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Brief Papers

Texture Segmentation Using Gaussian—Markov Random Fields and Neural
Oscillator Networks

Erdogan Cesmeli and DelLiang Wang

Abstract—\We propose an image segmentation method basedfields (GMRFs) [3]. Model parameters have been proposed to be

on texture analysis. Our method is composed of two parts. The texture features by assuming that parameter differences among
first part determines a novel set of texture features derived from a different textures facilitate texture discrimination

Gaussian—Markov random fields (GMRF) model. Unlike a GMRF- . . L
based approach, our method does not employ model parameters Because of their success in classification, neural networks

as features or require the extraction of features for a fixed set of have been applied to perform texture segmentation. Chellappa
texture typesa priori. The second part is a two-dimensional (2-D) et al.[3] employed a Hopfield-type network to maximiapos-
array of locally excitatory globally inhibitory oscillator networks teriori probability (MAP) for texture segmentation. Unlike the

(LEGION). After being filtered for noise suppression, features are h loving k filter f h Gabor fil
used to determine the local couplings in the network. When LE- approacnes employing known Tilter forms, such as abor -

GION runs, the oscillators corresponding to the same texture tend ters [1], [10], [23], [9], Jain and Karu trained a multilayer per-
to synchronize, whereas different texture regions tend to corre- ceptron (MLP) to obtain texture specific filters and to perform

spond to distinct phases. In simulations, a large system of differen- segmentation [11]. The biological relevance of these studies is
tial equations is solved for the first time using a recently proposed |iyitad as are the results on real texture. Eom [6] segmented tex-
method for integrating relaxation oscillator networks. We provide . . . .
results on real texture images to demonstrate the performance of ture |mag(?s using a neural ngtwork whereby a two-dimensional
our method. (2-D) moving average model is used to represent textures. Other
. . than the introduction of a new definition for texture features, the
Index Terms—BDynamical systems, Gaussian Markov random .
fields, LEGION, neural networks, relaxation oscillators, texture stu_dy does not sugggstaunlq_ue approach to the texture segmen-
segmentation. tation problem. Baldi and Meir [1] proposed a network of cou-
pled oscillators, using Gabor filters as texture feature detectors,
for texture discrimination. However, their method is limited by
the use of phase oscillators, which cannot synchronize with local
MAGE segmentation is a fundamental and yet difficult taskoupling, a crucial ability for image segmentation (see [19] for
in machine vision. Texture is one of the visual featuregxtended discussion on this point).
playing an important role in scene analysis. Intuitively, it is Temporal correlation [15], [14] has been proposed for
related to patterned variations of intensity across an imaggnding (grouping) features together, which is important for
Texture segmentation in general is composed of two stepsage segmentation. A special form of temporal correlation
namely, the extraction and the grouping of texture featurds.oscillatory correlation whereby the basic unit is a neural
Grouping depends on feature correlation, which generalbgcillator [21], [19]. The discovery of synchronous oscillations
improves with a larger extraction window. However, a largi the visual cortex [5], [8] provides neurophysiological support
window deteriorates the localization of regions. to this representation. LEGION [21], [19], which is based on
There are a number of methods for texture feature extrape idea of oscillatory correlation, has been proposed to deal
tion. Among them are geometrical, statistical, signal processingith image segmentation. When a LEGION network runs,
and model-based methods [18]. Markov random field (MRRscillators corresponding to the same region tend to attain the
models, which fall under the model-based category, have bagime phase, which is different from those of other regions.
quite successful for texture modeling and segmentation [4], [{Jnlike many other image segmentation approaches, LEGION
[3]. They capture local characteristics of an image by assumingtworks represent a dynamical systems approach. Oscillators
a local conditional probability distribution. When this distribuare active agents that are driven by external stimulation and in-
tion is Gaussian, the model is called Gaussian—Markov randdiirence each other through coupling. Segmentation is achieved
in a continuous-time process that corresponds to parallel and
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parameters, they still have a local dependence structure, a r Fo= U\ fin fin fi 4l
tion essential for texture segmentation (for more details, se ) PTHLL Y203 04

Section Il). The extraction of features is followed by filtering | Featre Extraction Fo = Uy fen Fos fodl
for noise suppression. Finally, local couplings in LEGION are o T
defined based on filtered features. We emphasize the notion
spatial context by allowing only a dynamic set of neighbors tc
determine local couplings and reinforce desynchronization b

an additional inhibitor. In previous studies, an algorithm was de y
signed to mimic the network behavior for image segmentatio A, =8, 8,4 8,3 841
[21]. In order to assess the network dynamics more faithfully| Noise Suppression ' BEOoRE BT

our study directly integrates a large number of differential equa Ay
tions governing the behavior of oscillators. Note that such in
tegration is computationally very expensive when dealing witt
real images typically having 128 128 pixels or more. Our in-
tegration is made feasible by the singular limit method that i
recently proposed specifically for integrating relaxation oscil- !
lator networks [12], of which our network is an example. The 4
method integrates relaxation oscillator networks in the singule| LEGION Network Wye1/ 3 |3;;=8 |, keN()
limit (more details in Section Il) and gives rise to remarkable j=1

speedup compared to the commonly used Runge—Kutta methcs:

In sum, this paper proposes a set of texture features deri\ﬁ?& 1. Flow diagram for texture segmentation, which is composed of three
from a GMRF model and, for the first time, demonstrates imageges: feature extraction, noise suppression, and LEGION network. Next to
segmentation by integrating a large set of differential equatiofsh stage are shown the related variables.
corresponding to a biologically plausible oscillator network.

