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Abstract

We propose a dynamically coupled neural oscillator network for image segmentation. Instead of pair-wise coupling, an ensemble of
oscillators coupled in a local region is used for grouping. We introduce a set of neighborhoods to generate dynamical coupling structures
associated with a specific oscillator. Based on the proximity and similarity principles, two grouping rules are proposed to explicitly consider
the distinct cases of whether an oscillator is inside a homogeneous image region or near a boundary between different regions. The use of
dynamical coupling makes our segmentation network robust to noise on an image, and unlike image processing algorithms no iterative
operation is needed for noise removal. For fast computation, a segmentation algorithm is abstracted from the underlying oscillatory
dynamics, and has been applied to synthetic and real images. Simulation results demonstrate the effectiveness of our oscillator network
in image segmentation. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

One of the fundamental tasks in vision is image segmen-
tation. It is the process to partition an image into a number of
coherent regions; the pixels belonging to the same region
should have similar properties in terms of intensity, color,
and texture, etc. while two adjacent regions should have
dissimilar properties. Although humans perform the task
without difficulty, image segmentation remains one of the
most challenging problems in machine vision.

In the computer vision community, many attempts have
been made for image segmentation (for reviews see
Haralick & Shapiro, 1985; Pal & Pal, 1993; Zhu & Yuille,
1996; Zucker, 1976). First, pixel classification provides a
segmentation technique that associates a pixel with a speci-
fic label by means of a classification method. A typical
technique in this category is thresholding where a pixel is
labeled if a measure of the pixel is above a given threshold.
The thresholding technique has been extended to more
sophisticated forms, such as a multiple-threshold test
(Haralick & Shapiro, 1985; Kohler, 1981) and a recursive
thresholding test (Cheriet, Said, & Suen, 1998). As a salient
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feature, edge information can be used to separate two adja-
cent regions, and hence edge-based segmentation forms
another category. In general, such methods consist of two
consecutive stages, i.e. edge detection and contour comple-
tion. Consequently, regions embraced by closed contours
lead to final segmentation (Foresti, Murino, Regazzoni, &
Vernazza, 1994; Geman, Geman, Graffigne, & Dong, 1990).
Region-based techniques are yet another class of methods
for image segmentation. Such methods operate directly on
regions, e.g. region growing and split-and-merge (Horowitz
& Pavlidis, 1976; Revol & Jourlin, 1997). The main idea
underlying these methods is to iteratively group (split)
pixels into connected regions in accordance with some
prespecified homogeneity criteria. More recently, hybrid
techniques combining two or more kinds of aforementioned
techniques (Ahuja, 1996; Haddon & Boyce, 1990; Zhu &
Yuille, 1996) have been suggested to achieve reliable
segmentation. Computationally, all of the above algorithms
are of serial nature though some partially parallel algorithms
have been developed (Liou, Chiu, & Jain, 1991; Manjunath
& Chellappa, 1993). Due to many uncertain factors for
image segmentation (Wilson & Spann, 1996), solutions
are often difficult to obtain and segmentation is, to a great
extent, viewed as an unsolved problem.

Neural networks have been successfully applied in
many fields. However, little has been reported on image
segmentation. Due to the lack of an efficient representational
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framework for encoding multiple objects simultaneously,
image segmentation is particularly challenging for neural
networks. Most of neural network methods pose image
segmentation as pixel classification (Pal & Pal, 1993) and
typically use a supervised learning process. Other segmen-
tation methods include Boltzmann machines (Sejnowski &
Hinton, 1987), multilayer perceptrons (Mozer, Zemel,
Behrmann, & Williams, 1992), and biologically motivated
neural networks (Grossberg & Wyse, 1991). However, all of
these methods achieve only limited success. Recently,
Kohonen’s self-organization maps have been also applied
to segmentation (Bhandarkar, Koh, & Suk, 1997; Kohonen,
1995). A major shortcoming in this approach is that there is
no autonomous control over the number of regions that
should be segmented.

An elegant way to encode the binding of features is
suggested by the temporal correlation theory (von der
Malsburg, 1981; Milner, 1974), whereby an object is repre-
sented by the temporal correlation of the firing activities of
the distributed cells that detect different features of the
object. A special form of temporal correlation is called
oscillatory correlation (von der Malsburg & Schneider,
1986; Wang & Terman, 1995). The discovery of synchro-
nous oscillations in the brain supports the oscillatory repre-
sentation to implement temporal correlation; where each
object is represented by a group of synchronized oscillators
and different objects are represented by different groups
whose oscillations are desynchronized from each other.
Recently, Terman and Wang (1995) proposed a class of
locally excitatory globally inhibitory oscillator networks
(LEGION) on the basis of oscillatory correlation. LEGION
can rapidly achieve both synchronization and desynchroni-
zation, and has been successfully applied to real image
segmentation (Wang & Terman, 1997). However, due to
pair-wise coupling between oscillators, the LEGION
network is sensitive to noise; for example, it does not
work for the noisy image in Fig. 4(A).

In this paper, we propose a dynamically coupled network
on the basis of oscillatory correlation and LEGION. We use
an ensemble of oscillators in a local region for grouping
instead of pair-wise coupling. Dynamical coupling is
proposed to generate a local coupling structure for an oscil-
lator in terms of its surrounding active oscillators, and a
local coupling structure provides the basis for computing
local coherent properties of an object. Two grouping rules
are proposed for examining the similarity between oscilla-
tors, which leads to robust performance for image segmen-
tation. For fast computation, we extract a segmentation
algorithm from oscillatory dynamics. The algorithm has
been successfully applied to both synthetic and real images.

Unlike previous methods for robust segmentation, no
iterative smoothing is used in our method. For iterative
smoothing, it is well known that the performance highly
depends upon when the algorithm is terminated, which,
coupled with the fact that these algorithms generally
converge to a uniform intensity image (Perona & Malik,

1990; Weickert, 1997), causes what we refer to as the ter-
mination problem. Without iterative operations at the image
level, the termination problem does not occur in our
approach.

In Section 2, we describe the proposed oscillator network,
including dynamical coupling structures and grouping rules.
In Section 3, model behavior is analyzed and discussed. In
Section 4, an algorithm derived from oscillatory dynamics is
presented for gray-level image segmentation. Section 5
reports the segmentation results on both synthetic and real
images. Further discussions are given in Section 6.

2. Model description

In this section, we describe our network architecture and
its dynamics, which can be viewed as an extension of
LEGION. Two grouping rules are proposed on the basis
of dynamical coupling structures.

