention as a benchmark for various learning algorithms. Unlike
previous work that emphasizes learning, we approach the problem
from a different perspective. We point out that the spiral problem
is intrinsically connected to the inside–outside problem proposed
by Ullman. We propose a solution to both problems based on os-
cillatory correlation using a time-delay network. Our simulation
results are qualitatively consistent with human performance, and
we interpret human limitations in terms of synchrony and time de-
lays. As a special case, our network without time delays can always
distinguish these figures regardless of shape, position, size, and ori-
entation.

Index Terms—Desynchronization, geometric patterns, inside–
outside relations, LEGION, oscillatory correlation, spiral problem,
synchronization, time delays, visual perception.

I. INTRODUCTION

T HE SPIRAL problem refers to distinguishing between a
connected single spiral and disconnected double spirals

on a two-dimensional plane, as illustrated in Fig. 1. Minsky
and Papert first introduced the problem in their influential
1969 book on perceptrons [29], and the problem belongs to
a class of geometric patterns systematically studied in the
book. As pointed out by Minsky and Papert [30], humans are
unable to solve the problem immediately, but can do it through
the use of some serial mental process. Since its introduction,
the spiral problem has received much attention from several
different fields. In the neural-network community, a variant
of the problem has become a benchmark [10] to evaluate the
performance of a learning system on both nonlinear separability
and generalization, since Lang and Witbrock [25] reported that
the problem could not be solved with a standard multilayered
perceptron. Many papers have dealt with the problem and
many solutions have been attempted using different learning

Manuscript received November 23, 1999; revised November 29, 2000.
This work was supported in part by NSF under Grants IRI-9423312 and
IIS-0081058. The work of K. Chen in China was supported in part by an NSFC
under Grant 60075017, a Chinese Education Ministry “Trans-Century Talented
Professional” Award, and China National Key Fundamental Research Grant
G1999032708. The work of D. Wang was supported by ONR under Young
Investigator Award N00014-96-1-0676. A preliminary version was presented
in NIPS-98.

K. Chen was with the Department of Computer and Information Science
and Center for Cognitive Science, The Ohio State University, Columbus,
OH 43210-1277 USA. He is now with the School of Computer Science, the
University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K. (e-mail:
k.chen@cs.bham.ac.uk).

D. Wang is with the Department of Computer and Information Science
and Center for Cognitive Science, The Ohio State University, Columbus, OH
43210-1277 USA (e-mail: dwang@cis.ohio-state.edu).

Publisher Item Identifier S 1045-9227(01)06459-1.
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Fig. 1. The spiral problem. (a) A connected single spiral. (b) Disconnected
double spirals (adapted from [29] and [30]).

models [2], [5], [7], [11], [13], [25]. However, resulting
learning systems are only able to produce decision regions
highly constrained by the spirals defined in a training set, thus
specific in shape, position, size, orientation, etc. The problem
in the geometric form is still open for neural-network learning.
Furthermore, no explanation is provided as to why the problem
is difficult for human subjects to solve. On the other hand,
the problem is considered as an instance of an important
stage in visual perception. This is the process whereby a
figure, or object, in a scene is separated from other figures
and background clutter, so-calledfigure–ground separation, in
perceptual psychology. Figure–ground separation is ubiquitous
and immediate in general. However, the spiral problem seems
to be an exceptional case since it is difficult for humans to give
a solution immediately. Therefore, spirals are often viewed
as anomalous perceptual stimuli [18]. Grossberg and Wyse
[17] proposed a neural-network architecture for figure-ground
separation of connected scenic figures based on their earlier
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work called the FACADE theory [16]. It was reported that their
architecture can distinguish between connected and discon-
nected spirals. In their paper, however, no demonstration was
given to the spiral problem. In the framework of cellular neural
networks (CNNs), Chua [8] demonstrated that a connected
image component can be distinguished from disconnected ones.
Both models, lacking a global control mechanism, encounter
difficulty in separating multiple components, and they do not
exhibit the limitations that humans do.

A related operation, called curve tracing, has been studied
in psychological experiments, whereby subjects detect whether
two dots are on the same curve. The main result from a number
of studies is that the time to carry out the operation increases
monotonically, and roughly linearly beyond a certain length,
with the separation of the two dots along the curve [20], [21],
[38]. This result suggests that immediate detection is available
for short dot separations along a curve but sequential tracing
along the curve is employed for long separations. These find-
ings support the notion that humans employ some sequential
operation in solving the spiral problem [30]. Interestingly, in
the case of apparent sequential tracing, subjects are unaware of
the tracing process [38]. Further experiments on curve tracing
reveal that the speed of tracing decreases systematically when
curve curvature increases, and tracing time is, to a considerable
extent, invariant to the absolute size of the pattern [19], [21].

There is a related problem in the study of visual perception,
i.e., the perception of spatial relations. For the human visual
system, the perception of spatial properties and relations ap-
pears to be immediate and effortless, and the response is usu-
ally fast and accurate [46]. However, the immediate perception
of spatial relations is subject to some limitations. For instance,
perceiving theinside–outside relationis one such task. Con-
sidering the visual input of a single closed curve, the task of
perceiving the inside–outside relation is to determine whether
a specific pixel lies inside or outside the closed curve. The per-
ception of the inside–outside relation is usually effortless for hu-
mans [46]. However, the immediate perception is not available
when the bounding contour becomes highly convoluted [43],
[44]. In fact, one can make the bounding contour as convoluted
as a spiral. Ullman [43] suggested the computation of spatial re-
lations through the use of visual routines. Visual routines result
in the conjecture that the inside-outside is inherently sequential.
As pointed out recently by Ullman [44], the processes under-
lying the perception of inside-outside relations are as yet un-
known and applying visual routines is simply one alternative.

There are many cortex areas in the mammalian visual system
and an everyday object will excite cells in most of these areas. In
vision, therefore, binding is viewed as a way of integrating frag-
mentary neural events at multiple locations in the brain to pro-
duce unified perceptual experience and behavior. Binding im-
plies that with activity spread across the cortex areas, visual per-
ception cannot occur until the activity associated with one object
can be labeled somehow so as to make those relevant neurons
act like a functional unit [35]. Theoretical investigations of brain
functions indicate that timing of neuronal activity is a key to the
construction of neuronal assemblies [27], [47]. In particular, a
binding mechanism that uses neural oscillations to encode tem-
poral correlation has received considerable support biologically.

