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ABSTRACT

Recent research shows that the i-vector framework for speaker
recognition can significantly benefit from phonetic informa-
tion. A common approach is to use a deep neural network
(DNN) trained for automatic speech recognition to gener-
ate a universal background model (UBM). Studies in this
area have been done in relatively clean conditions. How-
ever, strong background noise is known to severely reduce
speaker recognition performance. This study investigates a
phonetically-aware i-vector system in noisy conditions. We
propose a front-end to tackle the noise problem by perform-
ing speech separation and examine its performance for both
verification and identification tasks. The proposed separation
system trains a DNN to estimate the ideal ratio mask of the
noisy speech. The separated speech is then used to extract en-
hanced features for the i-vector framework. We compare the
proposed system against a multi-condition trained baseline
and a traditional GMM-UBM i-vector system. Our proposed
system provides an absolute average improvement of 8% in
identification accuracy and 1.2% in equal error rate.

Index Terms— Robust speaker recognition, deep neural
networks, i-vector, Speech Separation, time-frequency mask-
ing.

1. INTRODUCTION

Automatic speaker recognition is the task of recognizing the
identity of a speaker from the speech signal. The task can be
divided into speaker verification (SV) and speaker identifica-
tion (SID). The objective of speaker verification is to verify
an identity claim using the voice of the subject. In speaker
identification, the goal is to provide the identity of the sub-
ject. Speaker recognition has many real world applications,
including user authentication, access control, and assistance
to speech separation and recognition.

Introduced by Dehak et al. [2], the i-vector framework
is the dominating approach in speaker recognition research.
This approach extends from a joint factor analysis which
models speaker and channel subspaces separately [6]. In
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contrast, the i-vector approach models speaker and channel
variations together. This leads to increased robustness to
channel variations and other signal distortions.

The recent success of deep neural networks (DNNs) for
automatic speech recognition (ASR) [5] motivated the appli-
cation of DNNs to speaker recognition. Some methods train
DNN s to directly distinguish speakers and have been primar-
ily used in text-dependent speaker recognition (e.g. [8, 21]).
Others use DNNSs trained for a different task to extract infor-
mation to aid subsequent speaker recognition [18]. One such
approach uses a DNN trained for ASR as a universal back-
ground model (UBM) for an i-vector system, enhancing its
ability to capture pronunciation patterns. This results in sig-
nificant improvements over the traditional Gaussian mixture
model (GMM) UBM [7, 19]. However, these studies focus
on relatively clean conditions where the voice of the target
speaker is not much interfered.

This paper investigates the performance of a phonetically-
aware i-vector system in conditions where the speech is cor-
rupted by strong additive noise. A supervised speech separa-
tion algorithm is proposed to remove or attenuate background
noise. Specifically, a DNN is trained for mask estimation, and
the DNN generated mask is used to extract enhanced input
features for a DNN/i-vector framework.

The rest of the paper is organized as follows. In Section
2 we describe the proposed system. Section 3 presents the
dataset and evaluation metrics. We then describe the results
of our experiments and comparisons in Section 4. Finally,
concluding remarks are given in Section 5.

2. SYSTEM DESCRIPTION

This section provides the background and describes each el-
ement of the proposed system. A diagram of the proposed
system is shown in Figure 1.
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Fig. 1: Schematic diagram of the proposed system. See text for explanations of acronyms.

2.1. Speech Separation

We perform speech separation by estimating the ideal ratio
mask (IRM) in a supervised fashion. The IRM is defined as
the ratio between the energy of the clean and noisy speech
at each time-frequency (T-F) unit [22]. As speech and noise
can be assumed to be uncorrelated, the energy of the mixture
becomes the sum of the speech energy and noise energy. The
IRM can be defined in different T-F domains. We define the
IRM in the power spectrogram domain:

IRM(t,f) = ¢ S(t, /)

1)+ NLT) W

where S and N denote the power spectrogram of the speech
and noise respectively. The resulting IRM is closely related
to the Wiener filter.

We employ a DNN as the discriminative learning ma-
chine to estimate the IRM. The network inputs consist of
the log-compressed power spectrogram frames. For the cur-
rent frame, we take the preceding and succeeding 10 frames,
resulting in a 2,709 dimensional (129 x 21) feature vector.
For the training target, we use the IRM corresponding to the
central frame of the input vector along with the preceding
and succeeding two frames, resulting in a 645 dimensional
(129 x 5) feature vector. Taking a context window of the cur-
rent input frame allows the network to leverage the temporal
dynamics of speech. For the output, a context window pro-
vides several estimates of the IRM at each frame, whose aver-
age produces a better estimate [22]. At the test stage, the esti-
mated IRM is pointwise multiplied with the noisy power spec-
trogram to produce an enhanced power spectrogram which is
used for feature extraction in the i-vector system.

The DNN used in our experiments consists of four hid-
den layers. Each hidden layer contains 1024 rectified linear
units (ReLUs). The network is trained to minimize the mean
square error using stochastic gradient descent and Adagrad
[3]. Dropout regularization is set to 0.2. A momentum term
is included and set to 0.2 for the first 30 epochs and 0.8 after-
wards. The DNN is trained for a total of 150 epochs.