In our neural oscillator network, a single oscillator (i, j)
consists of an excitatory unit x; and an inhibitory unit y; as
defined by Wang and Terman (1997):

Xy =3x; — Xy +2—y; + [;H@p; — 0) + S; + p, (1a)

yij = €la(l + tanh(Bx;)) — y;l. (1b)

Here H(-) is the Heaviside step function defined as H(v) = 1
if v=0 and H(v) =0 if v <0. I; denotes the external
stimulation to the oscillator, and S; represents overall
coupling from other oscillators in the network. The para-
meter p denotes the amplitude of a Gaussian noise term,
which is introduced to test the robustness of the system
and to actively assist in desynchronizing different patterns.
The parameters € is chosen to be small, 0 < € < 1. In this
case, Egs. (1a) and (1b) corresponds to a standard relaxation
oscillator (van der Pol, 1926). The dynamics of a single
relaxation oscillator is summarized as follows, where we
drop all the subscripts to simplify the presentation. The x-
nullcline of Egs. (1a) and (1b), X = 0, is a cubic function,
while the y-nullcline, y = 0, is a sigmoid function. The
parameter B controls the steepness of a sigmoid function
and is chosen to be large. For an input / > 0, the two null-
clines intersect only on the middle branch of the cubic, and
Egs. (1a) and (1b) gives rise to a stable periodic trajectory.
In this case, the oscillator is called enabled. As illustrated in
Fig. 1(A), four bounding points for the periodic trajectory
are LC, LK, RK, and RC (Wang & Terman, 1997), whose x
values are LC, = —2, LK, = —1, RK, = 1, and RC, = 2,
respectively. The periodic solution alternates between an
active phase (RK, = x = RC,) and a silent phase (LC, =
x = LK,). When the oscillator stays in the active phase, it is
called active; otherwise, it is called silent. Within either
phase, the oscillator exhibits near steady state behavior. In
contrast, the transition between the two phases takes place
on a fast time scale, referred to as jumping. The parameter «
is introduced to control the relative times that the oscillator
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Fig. 1. Nullclines and trajectories of a single relaxation oscillator. (A) Behavior of an enabled oscillator. The bold curve shows the limit cycle of the oscillator,
whose direction of motion is indicated by arrowheads with double arrowhead indicating jumping. LC, LK, RC, and RK indicate four bounding points for the
periodic trajectory. (B) Behavior of an excitable oscillator. The oscillator approaches a stable fixed point. (C) Temporal activity of the oscillator. The x value of
the oscillator is plotted. The parameter values used are I = 0.8, p = 0.02, € = 0.04, « = 9.0, and 8 = 0.1.

stays in the two phases, with a larger o implying a shorter
active phase. For an input / < 0, the two nullclines intersect
on the left branch of the cubic, and Eqs. (1a) and (1b)
produces a stable fixed point as illustrated in Fig. 1(B). In
this case, the oscillator is called excitable. Fig. 1(C) shows
the enabled behavior of the oscillator for a specific set of
parameters.

In Eq. (1a), the Heaviside term provides a mechanism to
distinguish between major regions and noisy fragments.
Wang and Terman (1997) suggested that a major region
must contain at least one oscillator, called a leader, which

is located at the center of a large, homogeneous region. A
noisy fragment does not contain such an oscillator. Basi-
cally, a leader receives large lateral excitation from its
neighborhood. The variable p; denotes the lateral potential
of oscillator (i, ), through the threshold 6, which critically
determines whether oscillator (i,j) is a leader. The collec-
tion of the oscillators corresponding to noisy fragments
forms the background, and such oscillators become excit-
able shortly after the system starts.

For image segmentation, we study two-dimensional oscil-
lator networks. As illustrated in Fig. 2, there is a local fixed
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Fig. 2. Architecture of a two-dimensional neural oscillator network with
eight nearest-neighbor fixed coupling. The global inhibitor is indicated by
the black circle.

structure, where an oscillator is connected to only eight
immediate neighbors except for those on the boundaries
where no wraparound is used. The activation of an oscillator
spreads through fixed connections only. The global inhibitor
is connected with all the oscillators in the two-dimensional
network, and its activity, z, is defined as

2= ¢(0e — 2), ()

where o, = 0if x; < 6, for every oscillator (i, ), and oo =
1 if x; = 6, for at least one oscillator. 6, is a threshold. If
0 = 0, the global inhibitor is not triggered and the oscil-
lators on the network receive no inhibition from the global
inhibitor. If o, = 1, the global inhibitor is triggered and all
the oscillators on the network receive inhibition. ¢ > € is a
parameter.

In LEGION, when an oscillator is active, it triggers the
global inhibitor, which in turn exerts inhibition on every
oscillator in the network. On the other hand, the active
oscillator propagates its activation through fixed connec-
tions to its immediate neighbors and from there to further
neighbors. For gray-level image segmentation, we assume
that every oscillator is uniformly stimulated when an image
is presented. Thus, the phase of an oscillator is influenced
only by the coupling term, Sj;, in Eq. (1a). It is desirable that
a silent oscillator is activated if the oscillator is coherent
with its surrounding active oscillators. Eventually, we want
those oscillators corresponding to the same region to
synchronize, while oscillators corresponding to different
regions desynchronize.

In our model, oscillators that are in the active phase
simultaneously form a single segment, and as a result they
should correspond to a set of coherent pixels. Therefore,
image attributes of these active oscillators provide a coher-
ence measure of the entire group. In an image with con-
siderable noise, group-wide measures are more robust than
single pixel measures; the latter are used by Wang and
Terman (1997). On the other hand, proximity is one of the
most important grouping principles; remote pixels, even
though they may be in the same segment, should contribute
little to recruiting a particular pixel. Based on these con-

siderations, we use the attributes of a local ensemble, called
a neighborhood, of active oscillators for grouping.

How to determine the size and the shape of such a neigh-
borhood for grouping? The neighborhood should not be
uniform; for example, pixels near a boundary between
different regions need to be treated differently than pixels
in the interior of a region because discontinuity near a
boundary causes local image attributes to change dramati-
cally. In general, the interior of an image region must be
treated differently, in terms of grouping, than areas near the
region boundary. Within the interior of a region, a larger and
more uniform neighborhood can be used, whereas near a
region boundary the neighborhood should be tailored so
that it does not cross different regions. In oscillatory corre-
lation, this can be naturally achieved by limiting the neigh-
borhood to the currently active oscillators because they
correspond to the same region. To deal with these different
situations, we introduce a set of dynamical coupling neigh-
borhoods and propose two grouping rules for handling
region interior and region boundary separately; these are
all embodied in the overall coupling term, Sj;, in Eq. (1a).