The main discovery of these experiments can be briefly summa-
rized as follows [23], [40]: 1) neural oscillations ranging from
30 to 70 Hz (often referred to as 40 Hz oscillations) are triggered
by sensory stimulation; 2) synchronous oscillations occur across
an extended brain region if the stimulus constitutes a coherent
object; and 3) no phase locking exists across regions stimulated
by different stimuli if they are not related to each other.

The discovery of synchronous oscillations in the visual
cortex has triggered much interest to develop computational
models for oscillatory correlation. Recently, Terman and Wang
proposed alocally excitatory globally inhibitory oscillator
network(LEGION) [42], [50]. They theoretically showed that
LEGION can rapidly achieve both synchronization in a locally
coupled oscillator group representing each object and desyn-
chronization among a number of oscillator groups representing
multiple simultaneously presented objects, thus providing a
mechanism for oscillatory correlation. In particular, synchrony
in LEGION is achieved at an exponential rate. These features
make LEGION different from other oscillator networks which
either show indiscriminate synchrony of multiple objects
due to long-range connections as pointed out by Spornset
al. [41] and Wang [48] or lack an effective mechanism for
desynchronization. Motivated by the consideration that time
delays are inevitable in signal transmission in both neural and
physical systems, Campbell and Wang have recently studied
time delays in networks of relaxation oscillators and analyzed
the behavior of LEGION with time delays [4]. Their studies
show that loosely synchronous solutions can be achieved under
a broad range of initial conditions and time delays [4].

We explore both the spiral problem and the inside–outside
problem by oscillatory correlation. We attempt to address the
following questions. Why humans cannot immediately distin-
guish between connected and disconnected spirals? What is the
connection between the spiral problem and the inside–outside
relation? How to perceive the inside–outside relation in neural
networks? We show that computation through LEGION with
time delays yields a solution to these problems. This investi-
gation leads to the interpretation that perceptual performance
would be limited if local activation cannot be rapidly propagated
due to time delays. As a special case, we demonstrate that LE-
GION without time delays reliably distinguishes between con-
nected and disconnected spirals and discriminates the inside and
the outside regardless of shape, position, size, and orientation.

The remainder of this paper is organized as follows. Section II
overviews the architecture and dynamics of LEGION networks.
Section III presents the methodology and reports simulation re-
sults. Further discussions are given in Section IV, and conclu-
sions are drawn in Section V.

II. L EGION MODEL

In this section, we first review the architecture and dynamics
of LEGION. It is followed by an introduction to a variant with
time delays. Both of them will be used to deal with the problems
in this paper.

As illustrated in Fig. 2(a), the architecture of LEGION is a
two-dimensional network (it can be extended to other dimen-
sions). Each oscillator is typically connected to only its neigh-
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Fig. 2. Architecture of LEGION. (a) Two-dimensional network with four
nearest neighbor coupling. The global inhibitor is indicated by the black circle.
(b) Structure of a single relaxation oscillator.

bors (four nearest neighbors used in this paper), and the global
inhibitor receives excitation from each oscillator on the network
and in turn inhibits each oscillator [42], [50]. As depicted in
Fig. 2(b), the building block of LEGION, a single oscillator,
is defined as a feedback loop between an excitatory unitand
an inhibitory unit [42], [50]

(1a)

(1b)

where , and
h are used in this paper. repre-

sents external stimulation to the oscillator, andrepresents
overall coupling from other oscillators in the network. The
symbol denotes the amplitude of a Gaussian noise term
which is introduced both to test the robustness of the system
and to actively desynchronize different input patterns. The
parameter is chosen to be small, . In this case,
(1) without any coupling and noise, corresponds to a standard
relaxation oscillator [45]. The-nullcline of (1a), ,
is a cubic function, while the-nullcline of (1b), ,
is a sigmoid function. The parametercontrols the steepness
of the sigmoid function and is chosen to be large, .
For an input , the two nullclines intersect
only on the middle branch of the cubic, and (1) gives rise to
a stable periodic orbit as illustrated in Fig. 3. The periodic
solution alternates between a phase of relatively high values
of on the right branch (RB) of the cubic, called

Fig. 3. Nullclines and periodic orbit of a relaxation oscillator as defined in (1)
in phase plane. Thex-nullcline is shown by the dotted curve, and they-nullcline
is shown by the dash-dot curve. The thick solid curve is the periodic orbit.

Fig. 4. Two coupled relaxation oscillators with a time delay� .

theactive phaseof the oscillator, and a phase of relatively low
values of on the left branch (LB) called
the silent phase. Within these two phases, (1) exhibits near
steady-state behavior. In contrast, the transition between the
phases takes place on a fast time scale; i.e., when the oscillator
reaches one extreme point ( ) of the cubic along LB it
will rapidly jump up from LB to RB, and the oscillator will
rapidly jump down from RB to LB when it reaches the other
extreme point ( ) along RB. In this case, the oscillator
is called enabled. For an input , the two
nullclines also intersect on the left branch of the cubic, and (1)
produces a stable fixed point at a low value of . In this
case, the oscillator is calledexcitable. The parameters and

are introduced to control the relative times that an enabled
oscillator spends in the two phases, and a larger summation of

and yields a relatively shorter active phase.
In LEGION, the coupling term in (1a) is defined by

(2)

where

(3)

is a synaptic weight from oscillator to oscillator , and
is the set of adjacent oscillators that connect to. In this

paper, is four immediate neighbors on a two-dimensional
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(a)

(b)

(c)

Fig. 5. Results of LEGION with a time delay� = 0:002T (T is the period of oscillation) to the spiral problem. The parameter values used in this simulation are
� = 0:003; � = 500; 
 = 24:0; � = 21:5; � = 6:0, � = 0:03; � = 500; � = �0:5; � = 0:1; � = 3:0; W = 1:5, I = 1:0, andI = �1:0 where
I andI are external input to stimulated and unstimulated oscillators, respectively. (a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of
activities of the oscillator groups representing the spiral, the background, and the global inhibitor, respectively. The simulation took 32 000 integration steps.