The rest of this paper is organized as follows. Section Il prétere Z’(I]y,., » € N.(s)) is the partition function of the condi-
vides the description of our method. We demonstrate its peienal probability density, corresponding to the sum of the nu-
formance on real images in Section Ill. Some comparisons anerator for all possible realizations 8f. and
drawn in Section IV, and we conclude in Section V.

(851 Bk2 B3 84l

U/(Y; = ys|Y; =Y, TE Nc(3)7 L, = l)

1
Il. PROPOSEDMODEL = 5.2 -2 > 0 e (2)
l reN.(s)
We outline our method in Fig. 1. First, we extract texture fea-

tures at each site. After filtering them for noise suppressiowhereos; is the variance andf,jss are GMRF model parameters
local couplings are determined using a similarity measure dsf-label! satisfying#!. , = #'__ = ¢'_, = 6. Assuming con-
fined in feature space. Finally, LEGION encodes segmented thtional independenée, the joint probability in a wind&s) =
gions by different oscillator phases. u X u centered at site is given by

A. Texture Features o _exp (-U (y,| L, =1))
P(Y. L =1)= 70 3

The idea of GMRF in image processing is to represent local
image characteristics in terms of a local conditional probabilit . . BN : .
distribution which is assumed to be Gaussian [4]. The size a\g&:rei%)( '? tgﬁgartlnon functiony , represents the intensity
the topology of the local dependence are designated as the ofdEpy NAs),

of the model. For example, a second-order GMRF contains eight

nearest neighbors. L& = {(i, j), 1 < i, j < M} denote the U (v.|Ls =1)

set of grid points in the/ x M lattice corresponding to the  _— Z U'(Ye|Yayr,, 7j € N*, k47, € R(s), L)
pixels in the image, anflL,, s € Q} and{Y;, s € Q} be a set e, kb € R(5) ’

of labels and intensities (with zero mean), respectivaly.s)

is the symmetric second-order clique neighborhood atssite 1 2 !

Assuming thats and its neighbors have the same latiethe 207 kiZR Y T%; b5k Yk + Ye—rs)
conditional probability density over intensity is ks CR(s) 7 @
P(Y; = y9|Y; =Y, T E Nc(3)7 Ls = l) HErE, N* = {7_17 T2, 73, 7_4} = {(07 1)7 (17 0)7 (17 1)7

_exp(=U(Y, = ys|Y, =4, 7 € Ne(s), Ly =1)) 1) (-1, 1)} is a set of shift vectors corresponding to the
B Z'(l|y,, 7 € Ne(s)) ' second-order GMRF model.
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Among several methods for estimating GMRF model paran (©)
eters are maximum likelihood (ML) estimation, coding scheme
and least square estimation [3]. Our texture features are deriv
from GMRF parameters estimated by the least square methc
which is easy to compute and has a reasonable efficiency [3].
We assume a second-order GMRF model wh€ére= 3 x 3
and consider an estimation windod(s) = « x u at sites,
which contains a single texture. The least square estimate o
GMRF model parameter vectd, = (61 62 05 64]7, is given

by [3]
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A general GMRF-based approach employs GMRF model pi

rametersd;s, and the variance, as its texture feature set (see, f
e.g., [3]). We assume the same model and employ the same te 3
nique to estimate the model paramet#rs, and the variance, .
o. However, instead of directly using them as features, we ut 7500 5
lize them in the derivation of a different set of texture features
fis: 90 «

1 A 150
Ji= 2 S e —6,Q,(n)P D hw /\ ;i e

r,rE7;ER(s
5 ER(s) 50

where@;(r) is the jth component ofp(r) andj = 1, 2, 3, Qe 37000 ERCANLY S\ S

or 4. Due to the similarity between (6) and (7),s behave like -7

variances in four directions defined by the shift vectays, Be- Fig. 2. (a) Square windows, each sampling a different texture type, show the

cause of directionalityfjs show orientation selectivity, an es-areas where the distributions (histograms) of features are obtained. Each graph
; ; ; rresponds to the distribution of one feature for different texture types. Solid,

Semlafl property in teth.Jre segregation. AIS.O’ no.te that our pLgjoét and dash-dot lines correspond to the distributions in the squares located in

pose is not to synthesize a texture type given its samples, tupper right, left, and lower right regions, respectively. (b) Distributions of

to assess a discrimination measure among different texturesf i (c) Distributions of the variance, and GMRF model parameters;s.