We denote the fixed set of the eight immediate neighbors
of oscillator (i,) as N(i,j) (see Fig. 2). To measure similar-
ity for oscillators that lie inside a homogeneous region, we
introduce a pair of neighborhoods, referred to as pixel neigh-
borhood and region neighborhood, respectively. The pixel
neighborhood is used to measure local image attributes of a
single oscillator, while the region neighborhood is used to
measure those of the active neighbors of the oscillator. The
pixel neighborhood of oscillator (i, ;) is defined as

NiG@)={kDi=R, =k =i+R;j—R, =1=j+R,}
3)

where R, is a parameter that determines the size of the pixel
neighborhood. An example is shown in Fig. 3(A). While
Ni{(i,j) is fixed, the corresponding region neighborhood is
dynamical, defined in terms of currently active neighbors of

(i.)) :

NGij) = k. D|k. D) € U

(m.)EN () X,y =0,H 1ty = 0.5)=0

Ni(m,n) ¢,

NG, j) NG >0
N3 (i, j) = { | | . “

N3(i,j) otherwise

Here u,,, is a variable indicating whether the corresponding
pixel of the active oscillator (m, n) is near a boundary, to be
defined later on. The above union operation is performed
only over those active oscillators in N(i,j) that are con-
sidered to be in the interior of a region. The motivation
for this should be clear later when the second pair of neigh-
borhoods are introduced for pixels that are near a region
boundary. Fig. 3(B) gives an example of the region neigh-
borhood corresponding to [N“| > 0. N5(i, j) is an alternative
region neighborhood to be defined below. The region
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Fig. 3. Examples of various neighborhoods. (A) An example of the pixel neighborhood Ni(i,j), where R, = 2 is used. (B) An example of the region
neighborhood N3 (i, j), where R, = 2 is used. (C) An example of the pixel neighborhood NYG, J), where four silent oscillators constitute a dynamic coupling
structure. (D) An example of the region neighborhood Né’ (i,j), where Ry = 5 is used and all the active oscillators enclosed constitute a dynamic coupling

structure.

neighborhood provides a local measure of an image region
being expanded.

To deal with those pixels near a region boundary separ-
ately, we introduce another pair of neighborhoods. The key
for this pair is that neighborhoods should be limited to
active oscillators only, since they belong to the same
segment which corresponds to the same region. First, a
pixel neighborhood of this kind is defined as

N{G.J) = (G, DIk, ) € NG, j),xy < 03 U {G ) ®)

An example of this pixel neighborhood is shown in Fig.
3(C). Theoretically speaking, a single silent oscillator—
(i,j) itself—may be evaluated for recruiting. However, as
our experiments with real images show, single pixels are too
noise-sensitive to obtain a reliable measure. That is why in
the definition of Nlb(i, J) we include the silent neighbors of
(i,j). Notice that only silent oscillators should be included in
N? because (i, j) may belong to a region different from the
currently expanding one. Finally, corresponding to Nf, a

region neighborhood, Né’ (i,J), is defined as
N3G j) = {(.Dli =R, =k =i+Ryj—R, =1
=j+ Ry, xy = 0}. (6)

Here the integer R, determines the size of the region neigh-
borhood, and satisfies the following condition: R, is the
minimal value guaranteeing that the number of active oscil-
lators in Nﬁ’(i,j) is no less than (2R, + 1)2/2, where Ry is a
prespecified constant, and R, = [min(M,N)/2)] assuming
that the size of the image is M X N. Fig. 3(D) gives an
example of Né’(i, J). Compared to typical N5(i,j), which
includes the neighborhoods of active oscillators, Né’(i, J)
includes only active oscillators themselves. This reflects
the fact that we use Né’ for grouping pixels near a region
boundary, and a neighborhood of an active oscillator is
likely to cross different regions. The latter situation will
produce unreliable measures and thus should be avoided.
All the neighborhoods in Egs. (3)—(6) are defined without
explicitly considering the boundary of the entire image; and
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Fig. 4. Segmentation by a dynamically coupled oscillator network. (A) A 50 X 50 noisy image. The image is created from three regions with constant
intensities of 42, 160, and 192, added with Gaussian noise of zero mean and standard deviation 24. In the figure (B)—(E) correspond to instantaneous x activity
and (F)—(H) u activity. (B) A snapshot at the beginning of dynamic evolution. (C)—(E) A sequence of snapshots shortly after B. (F)—(H) A sequence of

snapshots of u activity taken at the corresponding times of (C)—(E).

they are delimited by the boundary. Except for N{(i,)),
shapes of all the neighborhoods defined above are dynami-
cally determined by all the active oscillators surrounding
a specified silent oscillator (i,j) and specify dynamical
coupling structures associated with oscillator (i,j). Such
dynamical coupling structures are incorporated by the
grouping rules described later to yield robust segmentation
performance.

To detect homogeneity in gray-level images, the first- and
the second-order statistics are commonly used. Similarly,
we adopt mean, u, and standard deviation, o, to measure
homogeneity in a specific neighborhood. Note that the mean
and standard deviation are set to zero if the neighborhood is
the empty set. Based on the similarity principle, grouping
takes place if the local attributes of a silent oscillator are
similar to those of a local region corresponding to a set of
local active oscillators. To detect the similarity, we suggest
two grouping rules for the two situations considered above:
region interior and region boundary. First, we examine simi-
larity for the type a pair of neighborhoods, Ni" and N5. For
oscillator (i,j), we have

S, ) = oy — |MN;1(i,j) - /J*N‘z’(i,j)|’ (7a)

Sg(i,)) = wg — |0'N;'(i,/) - 0'N;(i,;’)|~ (7b)

Here w), and w, are two tolerance parameters for measuring
similarity. The subscripts, N{(i,j) and N3(i,j), indicate
where the statistics are calculated. Sy, (i,j) and S;(i,j) are
measures in terms of the mean and the standard deviation.
Similarly, we examine similarity for the type b pair of
neighborhoods, N{’ and Né’ , as follows:

b b
Su.)) = w, — |MNf(i,j) = KNGl (8a)

byi b
Sy(6,)) = 0y — |szvlb(i,;) - Usz(iJ)|‘ (8b)

Based on Egs. (7a)—(8b), we formulate two grouping rules
for oscillator (i, j) with the condition that there is at least one
active oscillator in N(i,j) : (a) the oscillator will be recruited
if §,,(i,/) = 0 and S;(i,j) = 0; (b) the oscillator is recruited
if SZ(i,j) =0 and Sf;(i,j) = (. The two grouping rules
recruit (i,j) in two different ways, and together implement
both the proximity and the similarity principles. When an
oscillator lies in a homogeneous region, Rule a should be
used for recruitment. In contrast, when it is near a bound-

ary between different regions, Rule a is unlikely to yield
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recruitment and Rule b is used instead for expanding the
region to produce a precise region boundary.

We now define u; introduced in Eq. (4) and want u; to
approach unity only if oscillator (i,j) is activated by Rule b
rather than Rule a. Therefore, u;; is defined as

iy = M8 — uyHCy — 1) = euy, ©)

where &, = [1 — H(S4(i, ))H(S L, ))IH 4, )HS L. ).
A > € is a parameter indicating the rate at which u;
changes. The Heaviside function, within which 7 is a para-
meter, dictates that u; does not change on the fast time scale
unless the derivative of x; increases significantly; in other
words, u; does not change much unless the corresponding
oscillator jumps up (see Fig. 1(A)).

The initial value of u; is set to zero. Thus, according to
Eq. (9) u; stays at zero unless only Rule b is used in recruit-
ing (i,j). In the latter case, u; approaches one quickly.
Beyond a brief time of jumping up, u; slowly decays to
zero since the first term in Eq. (9) is zero, and the second
term acts on the slow time scale. The slow decay of u;
ensures that once it is activated it stays at a high value for
a while, say for the time period of the active phase. Taken
together, u; serves the purpose of recording whether (i, )
has been recruited in the last cycle of oscillation by Rule b
only, or whether pixel (i, ) is near a region boundary. Thus,
Eq. (9) implements the requirement for N5(i,j), the only
neighborhood that uses u;. Given that the pixels recruited
by Rule b likely correspond to near-boundary ones, it should
now be clear that these pixels should be excluded in the
definition of type a neighborhoods, which are used to evalu-
ate the recruiting of interior pixels of a region.