TABLE I
MIN–MAX MEASURE FOR THESPIRAL PROBLEM (� = 74:4)

network, except on the boundaries where may be ei-
ther two or three immediate neighbors [no wrap-around, see
Fig. 2(a)]. is a threshold above which an oscillator can affect
its neighbors. is a positive weight used for inhibition from
the global inhibitor , whose activity is defined as

(4)

where if for every oscillator, and
if for at least one oscillator. Here is a threshold. If

the activity of every oscillator is below this threshold, then the
global inhibitor will not receive any input. In this case, the oscil-
lators on the network will receive no inhibition from the global
inhibitor. If, on the other hand, the activity of at least one os-
cillator is above the threshold, the global inhibitor will receive
input. In this case, all of oscillators on the network receive in-
hibition from the global inhibitor when is above the threshold

[cf. (2)]. The parameter determines the rate at which the
inhibitor reacts to such stimulation and the parameterin (3) is
chosen to be large, , to produce a steep sigmoid function.

The computation of LEGION can be briefly summarized as
follows. Once an oscillator enters the active phase, it triggers the
global inhibitor. As a result, the global inhibitor affects the en-
tire network by exerting inhibition on all oscillators according
to (2). On the other hand, an active oscillator propagates its ac-
tivation to its nearest neighbors also according to (2), and the
propagation of the activation extends to other oscillators in this
manner until all the oscillators representing the same object are
activated. Thus, the dynamics underlying LEGION is a process
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(a)

(b)

(c)

Fig. 6. Results of LEGION without time delays to the spiral problem. The parameter values used in this simulation are the same as listed in the caption ofFig. 5.
(a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the oscillator groups representing the spiral, the background, and the
global inhibitor, respectively. The simulation took 32 000 integration steps.

of both synchronization by local cooperation through excitatory
coupling among neighboring oscillators, and desynchronization
by global competition via the global inhibitor. A mechanism
called dynamic normalization has been suggested to ensure that
the quality of synchrony is not influenced by boundary effects
[49]. During dynamic normalization weights are updated when
a new stimulus pattern is presented and quickly converge to a
steady state, in which the total dynamic weights converging to a
single oscillator are equal to a constant. Such weight dynamics
should be differentiated from neural network learning, where
training patterns are repeatedly presented. In the simulations re-
ported in the paper, such a mechanism is adopted.

Recently, Campbell and Wang studied time delays in net-
works of relaxation oscillators and analyzed LEGION networks
with time delays [4]. Their investigation consists of formal
analysis of two coupled oscillators and empirical study of
networks of relaxation oscillators. Due to time delays, perfect
synchrony may not be achieved for coupled oscillators. Camp-
bell and Wang introduced a concept calledloose synchrony
to describe the behavior of relaxation oscillators with time
delays [4]; that is, two oscillators are loosely synchronous if the
phase difference between them is less than or equal to the time
delay. Based on the definition, Campbell and Wang analytically
showed that when a time delay is less than a specific upper

bound, , loose synchrony of two oscillators is achieved
within a considerable range of initial time differences and
coupling strengths [4]. Here , where

and are the times that an oscillator spends to traverse
LB and RB (see Fig. 3), respectively. They also showed that
for , loose synchrony is rarely achieved. For locally
coupled networks of relaxation oscillators, their empirical
investigation indicates that loosely synchronous solutions are
attained under similar conditions [4].

As illustrated in Fig. 4, time delays affect the coupling of cou-
pled oscillators, but the architecture of LEGION remains un-
changed though the behavior of LEGION with time delays can
be different [4]. Equations (1)–(4), therefore, can be still used
with a modified coupling term [(2)] as follows:

(5)

where ( ) is a time delay in lateral interactions and other
parameters are the same as defined in (2).

III. SIMULATION RESULTS

In this section, we first present our methodology for simula-
tions. Then, we report simulation results in details. Some anal-
ysis for simulation results is also given.
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(a)

(b)

(c)

Fig. 7. Results of LEGION with a time delay� = 0:002T to the spiral problem. The parameter values used in this simulation are the same as listed in the
caption of Fig. 5. (a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the oscillator groups representing the double spirals,
the background, and the global inhibitor, respectively. The simulation took 36 000 integration steps.

A. Methodology

For a given image consisting of pixels, a two-dimen-
sional LEGION network with oscillators is employed
so that each oscillator in the network corresponds to a pixel in
the image. In this paper, all images are binary to be consistent
with typical stimuli used in the original problems. In converting
outline patterns such as Fig. 1 to an image representation using
binary pixels, we adopt the following convention. Black pixels

correspond to either figure or background (both are white in out-
line patterns), and white pixels correspond to outlines (bound-
aries separating figures and the background). This convention
facilitates presentations on white paper, and does not affect the
system outcome. For filled-in patterns on a white background
such as Fig. 9, however, black pixels correspond to figures and
white pixels correspond to the background. In this case, unlike
outline patterns, a human subject can readily realize and ignore
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(a)

(b)

(c)

Fig. 8. Results of LEGION without time delays to the spiral problem. The parameter values used in this simulation are the same as listed in the caption ofFig. 5.
(a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the oscillator groups representing the double spirals,the background,
and the global inhibitor, respectively. The simulation took 36 000 integration steps.

the (white) background. In simulations, we let the external input
of an oscillator corresponding to a black pixel be positive, and
the external input corresponding to a white pixel be negative.

An effective connection refers to the connection between two
oscillators through which they can directly affect each other.
Since each oscillator in LEGION is connected to only its four
nearest neighbors, an effective connection can be only estab-
lished if and only if two oscillators are adjacent and both of them
are activated by external stimulation; otherwise, there is no ef-
fective connection between them. Suppose that an oscillator,,
has neighbors with positive input and is a constant used
for dynamic normalization. Then, the effective strength, ,
between any two oscillators and is dynamically deter-
mined as

if is a neighbor of
and external input to both is positive

otherwise.
(6)

Note that due to this dynamic normalization [49], the overall
sum of coupling strengths of any stimulated oscillator with at
least one effective connection is . Other parameters in LE-
GION can be chosen according to the theoretical analysis of
Terman and Wang [42].