2.2. I-Vector Algorithm

The i-vector algorithm projects input features into a low-
dimensional space. It assumes that a speaker- and session-
dependent supervector M can be modeled as:

M=m+Tw 2)

where m represents the speaker- and channel-independent
component, 7' is a matrix of a low rank referred as the to-
tal variability matrix, and w is a random vector known as
the i-vector [2]. To learn the bases for the total variability
subspace, Baum-Welch statistics are computed from a UBM.

After i-vectors are extracted, linear discriminant analysis
(LDA) is typically used to further reduce the dimensionality
of the i-vectors. However, nonparametric discriminant analy-
sis (NDA) has been shown to be more effective [19, 9]. This
is attributed to the Gaussian assumption in LDA. It is known
that this assumption may not hold, especially in the presence
of noise and channel variations. In NDA, local sample aver-
ages are computed based of the k-nearest neighbors of a sam-
ple to replace the global information about each class [19].

We implement our speaker recognition systems using the
MSR Identity Toolbox [20]. The DNN acoustic model con-
sists of 7 fully connected hidden layers each with 2048 Re-
LUs. The DNN is trained to estimate the clean posterior prob-
ability of 4096 senones. Target senone states are obtained us-
ing a GMM-HMM system built with the Kaldi toolkit [17].
The network is trained to minimize the cross-entropy loss
function. All other settings are identical to the ones in the
previous section. For the GMM-UBM, the number of Gaus-
sian components is set to 2048 which showed the best results
among different configurations. We use a 400 dimensional to-
tal variability matrix trained with the expectation maximiza-
tion algorithm to extract the i-vectors. Afterwards, we apply
NDA with k£ = 8 to reduce the dimensionality of each vector
to 200 before using them to train a probabilistic linear dis-
criminant analysis (PLDA) model.

For our features, we use 19 mel-frequency cepstral coeffi-
cients (MFCCs), 13 relative spectral filtered perceptual linear
predictive cepstral coefficients (RASTA-PLP) and the log en-
ergy of each frame. Delta and double delta coefficients are
included for a total of 99 (33 x 3) dimensions per frame.
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SNR -5dB 0dB 5dB 10 dB Average
System ACC EER | ACC EER | ACC EER | ACC EER | ACC EER
GMM/i-vector 39.05 11.26 | 62.50 7.37 | 68.69 6.06 | 69.59 593 | 5996 7.65
GMM/i-vector + Masking | 43.04 11.14 | 6894 6.18 | 7822 5.00 | 79.51 4.77 | 6743 6.77
DNN/i-vector 4227 10.87 | 66.24 597 | 73.20 5.59 | 74.10 5.74 | 6395 7.04
DNN/Vi-vector + Masking | 42.01 9.79 | 69.59 5.83 | 78.61 5.00 | 80.54 4.35 | 67.69 6.24

Table 1: EER (%) and SID accuracy (%) under matched SNR conditions with SSN.

SNR -5dB 0dB 5dB 10dB Average
System ACC EER ACC EER | ACC EER | ACC EER | ACC EER
GMM/i-vector 31.19 13.23 | 55.28 9.01 | 65.08 7.00 | 66.88 5.80 | 54.61 8.76
GMM/i-vector + Masking | 38.02 12.14 | 61.21 7.47 | 7590 534 | 7642 5.03 | 62.89 7.50
DNN/Vi-vector 3595 11.76 | 61.08 6.44 | 69.59 5.84 | 70.62 5.67 | 59.31 7.43
DNN/Vi-vector + Masking | 38.27 11.38 | 64.43 6.19 | 76.93 4.60 | 78.74 424 | 6459 6.60

Table 2: EER (%) and SID accuracy (%) under matched SNR conditions with babble noise.

3. EXPERIMENTAL SETUP

3.1. Dataset

Acoustic models are trained using the Switchboard-1 corpus
[4]. Speaker recognition experiments are conducted on fe-
male speakers from the NIST SRE 2006 [16] and 2008 [15]
dataset (8conv condition). We use SRE 2006 for development
and SRE 2008 for enrollment and testing. The speech sepa-
ration DNN is trained on unused data from NIST SRE 2006
and Switchboard-1.

A total of 402 and 395 speakers are used from the NIST
SRE 2006 and 2008 dataset, respectively. For each target
speaker eight two-channel telephone conversations are pro-
vided. Each of these conversations contains about two min-
utes of speech from the target speaker. For each utterance
we remove the non-target speaker and pass it through a voice
activity detector to remove large chunks of silence. The ut-
terance is then divided into 15 second pieces, ensuring that
the total energy of each piece is above an empirical thresh-
old. Speakers without sufficient quality data (i.e. less than
two minutes of data across all 8 utterances) are discarded. Ut-
terances are then mixed with babble or speech-shaped noise
(SSN) at signal-to-noise ratios (SNR) ranging from -5 dB to
12 dB to produce the noisy utterances. Each noise is four min-
utes long and is divided into three pieces. We assign one piece
for speech separation, and two pieces for i-vector training and
testing.