On the basis of two grouping rules, the overall coupling
term, S, in Eq. (1a) is given by

S; = [H(S;(i, j))H (S;‘(i,j))

+H(S,‘1(i, j))H(Sﬁ(i, j)) ]H( > Hey) — 0.5)
(k,DEN(Y)
~W.H(z — 6,). (10)

Here W, is the weight of inhibition from the global inhibitor
z. In our network, both W, and 6, are always set to 0.5. Note
that S; depends upon fixed connectivity, and there must be at
least one active oscillator in N(i,j) in order for (i,j) to be
recruited. This yields a connectivity constraint. Under this
condition, when either of two grouping rules is satisfied,
S;; > 0; otherwise, S; <0 due to the inhibition. Note that
leaders can jump up by themselves when the global inhibitor
is not activated.

We summarize the dynamics of our network as follows.
Suppose that all the oscillators are initialized in the silent
phase. Once a leader enters the active phase, it triggers the
global inhibitor, which exerts inhibition on the entire

network. For a silent oscillator, its overall coupling is posi-
tive if either Rule a or b is satisfied, and in this case the
oscillator jumps to the active phase. Otherwise, overall
coupling is negative due to the global inhibition, which
makes the oscillator stay in the silent phase. In this way,
activation is propagated to other oscillators via local fixed
connectivity until all the oscillators representing the same
region are activated. Thus, the dynamics of our network
preserves the property of LEGION. That is, it is the process
of both synchronization through local excitation among
neighboring oscillators and desynchronization through
global inhibition (Terman & Wang, 1995; Wang & Terman,
1997).

3. Model behavior

From the dynamical system perspective, the system (1a)—
(10) is very similar to that of Wang and Terman (1997). The
only difference is in the definition of the overall coupling
term S;. For Wang and Terman (1997), S; is simply a
weighed sum within N(i,j). In our model, in addition to
N(,j), two pairs of neighborhood are introduced: NY, N3,
Nb, and Né’ . Out of the four neighborhoods, Nj is fixed and
the remaining three vary dynamically. One additional
complexity lies in the fact that N5 depends on the variable
u. Despite these complexities in forming dynamical neigh-
borhoods, from the standpoint of oscillator i, the net effect
of all these neighborhoods is a binary value: the first term in
Eq. (10).

The binary nature of lateral coupling has the same effect
as dynamic normalization of lateral connections in Wang
and Terman (1997), which simplified their analysis and
improved the quality of synchronization within a block of
oscillators that corresponds to the same segment. Thus, the
cubic of any oscillator—Ileader or not—can take only one of
three positions: S; = 0, S;=1-W, and Sij=—W. It is
possible that, for a very brief time period during jumping
up, §;; = 1; this possibility does not affect system behavior
and can be eliminated through parameter tuning. From
this as well as Eq. (la), it is clear that one should set
0 <I;<W,<1, so that an oscillator cannot jump to the
active phase unless it receives strong lateral excitation,
except for a leader which can jump to the active phase if
the global inhibitor is not triggered.

As an oscillator block is jumping to the active phase
dynamical neighborhoods change. As a result, an active
oscillator may lower its cubic from §; =1— W, to §; =
—W, and it may also shift in the reverse direction, when the
block is expanding. Such phase shifts induce oscillators to
move between the active phases of two cubics, while they
are active. After a block has completely jumped to the active
phase, such phase shifts stop because dynamical neighbor-
hoods do not change until the block starts to jump down.
Another difference caused by dynamical neighborhoods
occurs when a block is jumping down to the silent phase.
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In Wang and Terman (1997), when an oscillator jumps
down it lowers the cubics of its active neighbors, thus
encouraging them to jump down as well. This may not
happen in our model, because an oscillator jumping down
may have no effect on the cubics of its active neighbors. The
reason is that the excitatory lateral coupling of an oscillator
is combined into a single binary value in Eq. (10). These two
distinctions make the quality of synchrony within each
block in our model not as good as in theirs (see below),
but they do not affect the overall system behavior of oscil-
latory correlation.

In a more detailed version that contains mathematical
analysis, Wang and Terman (1996) presented the combined
(binary) form of lateral excitation as an alterative definition
to the model presented in Wang and Terman (1997). They
noted that the combined from of lateral excitation has the
benefit of being simpler without dynamical weight normal-
ization, but leads to less precise synchrony within each
block and less flexibility in choosing parameters. They
also stated that the same analytical results obtained for
their 1997 definition apply to the alternative definition.
The behavior of our model is consistent with their analysis.

In Eq. (9), u; increases on the fast time scale and
approaches 1 during a brief period of time when oscillator
(i,j) jumps up because of Rule b. The parameters A and 7
can be chosen so that the activation speed of u;; is about the
same as that of x; itself. Thus, when (i, ) is ready to influ-
ence its neighbors u; has already recorded the fact that (i, j)
is recruited by Rule b. The slow decay of u; ensures that its
activation persists while (i, /) is active. Thus N3 in Eq. (4)
can be calculated as intended. Note that, because of the
Heaviside function in Eq. (9), u; is not automatically acti-
vated when & is 1. The latter is possible even when (i, /) has
just jumped to the silent phase and no oscillator in N(i,j) is
active (see Eqgs. (5) and (6)). Also, §; may switch its value
between 0 and 1 when (i, ) is active. The Heaviside function
simplifies the dynamics of u;;.

Now consider an oscillator block that starts to jump down
to the silent phase. Due to the binary nature of lateral
coupling and the fact that the oscillators of the block may
stay on two different cubics with §;=1—W,_ or §; =
—W,, there can be small differences in jumping time for
these oscillators. Note that the phase differences within
the block will be compressed when the block jumps up
again in the next cycle. Moreover, before the last oscillator
of the block jumps down, no oscillator in other block can
jump up. This creates a phase separation between this block
and the other oscillators of the network. As proven by
Terman and Wang (1995, Theorem 4.3.1), once the block
is separated from other oscillators it remains separated.

As done in Terman and Wang (1995) and Wang and
Terman (1997), our above analysis is based on the assump-
tion that segments corresponding to oscillator blocks are
well-defined from an input image. It is difficult to analyze
LEGION networks for arbitrary input images. The best way
to observe LEGION behavior for arbitrary images is

through algorithmic approximations, as we provide in
Section 4. To summarize, our system behaves similarly as
the LEGION network of Wang and Terman (1997) in terms
of oscillatory dynamics. As demonstrated later, our new
definition of S;;, however, leads to very different segmenta-
tion results.