We use pattern formation in oscillator networks to refer to the
behavior that all the oscillators representing the same object are
synchronous, while the oscillators representing different objects

are desynchronous. Terman and Wang have analytically shown
that pattern formation can be achieved in LEGION without time
delays [42]. However, it may not be achieved when time delays
are introduced. Although the loose synchrony concept has been
introduced to describe time delay behavior [4], it does not in-
dicate pattern formation in an entire network even when loose
synchrony is achieved. This is because loose synchrony is a local
concept defined in terms of pairs of neighboring oscillators.

Here we introduce a measure calledmin–max differencein
order to examine whether pattern formation is achieved. Sup-
pose that oscillators and represent two pixels in the same
object, and the oscillator represents a pixel in a different
object. Moreover, let denote the time at which oscillator
enters the active phase. The min–max difference measure is de-
fined as

(7)

where and
. In other words, the min-

imum difference in jumping times between any two oscillators
representing different objects is greater than or equal to an ac-
tive phase, whereas the maximum difference in jumping times
(of the same period) between any two oscillators representing
the same object is less than an active phase. When (7) is satis-
fied, we say that pattern formation takes place. Intuitively, this
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measure suggests that pattern formation is achieved if any two
oscillators representing two pixels in the same object have some
overlap in the active phase, while any two oscillators repre-
senting two pixels belonging to different objects never stay in
the active phase simultaneously. As a result, pattern formation
is achieved by a LEGION network within where is the
period of oscillation which can be calculated explicitly in terms
of system parameters (see the Appendix) andis the number
of objects in the presented image. This statement is derived by
Terman and Wang [42].

We adopt two methods to display our simulation results. One
is the combined activities of the oscillators representing the
same object as well as the global inhibitor over time, and the
other is a set of snapshots to show instantaneous activity of the
entire network at various stages of dynamic evolution. For snap-
shots, we use black circles to showactivities of oscillators and
stipulate that the diameter of a black circle is proportional to

, where values of all oscillators lie
in the interval .

It is well known that information transmission in a biological
system is inevitably associated with time delays which may alter
the behavior of the system. Thus, it is desirable to use LEGION
with time delays. The performance of LEGION without time
delays is shown as a special case to illustrate its capabilities of
solving problems.

B. Results

In the following simulations, the differential equations
in (1)–(5) are numerically solved using the fourth-order
Runge–Kutta method with a step size 0.2 (smaller steps were
used to verify the results). We illustrate stimulated oscillators
with black squares. All oscillators are initialized randomly. A
large number of simulations have been conducted, and similar
results as reported here are produced with a broad range of
parameter values and network sizes. Here we report typical
results using a specific set of parameter values.

1) Spiral Problem: As illustrated in Fig. 1, the spiral
problem consists of two images proposed by Minsky and
Papert [29], [30]. In Fig. 1(a), it is a connected single spiral,
while Fig. 1(b) contains disconnected double spirals. For
simulations, they are sampled as two binary images with 29
29 pixels. For these images, two questions can be addressed:
1) When an image is presented, can one determine whether it
contains a single spiral or double spirals? 2) Given a point on a
two-dimensional plane, can one determine whether it is inside
or outside a specific spiral?

We first apply LEGION with time delays to the single
spiral image. Fig. 5(a) illustrates the visual stimulus, where
black pixels correspond to stimulated oscillators and white
ones unstimulated oscillators. Fig. 5(b) shows a sequence of
snapshots after the network is stabilized except for the first
snapshot which shows the random initial state of the network.
These snapshots are arranged in temporal order first from
left to right and then from top to bottom. Fig. 5(c) shows
the temporal trajectories of the combinedactivities of the
oscillators representing the spiral and the background as well as
the temporal activity of the global inhibitor. We observe from
these snapshots that an active oscillator in the spiral propagates

Fig. 9. Two-spiral problem. (a) Two spirals with many turns. (b) Two spirals
with few turns.

its activation to its two immediate neighbors with some time
delay, and the process of propagation forms a traveling wave
along the spiral. We emphasize that, at any time, only the
oscillators corresponding to a portion of the spiral stay in the
active phase together, and the entire spiral can never be in the
active phase simultaneously. Pattern formation is examined
based on the min–max measure. In Table I, and
[see (7)] are given, together with the value of . In this case,
pattern formation is not achieved because . Thus,
based on the oscillatory correlation theory, our system cannot
group the whole spiral together. The system’s limitation is
qualitatively consistent with that of human performance in this
situation (see Section I). Also, the process that our model traces
the spiral bears resemblance to the way humans sequentially
trace the spiral for identification.1 Note that the convoluted part
of the background behaves similarly.

To illustrate the effects of time delays, we apply LEGION
without time delays to the same image, and Fig. 6 shows the
results. Fig. 6(a) illustrates the same visual stimulus. Fig. 6(b)
shows three snapshots corresponding to the random initial state
of the network, the separated spiral and the background, respec-
tively. Fig. 6(c) illustrates the temporal trajectories of the stim-

1We recognize that eye movements may be involved in tracing convoluted spi-
rals by humans. Eye movements are usually preceded by covert shift of attention
[37]. Thus, a more rigorous treatment of sequential tracing likely involves an
interplay between covert attentional shifts, whose time scales are roughly com-
parable with those of neural oscillations, and eye movements (or overt shifts),
whose time scales are substantially slower.
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(a)

(b)

(c)

Fig. 10. Results of LEGION with a time delay� = 0:002T to the two-spiral problem of Fig. 9(a). The parameter values used in this simulation are� =

0:004; 
 = 14:0, � = 11:5 and the other parameter values are the same as listed in the caption of Fig. 5. (a) Visual stimulus. (b) A sequence of snapshots.
(c) Temporal trajectories of activities of the oscillator groups representing the two spirals and the global inhibitor, respectively. The simulation took 24 000
integration steps.

ulated oscillators. From Table I, it is clear that pattern forma-
tion is achieved, and the single spiral can be segregated from
the background by the second period. Thus, LEGION without
time delays can readily solve the spiral problem in this case. The
failure to group the spiral in Fig. 5 is caused by time delays in
the coupling of neighboring oscillators.