3.2. Evaluation Metrics

Experiments are evaluated using equal error rate (EER) for
the verification task and identification accuracy (ACC) for the
identification task. The EER represents the value at which the
false positive rate equals the false negative rate when com-

Frequency (kHz)

Fig. 2: Speech separation illustration. (a) Power spectrogram of a
speech utterance mixed with SSN at -5 dB SNR, (b) Power spectro-
gram of the original speech signal, and (c) Power spectrogram of the
separated speech signal.

paring each testing sample against all speakers in the test set.
The identification accuracy is the percentage of correct iden-
tifications among all the test trials. Both of these metrics are
commonly used for evaluating speaker recognition systems.

4. RESULTS AND DISCUSSION

First, we show an example of a speech separation result in
Figure 2. The speech signal is taken randomly from our test
set. We can see that the power spectrogram of the separated
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SNR -3dB 3dB 8dB 12 dB Average
System ACC EER ACC EER | ACC EER | ACC EER | ACC EER
GMM/i-vector 36.08 1147 | 63.27 6.75 | 67.14 597 | 68.56 5.67 | 58.76 7.47
GMM/i-vector + Masking | 53.61 9.02 | 7539 541 | 79.38 490 | 79.61 4.64 | 72.00 5.99
DNN/i-vector 3737 1138 | 66.75 590 | 72.68 5.78 | 7242 5.03 | 62.31 7.02
DNN/Vi-vector + Masking | 59.28 7.47 | 76.03 4.60 | 79.77 4.12 | 80.28 4.07 | 73.84 5.07

Table 3: EER (%) and SID accuracy (%) under unmatched SNR conditions with SSN.

SNR -3dB 3dB 8dB 12dB Average
System ACC EER ACC EER | ACC EER | ACC EER | ACC EER
GMM/i-vector 3827 11.14 | 61.34 7.86 | 66.88 623 | 6740 586 | 5847 7.77
GMM/i-vector + Masking | 45.62 1044 | 71.13 593 | 77.19 5.06 | 76.29 5.03 | 67.56 6.61
DNN/i-vector 4421 928 | 66.19 6.22 | 70.67 5.67 | 70.67 5.59 | 62.94 6.69
DNN/Vi-vector + Masking | 46.70 833 | 72.54 523 | 7892 451 | 7779 443 | 6899 5.63

Table 4: EER (%) and SID accuracy (%) under unmatched SNR conditions with babble noise.

utterance recovers much of the structure of the clean signal.

We then evaluate a GMM/i-vector and a DNN/i-vector
baseline in clean conditions. The GMM system achieves a
2.96% in EER and 92.91% in SID accuracy. The DNN sys-
tem achieves 1.29% in EER and 96.65% in SID accuracy. The
DNN system clearly outperforms the GMM system, which is
consistent with previous studies [19, 7].

Table 1 shows the results of our experiments conducted
in matched SNR conditions and with SSN. These SNRs are
the ones used to train all the systems. Both DNN and GMM
systems benefit consistently from masking, with higher im-
provements at higher SNRs. From the average improvements,
we observe that the GMM system benefits more from speech
separation with an average improvement of 7.9% in accuracy
and 1.1% in EER in absolute terms. For the DNN system, the
average improvement is 4.5% in accuracy and 0.8% in EER.
This may be due to the fact that, with its better performance,
the DNN/i-vector approach has less room to improve. This
observation is supported by comparing the two baseline sys-
tems in clean conditions.

Table 2 shows the ACC and EER results in babble noise, a
non-stationary noise. All systems perform worse compared to
the previous experiments in the stationary noise of SSN. The
average performance drop is 4% and 1.5% in accuracy and
EER respectively, indicating the more challenging nature of
babble noise. However, we also see that T-F masking provides
higher improvements in these conditions.

We also conduct experiments in unmatched SNR condi-
tions, where the average input SNR is 5 dB, the same as in the
matched SNR conditions. The results for these experiments
are presented in Tables 3 and 4. We see the same patterns
of speaker recognition results from the previous experiments.
All systems generalize well to unseen conditions. At 12 dB
the performance appears to be lower than expected, under-

performing 8 dB trials in some cases. This suggests that the
systems do not perform well outside the training SNR range
(10 dB to -5 dB). The rest of the results are consistent with
the previous experiments.

5. CONCLUSIONS

In this study, we propose a front-end speech separation system
for the i-vector framework to deal with utterances corrupted
by background noise. This is done using a DNN to estimate
the IRM. The separation front-end is applied to a standard
GMM/i-vector system and a DNN/i-vector system. We show
that the speech separation improves the performance of the
baseline systems for both identification and verification tasks.
The overall average improvement from using speech separa-
tion is 8% (absolute) in identification accuracy and 1.2% (ab-
solute) in EER.

To our knowledge, this is the first study combining i-
vector based speaker recognition and DNN based speech
separation. Recent advances in speech separation suggest av-
enues to improve mask estimation [1, 24]. Studies in acoustic
modeling also suggest alternative ways to perform speech
separation with acoustic models [10, 23].
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