To illustrate the behavior of our system, we have numeri-
cally simulated a 50 X 50 oscillator network. The input
image to the network, shown in Fig. 4(A), has the same
size as the network so that an oscillator corresponds to a
pixel. This noisy image contains three regions. Because of
the image noise, the original LEGION algorithm of Wang
and Terman (1997) cannot produce successful segmentation
of the image (see Section 5 for more discussion). In our
simulation all oscillators are simulated with 7 = 0.2. The
system (la)—(10) are solved using the fourth-order
Runge—Kutta method with the following parameter values:
€=0.004, «a=4.0, =0.1, p=0.02, ¢ =3.0, A = 3.0,
n=05 R, =5, Ry=7, o, =25, wf =40, o, = 3.0,
w? = 4.5. Leaders are selected using the method introduced
in Section 4 with R, =7 and T, = 12.0. In the numerical
simulation, Heaviside functions, evaluated in every integra-
tion step, may change their values in one step. In this sense
they act in a super-fast time scale, in addition to the slow
and the fast time scales that characterize the dynamics of
a relaxation oscillator. The Heaviside functions induce
‘hops’ between three cubic positions: §; =0, 1 — W, or
—W,, which have been discussed earlier.

The phases of all the oscillators on the network are
randomly initialized. Fig. 4(B)—(E) show the instantaneous
activity (snapshot) of the network at various stages of
dynamic evolution. The diameter of each black circle repre-
sents the x activity of the corresponding oscillator; if the
range of x values of all the oscillators is given by x,;, and
Xmax» the diameter corresponding to an oscillator is set to be
proportional to (X — Xpin)/ (Xmax — Xmin)- Fig. 4(B) shows the
snapshot at the beginning of the dynamic evolution, indicat-
ing the random initial conditions. Fig. 4(C) shows the snap-
shot shortly after Fig. 4(B). One can clearly see the effect of
synchrony and desynchrony: all the oscillators that corre-
spond to the left region are active while the oscillators corre-
sponding to the rest of the image are silent. Thus, the left
region is segmented from the rest of the image. A short time
later, as shown in Fig. 4(D), the oscillators corresponding to
the middle region are active and separated from the rest of
the image. Fig. 4(E) shows another snapshot after Fig. 4(D).
At this time, the right region has its turn to be activated and
separates from the rest of the input. This successive ‘pop-
out’ of the segments continues in a stable periodic fashion
unless the input image is withdrawn. Except for the two
pixels near the lower left corner of the middle square, the
image is accurately segmented.

To indicate those oscillators that jump up because of
Rule b only, Fig. 4(F)—(H) show the snapshots of u
values at the time instants that correspond to those for
Fig. 4(C)—(E), respectively. Note that u values are between

ij>
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Fig. 5. Temporal traces of all oscillators. (A) The upper three traces show
the combined x activities of the three oscillator blocks corresponding to
three segmented regions. The fourth trace shows the background activity,
and the bottom trace the global inhibitor. (B) The four traces show the
combined u activities of the three oscillator blocks and the background.
The entire simulation takes 32,000 integration steps.

0 and 1, and they all initialized to 0. From these figures, it is
clear that these oscillators tend to be those near a region
boundary.

Fig. 5 shows the temporal evolution of all the oscillators.
The activities of the oscillators of each segment are
combined together as one trace in the figure, and for the
background. If any group of oscillators synchronizes, they
together appear like a single oscillator. The three upper
traces in Fig. 5(A) represent the activities of the three oscil-
lator blocks corresponding to the three regions of Fig. 4(A).
The fourth trace represents the background, which, in this
case, consists of just one oscillator (the one near the right
boundary of the square in Fig. 4(E)). The bottom trace in
Fig. 5(A) represents the activity of the global inhibitor.
From Fig. 5(A), it is easy to see that the noisy image of
Fig. 4(A) is completely segmented into three regions, in
about three cycles. Additionally, synchrony is not as tight
as that shown in Wang and Terman (1997) with dynamical
weight normalization. All of these are consistent with our
analysis. Fig. 5(B) provides the corresponding traces of u
values.

4. Segmentation algorithm

For an M X N gray-level image, a network consisting of
M X N oscillators and a global inhibitor is used to perform
segmentation, whereby each oscillator corresponds to one
pixel of the image. Segmentation of real images with large
numbers of pixels involves integrating a large number of
differential equations, which results in prohibitively expen-
sive computation on a serial personal computer. Similar
to Wang and Terman (1997), we extract a segmentation
algorithm from the dynamics of our network to reduce
numerical computation. Basically, the algorithm preserves
the essential properties of relaxation oscillators, e.g. two
time scales, and network dynamics, e.g. synchronization
and desynchronization.

For computational efficiency, we make several approxi-
mations to the dynamics of our network in the segmentation
algorithm, as similarly done by Wang and Terman (1997).
These include the selection of leaders, one time step to jump
an enable oscillator, one time step for alteration between the
active phase and the silent phase, and simultaneous jumping
down all of the active oscillators belonging to the same
region. Computation of overall coupling in Eq. (10) can
be simplified as follows: Rule a is first evaluated and only
if its conditions are unsatisfied Rule b is further evaluated.
In this way, Rule a has precedence and Rule » may not need
to be evaluated. The dynamical coupling structures are also
generated accordingly. Similarly, we can also simplify the
computation of u;. As mentioned before, the variable is used
to distinguish between two classes of active oscillators.
Therefore, u;; is only useful when oscillator (i, /) is in the
active phase. In our algorithm, u; is treated as binary and
initialized to zero, and it is set to unity once a silent oscil-
lator is activated only by Rule b.

Based on the lateral potential concept (Wang & Terman,
1997), here we use an alternative method to select leaders
for our network. We observe that oscillators near the center
of a homogeneous region tend to have a high lateral poten-
tial. Based on this observation, we calculate the standard
deviation on a fixed neighborhood defined as

N,(i,)={k,D|i—R,=k=i+R,j—R,=<I=j+R,},

where R, determines the size of the neighborhood. Oscilla-
tor (i,7) is designated as a leader if and only if NGy = Tps
where T, is a threshold. Intuitively, a larger value of R,
results in leaders that are generated from larger homo-
geneous regions, while a smaller value of 7, results in
leaders from more homogeneous regions.