We also apply LEGION with time delays to the double
spirals image. Fig. 7(a) shows the visual stimulus. Fig. 7(b)
shows a sequence of snapshots. Similar behavior as illustrated
in Fig. 5 occurs here. The results show that the pixels in any
one of double spirals cannot be grouped to the same pattern.

The behavior of the system for the convoluted part of the
background is similar to that for the double spirals. Fig. 7(c)
illustrates the temporal trajectories. Our observation beyond the
duration of Fig. 7(c) shows that the system is stabilized by the
fourth period of oscillations. As indicated by Table I, pattern
formation is not achieved after the network is stabilized.

We also apply LEGION without time delays to the double spi-
rals image for the same purpose as described before, and Fig. 8
shows the results in the same manner as in Fig. 6. As shown
in Table I, pattern formation is achieved, and one spiral can be
segregated from both the other spiral and the background by
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(a)

(b)

(c)

Fig. 11. Results of LEGION with a time delay� = 0:002T to the two-spiral problem of 9(b). The parameter values used in this simulation are the same as
listed in the caption of Fig. 10. (a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the oscillator groups representing the two
spirals and the global inhibitor, respectively. The simulation took 24 000 integration steps.

TABLE II
MIN–MAX MEASURE FOR THETWO-SPIRAL PROBLEM (� = 106:0)

the second period. Thus, LEGION without time delays readily
solves the spiral problem in this case, and it indicates that the
failure to group the double spirals in Fig. 7 results from time
delays.

For the spiral problem, pattern formation means that one
can provide the answers to the aforementioned questions of
counting the number of objects or identifying whether two
pixels belong to the same spiral or not. No answer is available
when pattern formation is not achieved. Hence, our system

cannot solve the spiral problem in general. Only under the
special condition of no time delay can the system solve the
problem.

2) Two-Spiral Problem:A variant of the spiral problem,
called two-spiral problem, is well known as a benchmark
task in neural networks [10]. Fig. 9 illustrates two cases of
the two spirals with different complexities; i.e., many turns in
Fig. 9(a) and few turns in Fig. 9(b). The two-spiral problem
may be viewed as a modified version of the double spirals
image in Fig. 1(b), where two spirals are distinguished from
the background through the use of color. The benchmark
problem is described as follows: given a point in one of two
spirals, identify which spiral it belongs to? The problem may
be converted into a problem of perceiving the inside–outside
relation: whether a point is inside a specific spiral? The human
performance to the problem is that perceiving the inside–out-
side relation is effortless when spirals have few turns, but
effortful when spirals have many turns [46], [44].
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(a)

(b)

(c)

Fig. 12. Results of LEGION without time delays to the two-spiral problem of Fig. 9(a). The parameter values used in this simulation are the same as listed in the
caption of Fig. 10. (a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the oscillator groups representing the two spirals and
the global inhibitor, respectively. The simulation took 12 000 integration steps.

For simulations, pictures in Fig. 9 are sampled as binary im-
ages with 23 23 and 11 11 pixels, respectively. LEGION
with time delays is first applied to both images, and Figs. 10
and 11 show the results, respectively. Figs. 10(a) and 11(a) il-
lustrate the visual stimuli, where black pixels represent two spi-
rals and white pixels represent the background. Note that this
convention is somewhat different from Section III-B1 (see ex-
planation in Section III-A). Figs. 10(b) and 11(b) show a se-
quence of snapshots after the networks are stabilized, except for
the first snapshot which shows the random initial states of net-
works. Figs. 10(c) and 11(c) show the temporal trajectories. As
indicated in Table II, pattern formation cannot be achieved for
the case in Fig. 9(a), but is achieved for the case in Fig. 9(b).

We observe from those snapshots that, like its behavior for the
spiral problem, an active oscillator in a spiral only propagates its
activation to its immediate neighbors with some time delay, and
the process of propagation forms a traveling wave along each
spiral. The snapshots in Fig. 10(b) reveal that at any time only
the oscillators corresponding to a portion of a specific spiral stay
in the active phase together, and the entire spiral is never in the
active phase at the same time. In contrast, however, Fig. 11(b)
reveals that all the oscillators corresponding to a specific spiral
can stay in the active phase simultaneously though they may
enter the active phase at different times in the same period. That
is, the system can group a whole spiral together when there are

few turns in the spiral. However, it fails to group a whole spiral
when there are more turns in the spiral. This is because the more
turns in a spiral lead to the longer propagation time along the
spiral, and there is no sufficient time to allow all the oscilla-
tors representing the spiral to stay in the active phase simulta-
neously. This limitation of our system qualitatively matches that
of human performance.

To illustrate the effects of time delays, we apply LEGION
without time delays to the two images in Fig. 9, and Figs. 12 and
13 show the corresponding results. Pattern formation is achieved
in both cases regardless of the spiral complexity (see Table II),
and the two spirals are segregated in both cases by the second
period.

3) Inside–Outside Relations:The inside–outside problem
refers to whether a dot belongs to area A or to area B, as
illustrated in Fig. 14. The perception of inside–outside relations
is usually performed by humans with intriguing efficiency.
Fig. 14(a) is such an example, where humans can effortlessly
recognize the dot is inside area A rather than area B though the
two areas are separated by a convoluted boundary. However,
immediate perception is subject to limitations. For instance,
humans cannot immediately identify whether the dot is inside
area A or area B for the visual stimulus in Fig. 14(b). For
simulations, the two pictures are sampled as binary images
with 43 43 pixels. Here, we report our typical results.
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(a)

(b)

(c)

Fig. 13. Results of LEGION without time delays to the two-spiral problem in Fig. 9(b). The parameter values used in this simulation are the same as listed in the
caption of Fig. 10. (a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the oscillator groups representing the two spirals and
the global inhibitor, respectively. The simulation took 12 000 integration steps.