All the parameters, including R, and T, for selecting
leaders, R, and R, for determining pixel and region neigh-
borhoods, and the tolerance parameters, (u‘;, g, wZ, wf;, for
testing the similarity, are specified in advance. The algo-
rithm is summarized as follows:

1. Initialization
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1.1 Set z(0) = 0.
1.2 For every oscillator (i,7) in the
network, set u;;(0) = 0.
1.3 Place all the oscillators randomly
in the silent phase so that for every
oscillator (1, 7), LC, < x;4(0) < LK,.
1.4 Find leaders
pij = H(Tp, = Oy (1.5)-
2.Findoneoscillator (i, j)satisfying the
following conditions:
(a) pi;=1; (b) x;;(t) = xx;(t), where
oscillator (k,1) in the silent phase and
Py; = 1. Then,
x;5(t+1)=RK,;z(t+1)=1
{jump up to the active phase}
X1 (€ + 1) = x5, (8) + (LK, — x;5(£)),
for (k,1) # (i,7) and pyx; = 1.
In this step, the leader in the silent
phase, which is closest to LK, 1is
selected. This leader jumps up to the
active phase, and all the other leaders
move towards LK.
3. Iterateuntil all the leaders have been
to the active phase.
If (x;;(t) = RK, and z(t) > z(t — 1))
x;5(€+ 1) = x;5(8)
{stay in the active phase}
else if (x;;(t) = RK, and z(t) = z(t — 1))
x;5(6) = LCy; z(E+ 1) = z(t) — 1
{jump down to the silent phase}
If z(t+1)=0,go to step 2.
else {oscillator (i,7)is silent}
Form N5(i,7); Evaluate S;;(t+ 1) using
Rule a
If S;5(t+1)>0
x;5(t+1)=RK;z(t+1)=2z(t) +1
{jump to the active phase}
else
Form NP(1,7); and N2 (1, 7);
Evaluate S;;(t + 1) using Rule b
If §5;;(t+1)>0
x;5(€) = RE,;
{jump up to the active phase}
z(t+1)=2z(t)+ 1
u(t+1)=1
else
x;5(€+ 1) = x;;(8)
{stay in the silent phase}

5. Simulation results

We first apply our algorithm to a typical noisy synthetic
image illustrated in Fig. 6(A), which was used by Sarkar and

Boyer (1991). The image contains four parallelograms and
an image background. Due to substantial noise, the
LEGION algorithm of Wang and Terman (1997) fails to
segment the image into five meaningful regions. This is
because their segmentation is based on pair-wise coupling
within a fixed neighborhood (eight nearest-neighbor
coupling). As a result, grouping is vulnerable to noise.
When applied to Fig. 6(A), their algorithm shows two
kinds of error: breaks a region into fragments and conjoins
regions with the image background. The same kinds of error
occur to the image of Fig. 4(A). In the simulation using our
algorithm, an oscillator network consisting of 230 X 240
oscillators and a global inhibitor is used so that each oscil-
lator corresponds to one pixel in the image. After the image
is presented, the algorithm quickly produces segregated
regions at different time steps. Fig. 6(B)—(F) display the
five segments that have been produced alternately. In
these resulting images, a black pixel indicates that its corre-
sponding oscillator stays in the active phase and a gray pixel
indicates in the silent phase. The first four segments corre-
spond to the four parallelograms and the last segment corre-
sponds to the image background. In addition, all the
excitable oscillators constitute the background correspond-
ing to those parts with high intensity variations. To display
the complete scenario of segmentation, we use the so-called
gray map convention, where each gray level indicates a
distinct segment (Wang & Terman, 1997). Fig. 6(G) is the
resulting gray map of this simulation, where the background
is indicated by the black scattered areas. It is evident that our
algorithm segments the noisy image into five meaningful
regions.

The next image that our algorithm is tested on is an aerial
image shown in Fig. 7(A), a portion of a large aerial image
to be used later. There are several objects, including water
body, forest, island, and land. Fig. 7(B) and (C) illustrate
the edge maps produced by a Canny edge detector (Canny,
1986) with two different scales. The edge maps indicate that
the image is noisy and a single scale hardly extracts all
salient features. Therefore, it is difficult to segment the
image with an edge-based approach. Such difficulty remains
even when automatic scale selection methods (Elder &
Zucker, 1998; Lindeberg, 1998) are applied. Shortly after
the image is presented to our network, five segments pop out
at different times, which are shown in Fig. 7(D)—(H). The
five segments correspond to the island, the water body, the
forest, and two parts of land. Fig. 7(I) shows the entire
segmentation result by a gray map, where the background
is indicated by the black areas. Our algorithm successfully
segments the noisy image into the meaningful regions.

Extracting a hydrographic object refers to grouping the
pixels corresponding to a water body, e.g. river, together
and putting other regions into the background. It is a
major part of a geographic information system. Hydro-
graphic objects tend to be more homogeneous in compari-
son with other kinds of objects. When our network is
applied, we can utilize this property to generate leaders so
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Fig. 6. Segmentation result for a synthetic image. The parameters used in this simulation are R,=7T,= 12.0,R, =5,Ry =17, w,ﬂ =25, of =40, wz =
3.0, and wg = 4.5. (A) Original image consisting of 230 X 240 pixels. (B)—(F) Five segments produced alternately by the network. (G) A gray map showing

the entire segmentation result.

that only oscillators corresponding to hydrographic objects
can be identified as leaders. Thus, other objects are naturally
put into the background. Our algorithm has been applied to
this task. Here we demonstrate its performance using two
aerial images provided by the US Geological Survey. Fig.
8(A) shows an aerial image with a river that has several
branches. A portion of the image is used in Fig. 7. As
shown before, the boundaries between the river and its
banks are quite noisy. Fig. 8(B) shows the extraction
result. To clearly display the result, the river extracted is
marked as white and superimposed on the original image.
As the figure illustrates, the river is extracted well and
the islands, including a small one, are preserved precisely.
Fig. 8(C) shows another aerial image containing a river. In
the image, the docks cause the river boundaries to be irre-
gular. Fig. 8(D) shows our extraction result. These simula-
tion results demonstrate that our algorithm performs well for
hydrographic object extraction.

Magnetic resonance imaging (MRI) techniques have been
extensively applied in medicine. However, automatic
segmentation of MRI images is a challenging task since
objects in an MRI image are usually nonhomogeneous and
have low contrasts. We use MRI images of human heads to
further test our algorithm. Fig. 9(A) is a midsagittal MRI
image, and our algorithm segments the image into 29
regions plus a background, as shown in the gray map of

Fig. 9(B). The background is indicated by the black areas.
Many salient regions are separated such as the cerebral
cortex, the cerebellum, the corpus callosum, the fornix, a
part of the bone marrow, and several other anatomical struc-
tures. The next image is another sagittal section shown in
Fig. 9(C). Fig. 9(D) shows the segmentation result, and
the image is segmented to 28 regions plus a background
indicated by the black areas. Similarly, salient regions
segregated include the cortex, the cerebellum, the lateral
ventricle, the eye ball, and the sinus. In particular, the cere-
bellum is segregated with good accuracy though it has a low
contrast with the adjacent cortex. These two MRI images
have been used to test the original LEGION algorithm
(Wang & Terman, 1997), and our segmentation results are
better. Our segments do not contain ‘pepper and salt’ like
holes. Also, the cerebellum is segmented better for both Fig.
9(A) and (C) in our results than in theirs. Fig. 9(E) is an
image of a coronal section, and Fig. 9(F) shows its segmen-
tation results with 33 regions plus a background. Salient
regions segmented include the cortex and the cerebellum.
Fig. 9(G) shows a horizontal section of human head, and
Fig. 9(H) shows the segmentation result, where the image is
segmented into 24 regions plus a background. Salient
regions segregated include two hemispheres, two eyeballs,
and the brain ventricle near the center.