We first apply LEGION with time delays to the two images
in Fig. 14, and Figs. 15 and 16 show the results. Note that the vi-
sual stimuli here are represented following the same convention
as in Section III-B1. We observe from Fig. 15(b) that the acti-
vation of an oscillator can rapidly propagate through its neigh-
bors to other oscillators representing the same area, and even-
tually all the oscillators representing the same area (A or B)
stay together in the active phase, though they generally enter
the active phase at different times due to time delays. As shown
in Table III, pattern formation is achieved, and area A is sep-
arated from area B by the second period. In contrast, we ob-
serve from Fig. 16(b) that although an active oscillator rapidly
propagates its activation in open regions as shown in the last
three snapshots, propagation is limited once the traveling wave
propagates in spiral-like regions as shown in earlier snapshots.
This is because it takes longer or much longer to travel a con-
voluted region from one end to another. As a result, the oscil-
lators representing the whole area are never in the active phase
simultaneously, and pattern formation is not achieved after the
network is stabilized (see Table III). Thus, our system cannot
group the whole area and fails to identify the pixels of one area
as belonging to the same pattern. Again, this limitation is qual-
itatively consistent with that of human performance in this sit-
uation (see Section I).

We also apply LEGION without time delays to the two im-
ages in Fig. 14 (see Section I). Figs. 17 and 18 show the results.

These figures show that LEGION without time delays readily
segregates two areas, and pattern formation is achieved in both
cases (see Table III). Area A is separated from area B by the
second period in both cases. Thus, the failure to group each area
in Fig. 16 is attributed to time delays in the coupling.

In general, the above simulations suggest that oscillatory cor-
relation provides a way to address inside–outside relations by
a neural network; when pattern formation is achieved, a single
area segregates from other areas that appear in the same image.
For a specific dot on the two-dimensional plane, the inside–out-
side relations can be identified by examining whether the oscil-
lator representing the dot synchronizes with the oscillators rep-
resenting a specific area.

4) Role of Time Delay:As described in Section II, the LE-
GION model with the time delaywas first described by Camp-
bell and Wang [4], who carried out a comprehensive analysis
of such a system. In terms of oscillatory dynamics, this paper
is a direct application of their analysis. The interested reader
is referred to their paper for an extensive treatment. Relating
to the present study, we point out that the same value of,
which equals 0.2% of the period of oscillation, is used in all
the above simulations. The choice of this relatively smallis
justified by the fact that only adjacent oscillators are coupled.
As we mentioned earlier, similar results were obtained in our
simulations when is varied within a reasonable range. Fixing
other system parameters, increasingprolongs the traveling
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Fig. 14. Inside–outside relations. (a) An example where immediate perception
is available (adapted from Julesz [22]). (b) An example where immediate
perception is not available (adapted from Ullman [43]).

wave going through the same input pattern [see, for example,
Fig. 5(c)], thus increasing the likelihood that the pattern will not
be grouped together. In other words, the pattern is less likely to
be perceived as a whole at a time. Similarly, whenis fixed, the
more convoluted an input pattern is, the longer the system takes
to propagate a traveling wave through the entire pattern and thus
the pattern is less likely to be perceived as a whole.

IV. DISCUSSION

The relaxation oscillator, the building block of LE-
GION, is dynamically very similar to numerous other
oscillators used in modeling neuronal behavior, such as the
FitzHugh–Nagumo model [12], [33], and the Morris–Lecar
model [31]. These models can all be viewed as simplifications
of the Hodgkin–Huxley equations of neuronal activity. Re-
cently, Campbell showed that equations [such as (1)] defining
relaxation oscillations can generate in different parameter
regimes different classes of oscillations, including harmonic
(sinusoidal) and integrate-and-fire oscillations, and thus they
are of generic nature [3]. Oscillatory correlation is consistent
with growing evidence that supports the existence of neural
oscillation in the visual cortex and other brain regions [40].
Furthermore, the local excitatory connections adopted in the
network are motivated by various lateral connections in the
brain, in particular, the horizontal connections in the visual
cortex [14], [15]. The global inhibitor on the other hand, might
be viewed as a neuronal group in the thalamus, and its activity
may be interpreted as the collective behavior of the neuronal

group. On the other hand, recent theoretical studies on percep-
tual organization have shown that the formation of uniform
and connected regions is probably the first step in perceptual
organization [36]. This suggestion agrees with the emphasis on
emergent synchrony based on local connectivity, which reflects
both connectedness and uniformity. The binding mechanism
in LEGION provides a neurocomputational foundation to
generate uniform and connected regions.

Physiological studies also show that there are waves of
neural activity traveling with velocities of 10–90 cm/s in the
hippocampus and other cortical areas [26], [28]. One mecha-
nism of generating traveling waves is time delays caused by
nerve conduction [28]. In local cortical circuits, for instance,
the speed of nerve conduction is less than 1 m/s [32] such
that connected neurons with 1 mm apart have a time delay
of more than 4% of the period of oscillation assuming 40 Hz
oscillations. Therefore, the use of LEGION with time delays
represents a general case, while the use of LEGION without
time delays should be regarded as a special case.

From simulations, we have observed that it is often difficult
for LEGION with time delays to group a long and narrow region
such as a spiral. For such visual stimuli, our network can achieve
pattern formation only if a spiral-like structure has relatively few
turns. Our simulation results can be interpreted as follows. In
a locally coupled neural network, an active oscillator can only
propagate its activation to its neighbors. Thus, the spiral-like re-
gions constrain propagation of the local activation so that activa-
tion slowly spreads along the spiral structure. Such propagation
may take too long for the oscillators representing the spiral-like
region to stay in the active phase simultaneously. On the other
hand, all the problems studied in this paper are associated with
making a decision onconnectedness, i.e., given any two points
whether or not there is a path in the figure through adjacent
points that connects the two points [29], [30]. To make a cor-
rect decision, global information is necessary. However, global
information is not available until pattern formation is achieved
in the framework of oscillatory correlation. The dilemma be-
tween local activation propagation and need of global informa-
tion might be responsible for human limitations in perceiving
such visual stimuli.