We have compared our network with several recent
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Fig. 7. Segmentation result for an aerial image. The parameters used in this simulation are R, = 5T,=70,R,=2,Ry =5, w‘L =2.0, wg = 3.8, wﬁ =3.5,
and wﬁ = 4.8. (A) Original image consisting of 181 X 181 pixels. (B)—(C) Two edge maps generated from the original image by the Canny edge detector.
(D)—(H) Five segments produced by the network. (I) A gray map showing the entire segmentation result.

image processing methods for segmenting the above
images. These methods include a multiscale adaptive
segmentation method (Caelli & Bischof, 1997) and several
nonlinear smoothing methods (Weickert, 1997) to remove
noise prior to segmentation. Due to limited space, we report
only comparative results for two images that have been used
for testing our algorithm. The two images belong to two
different types: an aerial image and an MRI image. As
suggested by Caelli and Bischof (1997), we use three scales
in their algorithm. Fig. 10(A) and (B) show gray maps of the
segmentation results by the multiscale adaptive method. In
Fig. 10(A), the aerial image in Fig. 7(A) is segmented to 48
regions. The river and the island are segmented, and the
boundary of the segmented island is reasonably accurate.
However, the boundary between the river and its bank to
the left is not correctly segmented due to a significant
amount of noise on the image. In Fig. 10(B), the MRI
image in Fig. 9(E) is segmented to 98 regions, which
include the cerebral cortex, the cerebellum, and parts of
the extracranial tissue. Although much of the cerebellum
is extracted, its right side is shrunk, and so is the segmented
cortex. Furthermore, we report a comparison with a recent
nonlinear smoothing algorithm—edge-enhanced diffusion
(Weickert, 1996)—followed by a Fisher-distance based

region growing algorithm, where the mean and variance
of image intensities over a 5X 5 neighborhood are used
for growing (Haralick & Shapiro, 1985). In simulations,
we determine parameter values in both smoothing and
region growing by searching for the parameter space as
suggested in their original work, and we report only the
best results here. Fig. 10(C)—(F) shows the smoothed
images and the corresponding segmentation results. In
Fig. 10(D), the aerial image is segmented into five regions,
and several black scattered areas which together would
correspond to the background in LEGION segmentation.
The island is accurately segmented, but the boundary
between the river and its bank is not. In Fig. 10(F), the
MRI image is segmented to 31 regions plus back scattered
areas. Like ours, most of the significant regions are success-
fully extracted by this method. Due to noise removal by
smoothing, segmented regions by this method tend to
appear smoother; on the other hand, our network tends to
yield more precise boundaries between different regions.
Note also that nonlinear smoothing suffers from the termin-
ation problem, which generally requires human intervention
to select best results. In summary, the comparisons show that
our segmentation algorithm performs better than the multi-
scale adaptive segmentation method, and at a comparable
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Fig. 8. Simulation results for hydrographic object extraction. The parameters used in simulations are R, = 25, T, = 4.0 and the other parameters are the same
as listed in the caption of Fig. 7. (A) An aerial image consisting of 640 X 640 pixels. (B) The extraction result for the image in (A). (C) Another aerial image

consisting of 378 X 670 pixels. (D) The extraction result for the image in (C).

level with an effective nonlinear smoothing technique plus
subsequent segmentation.

6. Discussion

The major difference between our network and the
LEGION network of Wang and Terman (1997) lies in
how to determine overall coupling, S; in Eq. (1a). For
gray-level image segmentation, pair-wise coupling is used
in their network so that the coupling strength between two
neighboring oscillators is determined by the similarity of
two corresponding pixels (Wang & Terman, 1997). Such
pair-wise coupling leads to a fixed coupling structure.
Unlike their network, we adopt dynamical coupling struc-
tures and use two grouping rules to recruit a silent oscillator
in two different ways. Thus, our network has the property
that the labeling of an oscillator is considered at any time
through two grouping rules on the basis of dynamical

coupling structures. This property gives rise to robust
performance, and does not exist in their network. On the
other hand, both their network and our network share the
property of local coupling that plays a fundamental role in
image segmentation. As pointed out in Section 2, our
network shares the same properties of LEGION dynamics
that has been extensively analyzed by Terman and Wang
(1995), e.g. fast synchronization within an oscillator group
representing each object and desynchronization among
oscillator groups representing different objects. Therefore,
our neural oscillator network preserves the biological links
of LEGION argued by Wang and Terman (1997).
LEGION has been used to handle different types of real
images, e.g. range image segmentation (Liu & Wang, 1999),
by setting up proper coupling between neighboring oscilla-
tors based on a task-oriented similarity measure. In our
network, the simple statistics—mean and standard devia-
tion are now used only to test the similarity for gray-level
image segmentation. We expect that our network can also
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Fig. 9. Segmentation results for MRI images. The parameters used in all the
simulations are R, =3, T, = 5.0, R, = 1, Ry = 4, o, = 2.2, oz =2.5,
“’Z = 3.0, and wg =3.1. (A) A midsagittal MRI image consisting of
257 X 257 pixels. (B) The segmentation result for the image in (A). (C)
A sagittal MRI image consisting of 257 X 257 pixels. (D) The segmentation
result for the image in (C). (E) An MRI image of a coronal section consist-
ing of 175 X 175 pixels. (F) The segmentation result for the image in (E).
(G) An MRI image of a horizontal section consisting of 256 X 256 pixels.
(H) The segmentation result for the image in (G).

be extended to deal with other types of images through the
use of a proper task-oriented measure.

As discussed elsewhere (Terman & Wang, 1995; Wang &
Terman, 1997), LEGION with a fixed set of parameters
segments a limited number of objects, typically ranging
from five to seven. The capacity property of LEGION
resembles the phenomenon that human attention (and
short-term memory) is capacity-limited. The segmentation
capacity of LEGION is determined by the ratio of the oscil-
lation period to the duration of the active phase (see Fig.
5(A)), and it can be calculated analytically (Linsay & Wang,
1998). Thus, to segment an image with more objects than
the capacity would require some hierarchical organization,

whereby a congregate segment with more than one object
would be further segmented at a later time. To facilitate
segmentation of real images, however, the segmentation
capacity is removed from the algorithmic abstraction in
Section 4, and our algorithm can segment an arbitrary
number of objects.

A salient feature of our network is its robust performance
in noisy image segmentation. Noise is unavoidable in real
image processing. In order to achieve good segmentation
performance, a smoothing technique is often employed for
noise removal prior to the use of a segmentation method,
which results in a two-stage segmentation approach. In
general, smoothing techniques can be classified into two
categories: linear and nonlinear smoothing (Schalkoff,
1989). However, both of them have different problems in
practice. Linear smoothing causes important discontinuities
to be blurred so that meaningful objects cannot be separated
during segmentation. The general idea behind nonlinear
smoothing is to adapt pixel values to the local properties
of an image. Although the use of nonlinear smoothing
avoids, to a good extent, the problem existing in linear
smoothing, it causes the termination problem (Perona &
Malik, 1990; Saint-Marc, Chen, & Medioni, 1991; Weickert,
1997). Unlike the two-stage segmentation approach, in our
network no iterative smoothing operation is involved so
that the termination problem does not occur. This feature
distinguishes our approach from those two-stage segmenta-
tion methods.

Our system expands a segment based on the information
from a local front region of the segment, not from the whole
segment. As a result, it segments an image roughly into
smoothly varying regions. The structure of smoothness
within each region depends on the choice of system para-
meters (see below). Our use of dynamical neighborhoods
has some resemblance to multiscale image analysis. In
terms of grouping, Rule @ measures similarity in two rela-
tively fixed image neighborhoods: N{ and N5. Such neigh-
borhoods define certain spatial scales, although N3 is not
really fixed in our method. Rule » measures similarity
between two groups of pixels: N’f and NQb , both of which
vary considerably depending on the grouping process and
the shape of the currently expanding segment. Because of
the dynamic nature of neighborhood structures, our method
differs significantly from multiscale approaches. A number
of recent studies proposed systematic methods for selecting
scales at different image locations for local feature detection
(Elder & Zucker, 1998; Lindeberg, 1998). These studies aim
at detecting local features at an optimal scale according to
some criteria. Thus features of both coarse and fine scales
may be detected simultaneously. We address a different
issue: how to organize local features into larger struc-
tures—segments (see Fig. 10 for a comparison with a multi-
scale segmentation method). It is not clear whether such
organization becomes easier when all of the local edges in
an image are made simultaneously available by automatic
scale control (Elder & Zucker, 1998).
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Fig. 10. Comparative results for two images. (A) The segmentation result for the image in Fig. 7(A) by a multiscale adaptive segmentation method. (B) The
segmentation result for the image in Fig. 9(E) by the multiscale adaptive segmentation method. (C) The smoothing result for the image in Fig. 7(A) by an edge-
enhanced diffusion algorithm, where the contrast parameter is 1.5 and the scale parameter is 2.5, and the result corresponds to iteration 25. (D) The
segmentation result for the image in Fig. 7(A) based on the smoothed image in (C). (E) The smoothing result for the image in Fig. 9(E) by the edge-enhanced
diffusion algorithm, where the contrast parameter is 1.0 and the scale parameter is 2.0, and the result corresponds to iteration 40. (F) The segmentation result

for the image in Fig. 9(E) based on the smoothed image in (E).

There are a number of parameters in our system, and
these parameters fall into two kinds. The first kind contains
parameters pertinent to oscillator dynamics: those in Egs.
(1a), (1b), (2), and (9). With an understanding of oscillatory
dynamics, these parameters can be fixed. In fact, they are
absorbed and do not appear in our segmentation algorithm
given in Section 4. The second kind contains parameters that
specify neighborhoods and grouping rules. These para-
meters must be specified for a segmentation task. Therefore,
how to effectively tune the second kind of parameters is an
important issue. These parameters can be further classified
into three categories. The first category includes two para-
meters, R, and T, used to select leaders. As mentioned in
Section 4, these parameters must be determined in a task-
specific way, by desired properties of segments, such as
degree of homogeneity and size. The next two parameters,
R, and R, constitute another category to determine the size

of pixel and region neighborhoods. R, is used to generate the
pixel neighborhood N{ and the region neighborhood Nj.
The selection of R, depends upon image types. When the
detailed structures are needed, R, should be set to a small
value, and vice versa. The other parameter R, determines the
minimal number of activated oscillators that yields a robust
estimation of local attributes, and it can be determined in a
similar way. In our simulations, we fix the two parameters
for a type of image and can achieve satisfactory results.
Moreover, our empirical studies indicate that the perform-
ance of our network is relatively insensitive to detailed
values of the two parameters. The last category consists of
four parameters, w‘ZL, Wy, a)z, and w(’;. In general, a smaller
tolerance value causes less grouping. As a result, more and
smaller regions are generated. In contrast, a larger tolerance
value results in fewer and larger regions. In our simulations,
we use of the following heuristic methods to tune these
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parameters. From the viewpoint of statistics, the two group-
ing rules described in Section 2 can be regarded as the
hypothesis-test procedures (Cox, 1987); we test the hypoth-
esis whether the statistics associated with a pixel repre-
sented by a silent oscillator are equal to those of a region
represented by a group of active oscillators. A tolerance
parameter may thus be viewed as a confidence interval.
Suppose that the image satisfies a Gaussian distribution.
Then, for example, the 100(1 — )% confidence interval
for the mean on a pixel neighborhood can be determined
by the quantity #(n — 1;y/2)o/+/n, where o is the esti-
mation of the standard deviation, n is the population size,
v is the error probability, and #(n — 1; y/2) is the value of #-
distribution in terms of y and n. In general, we cannot
assume the Gaussian distribution and the population size
varies in the grouping process due to dynamical coupling.
Therefore, the confidence interval can provide only some
heuristics to determine the tolerance parameters. On the
basis of the heuristic information, we always use larger
wﬁ and wﬁ in Rule b than wa and w; in Rule a. In addition,
the histograms of local mean and standard deviation for a
fixed neighborhood can provide some useful information to
select the parameters, j, and w,. To a certain extent, these
heuristic techniques overcome the difficulty in tuning the
tolerance parameters. However, a general method is not
available, and some user tuning is still needed as in many
other methods.

As pointed out before (Wang & Terman, 1997; Wilson &
Spann, 1996), in general there is no unique answer for
image segmentation due to its uncertain nature. For
example, the same house should be treated as one segment
in some tasks, and separated into multiple segments, such
as roof, door, and windows, in some other tasks. This
fundamental uncertainty dictates that no set of parameter
values fits all tasks, or some parameter tuning must be
conducted for any segmentation algorithm. On the other
hand, natural imagery of a certain type, e.g. aerial imagery
from similar imaging conditions, is of similar scale and
statistical properties. These common properties can be
viewed as prior knowledge for segmenting images of a
certain type. Such prior knowledge is encoded by a proper
set of parameter values in our algorithm, which leads to
desired results as we have demonstrated in this paper.
From a practical point of view, one can acquire prior knowl-
edge by analyzing a small number of images (just one in
many cases) from a collection of the same type, as done in
our simulations. In terms of methodology, this is a super-
vised learning process: acquiring image regularity from
examples. A recent study by Liu, Chen, and Wang (2001)
shows that parameters comparable to ours for leader selec-
tion can be determined by training a multilayer perceptron.
This suggests a promising direction for addressing the issue
of parameter tuning. The key there is how to choose repre-
sentative training samples. Similarly, if one treats segmen-
tation as classification, parameter determination may also be
regarded as an optimization problem, which would lead to

an optimal set of values given statistical properties of each
class (Saha & Udupa, 2001).

To conclude, we have presented a new method to image
segmentation, which is based on dynamical coupling and
oscillatory correlation. Our study demonstrates that robust
segmentation performance can be achieved based on the
idea of using dynamical neighborhoods, which is inherently
consistent with the dynamics of relaxation oscillators. Our
results lend further support to oscillatory correlation as a
potential solution to scene segmentation and perceptual
organization (Wang & Terman, 1997).
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