With additional information discriminating spirals and back-
ground, humans can solve the spiral problem efficiently. Fig. 19
illustrates such an example where two spirals and the back-
ground can be distinguished on the basis of texture. How is
such facilitation obtained? We explain this facilitation in terms
of long-range connections that may be established between os-
cillators. In our simulations, only nearest neighbor connections
are employed. With longer connections, we expect that syn-
chronization between remote oscillators is facilitated and thus
grouping between pixels corresponding to the same structure
is improved. In fact, there exist long-range lateral connections
among neurons in the visual cortex and other brain regions.
However, such long-range connection would need to be con-
strained in perceiving spiral-like structures as in the original
form of Fig. 9, because pixels constituting figure and back-
ground are identical and both figure and background are narrow
structures. In this situation long-range connections would con-
fuse figure and background. This is part of the justification for



CHEN AND WANG: PERCEIVING GEOMETRIC PATTERNS 1097

(a)

(b)

(c)

Fig. 15. Results of LEGION with a time delay� = 0:002T to the inside–outside relation of Fig. 14(a). The parameter values used in this simulation are the
same as listed in the caption of Fig. 10. (a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the oscillator groups representing
areas A and B as well as the global inhibitor, respectively. The simulation took 24 000 integration steps.

our use of nearest neighbor coupling, which is a gross simplifi-
cation of local cortical circuitry. On the other hand, information
such as texture, motion, color can facilitate the effective use of
long-range connections. With long-range connections, we ex-
pect that our network with time delays can solve the type of
the spiral problem exemplified in Fig. 19. In light of the above
discussions, it is clear that, besides the length of a spiral, the
difficulty of telling the spiral apart is determined by how con-
voluted (such as the number of turns as illustrated in Fig. 9) its
boundary is and how easily it distinguishes from the rest of the
figure in terms of color, texture, etc. These factors affect the ex-
tent of lateral connections, and thus the range of synchrony in
the network. On the other hand, the use of longer connections
in a network would introduce new issues, such as what appro-
priate connection scales should be used and how it can be done
automatically without rewiring. Another issue concerns size in-
variance. As mentioned in Section I, the time for humans to per-
form curve tracing is, within a considerable range, invariant to
the size of the input pattern. This calls for a mechanism that han-
dles size variations before our network is applied. These issues

are left to future research for a more comprehensive treatment
of the spiral problem under various variations.

As described earlier, as a benchmark task the two-spiral
problem is well known in the neural-network community.
Although it has been reported that many neural network models
can solve the problem through learning, their solutions are
limited because generalization abilities of resulting learning
systems highly depend on the training set. When slightly
different spirals (e.g., shape, position, size, or orientation) are
used as input to learned systems, the correct solution cannot
be generated. As pointed out by Minsky and Papert [29],
[30], solving the spiral problem is equivalent to detecting
connectedness, and connectedness cannot be computed by
any diameter-limited or order-limited perceptrons. This limi-
tation holds for multilayer perceptrons regardless of learning
scheme [30, p. 252]. Unfortunately, few authors have discussed
generality of their solutions. In contrast, LEGION provides
a generic solution to the spiral problem. Our simulations
have shown that LEGION without time delays can always
distinguish these figures regardless of shape, position, size, and
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(a)

(b)

(c)

Fig. 16. Results of LEGION with a time delay� = 0:002T to the inside–outside relation of Fig. 14(b). The parameter values used in this simulation are the
same as listed in the caption of Fig. 10. (a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the oscillator groups representing
areas A and B as well as the global inhibitor, respectively. The simulation took 24 000 integration steps.

TABLE III
MIN–MAX MEASURE FOR THEINSIDE/OUTSIDE PROBLEM (� = 106:0)

orientation. In particular, no learning is involved in LEGION.
Therefore, we suggest that this kind of geometric problems
may be better solved by a properly connected architecture with

the oscillatory correlation representation than by supervised
learning from examples. The latter approach, when dealing with
geometric patterns, faces the challenge that there potentially
are exponentially many instances of a geometric pattern (e.g.,
connectedness), too many to be feasible for generalization
from a limited set of training examples (see also [30]). By this
suggestion, we do not mean to downplay the importance of
supervised learning; rather, we emphasize that architecture and
representation, along with learning, are all important for neural
computation.

According to Ullman [43], [44], the perception of in-
side–outside relation involves a complicated procedure of
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(a)

(b)

(c)

Fig. 17. Results of LEGION without time delays to the inside–outside relation of Fig. 14(a). The parameter values used in this simulation are the same as listed
in the caption of Fig. 10. (a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the oscillator groups representing areas A and
B as well as the global inhibitor, respectively. The simulation took 16 000 integration steps.

visual information processing beyond early representations.
He suggested that the related computation consists of two
main stages [43]. The first stage is the bottom–up creation of
certain representations of the visual environment. The second
stage involves serial applications of visual routines on the
representations constructed in the first stage. In particular,
Ullman proposed a so-calledcoloring method for computation
of inside–outside relations [43]. It can be summarized as
follows. Starting from a given point, its surrounding area in
the internal representation is activated. The activation stretches
out until a boundary is reached. Depending on the starting
point, either the inside or the outside of the boundary will be
activated, but simultaneous activation of both is prohibited.
The coloring scheme continues until the activation cannot
spread. This provides a basis of separating the inside from the
outside. Our simulation results show that activity propagation
in LEGION with time delays forms a traveling wave within a
specific object. When an object is a spiral-like structure as in
Fig. 14(b), activation spreads slowly, while activation spreads
rapidly when the object is a wide open structure. This behavior
of LEGION is similar to the process of the coloring scheme.
However, there are a number of important differences. First,
the coloring method is described as a serial algorithm, while
our system is an inherently parallel and distributed process

though its emergent behavior reflects a degree of serial nature
of the problems. Second, the coloring method does not make a
qualitative distinction between rapid effortless perception that
corresponds to simple boundaries and slow effortful perception
that corresponds to convoluted boundaries. In contrast, our
system makes such a distinction: effortless perception with
simple boundaries corresponds to when pattern formation is
achieved, and effortful perception with convoluted boundaries
corresponds to when pattern formation is not achieved. Third,
perhaps more importantly conceptually, our system does not
invoke high-level serial processes to solve such problems
like inside–outside relations; its solution involves the same
mechanism as it does for parallel image segmentation (see
[51] and [52]). On the other hand, visual routines belong to
second-stage processing, which operates on representations
computed from first-stage, bottom-up processing.

From the computational standpoint, LEGION dynamics
without time delays amounts to segmentation of connected
components, a task that can well be solved by serial algo-
rithms (e.g., see [29, Ch. 9]). On the other hand, LEGION
is a neural network that performs segmentation in a parallel
and distributed way. The LEGION dynamics described here
is a simple version tailored to the problems addressed in this
paper, which works on binary input and uses only four nearest
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(a)

(b)

(c)

Fig. 18. Results of LEGION without time delays to the inside–outside relation of Fig. 14(b). The parameter values used in this simulation are the same as listed
in the caption of Fig. 10. (a) Visual stimulus. (b) A sequence of snapshots. (c) Temporal trajectories of activities of the oscillator groups representing areas A and
B as well as the global inhibitor, respectively. The simulation took 16 000 integration steps.

Fig. 19. Two spirals with differing textures.

neighbor coupling. Extended versions have been proposed and
applied to segmenting a variety of challenging real imagery,
such as medical imagery [39] and aerial imagery [6]. These
studies also show favorable comparisons with other image
segmentation algorithms. Because of its parallel and distributed
nature and its continuous-time dynamics, LEGION has been
implemented on very large scale integration (VLSI) chips for
segmentation purposes [9], [1].

Finally, the style of computation performed by LEGION can
be characterized as spatiotemporal processing, a topic that has
been extensively studied in the literature (see, for example, [8],
[24], [34]). Obviously, the LEGION networks described in this
paper represent one solution in the paradigm of spatiotemporal

processing. Similar solutions are possible with different oscil-
lator models and different coupling methods.

V. CONCLUSION

Based on oscillatory correlation, we have given a generic so-
lution to the spiral and inside–outside problems. Our simula-
tion results of LEGION with time delays qualitatively resemble
human performance. We find that the spiral problem and the
inside–outside problem share an intrinsic property, i.e., imme-
diate perception is unavailable if local activation cannot rapidly
spread, as synchrony would not be established in the presence
of time delays. As a special case, LEGION without time delays
always solves these problems regardless of shape, position, size,
and orientation. Given limited success from numerous attempts
in the framework of learning, we suggest that such geometric
problems may be better solved by a properly connected archi-
tecture with the oscillatory correlation representation than by
supervised learning.

APPENDIX

PERIOD OFOSCILLATION IN LEGION

In this Appendix, we describe how to calculate the period
of oscillation in terms of system parameters in LEGION. This
calculation is similar to that of Campbell and Wang [4], which
is done with time delays.
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In order to calculate the period of oscillation, it is useful to ex-
plain the behavior of two coupled relaxation oscillators. Fig. 20
shows the behavior of two enabled oscillators coupled through
mutual excitation. It can be regarded as the case of a network of
LEGION only with two oscillators but omitting the global in-
hibitor. Let and denote the two oscillators. Suppose that
both oscillators are initially on the lower left branch (LLB) and

is closer to the lower left knee (LLK). The leading oscillator,
, will reach LLK first, and jump up to the lower right branch

(LRB). Since has crossed a specific threshold of the inter-
action term , will receive excitation through the coupling
term. Let the coupling strength be. If is below LLK
(LLK is the value of LLK), it will immediately jump up to
the upper right branch (URB). When crosses the threshold
, will receive excitation from , and then hop from LRB

to URB. If, however, is above LLK when jumps up,
will first hop to the upper left branch (ULB) and then jump

up to URB when it is below LLK . On the other hand,
will jump down to ULB when it reaches the upper right knee
(URK) along URB, and then hop down to LLB when also
jumps down. Each jump results in a significant phase contrac-
tion between two oscillators such that fast synchrony is achieved
at an exponential rate as shown by Terman and Wang [42]. Once
synchrony is achieved, the period of oscillation is the time that
an oscillator traverses the periodic orbit depicted in Fig. 20.

Recently, Terman and Wang have carried out an analysis of
LEGION in the singular limit ( ) and, moreover, extended
their outcome to with singular perturbation analysis
[42]. Basically, the process of synchronization on two coupled
oscillators can be generalized to LEGION. The perturbation
analysis of LEGION indicates that the exact form of-nullcline
is not important as long as a general cubic shape is maintained
and evolution of the system is critically determined by solving
the differential equations on thevariable [42]. When ,
we can analytically solve (1b) in terms of two different branches
by utilizing when and
when . As a result, the equation describing along
one of the LBs ( ) is

(8)

and the -position of an oscillator along one of the RBs ( )
is given by

(9)

where and are parameters as defined in (1).
When synchrony is achieved in LEGION, all the oscillators

representing the same object will travel along the same periodic
orbit like that illustrated in Fig. 20. Here we use terms in Fig. 20
to denote the traveling path of an oscillator in LEGION. When
synchrony is achieved, the time a stimulated oscillator takes to
travel from LLK to URK, along URB (see Fig. 20), is calculated
by (9) as

LLK
URK

(10)

Fig. 20. Nullclines and periodic orbits of a pair of relaxation oscillators. LLK
and LRK indicate the left and right knee of the lower cubic, respectively. LLB
and LRB indicate the left and right branch of the lower cubic, respectively. ULK
and URK indicate the left and right knee of the upper cubic, respectively. ULB
and URB indicate the left and right branch of the upper cubic, respectively. See
Fig. 3 caption for curve conventions.

and the time it takes to travel from URK to LLK, along LLB, is
calculated by (8) as

URK
LLK

(11)

where LLK and URK are, respectively, values of LLK and
URK. Both LLK and URK will be fixed once a set of param-
eters in LEGION is specified; in this paper, LLK and
URK in terms of parameters as defined
in (1)–(6). Therefore, the period of oscillationis

(12)
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