Fig. 2, we display both the set of our features and that of the

variance and GMRF parameters for three different texture types. ) ) _
These textures are from the image shown in Fig. 2(a). First, \@)hd line) and the left (dotted line) regions of the image, as seen

determine both sets at each site using an estimation winddhe lower four graphs in Fig. 2(c). Second, when we compare

R = 9 x 9. Next, we obtain the distribution of each featurdn® top graph with the other four graphs in Fig. 2(c), we see

within a square area of the size 2121 placed in each texturedthat the range oé is much larger than those 6fs. As a re-

region. We plot the distributions (histograms) fj& and those Sult,  similarity measure defined éps ando has to consider

of éjs ando in Fig. 2(b) and (c), respectively. Each graph cortheir range differences. These (_jn‘ferences are gsgally offset by

sists of the distributions of only one feature for all textures. Féormalizing each parameter by its standard deviation. However,

example, the top graph in Fig. 2(b) shows the distributio;of this requires the prior knowl_edge of stanc_iarq deviationg fer

for all textures simultaneously. Likewise, the second graph #1do for all texture types. Without normalization would play

Fig. 2(c) depicts the distribution @ for all textures. too big a role in the discrimination of different textures. Since
We observe two major differences between the two sets. FirbtS have about the same range as shown in Fig. 2(b), our method

#,s are more discriminatory; in this example, they result in thr&©€s not require normalization.

nonoverlapping distributions, each corresponding to one tex- )

ture type [Fig. 2(b)]4;s ando of the same textures, r]owever,B- Noise Suppression

are similar [Fig. 2(c)]. In particular, the distributions &fs al- As outlined in Fig. 1, texture feature vector$, =

most completely coincide for the texture types in the upper righty f2 f3 f4], are filtered for noise suppression, following their




IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001 397

Gy

il v

(b)

Fast Inhibitor Slow Inhibitor

fy

ﬁ Fig. 4. Architecture of a LEGION network with eight-nearest neighbor

coupling. The fast and the slow inhibitors are indicated by two black circles.

f filtered feature vectors for all sites forms one filtered feature
2 ) i ) .
image. In EPNSQF, blurring due to averaging operation across
the region boundaries is minimized by choosing the filter
outputs as the mean intensities of only those subwindows with
the smallest variance.

f3
ﬁ C. Oscillator Networks
| With filtered features, we briefly describe our LEGION net-
| work for texture segmentation. The part of our network that has
l been previously published is omitted here; the reader is referred
' fa to [22] for a complete description. The network is a 2-D array
ﬁ of relaxation oscillators with two global inhibitors, as shown in
Fig. 4. The limit cycle trajectory of a single relaxation oscillator
in phase space is composed of four pieces: two pieces on a slow
Fig.. (2)Fitteri e ) J ) ) time scale and two pieces on a fast time scale. The two slow
ig. 3. (@) Filtering a single image using an edge preserving noise suppressin .
quadrant filter (EPNSQF). Five square subwindows of the same size are forns‘higces are called the left branch (LB) _and th.e ”ght branch (RB)'
within each filtering window which is centered at the sitshown as a black The lower end of LB, where an oscillator jumps from LB to
dot. In this case, the center location is in reg@n and close to the boundary RB on the fast time scale is called the left knee (LK). Similarly,
of regionG,. When processing is performed, region information is not know . . .
(b) Filtering multiple images with EPNSQF. Four filtering windows, eacﬁhe upper end of RB is the ”ght knee (RK) where an oscillator
represented by a square, are formed at the same location on four feature imggé8Ps from RB to LB on the fast time scale.
The coupling to each oscillatar S;, is a sum of four terms:

extraction in an estimation windowg. Since the feature vector 1) local excitatory coupling with the neighboring oscillators;

has four components, we can view them as a set of four feat@le? Potential term encoding the differences between noisy and
images. For filtering, we employ an extended version of dpmogeneous parts; 3) fast global inhibition; and 4) slow global

edge preserving noise suppressing quadrant filter (EPNSQEJiPItion
which was originally proposed to process one image at a time
[20]. Filtering starts by forming five square subwindow$, ;
on feature imagef;, within a filtering window centered at S;=WH Z Wi H(xy) — 60 | + W,H(p; — 0.5)
each site in an image, as shown in Fig. 3(a). The mean and the kKEN(i)
variance of intensities are calculated within each subwindow on — WH (zp) — W,H(z,). (8)
each feature image [Fig. 3(b)]. Note that variance calculations
in filtering are different from the variance estimated in (6). .. )
dlrepresents the Heaviside step function.

The variances of subwindows covering the same locations : X -
summated to obtain their total variance. The set of subwindows-Cc@l €xcitatory coupling between a filtered feature vector at

having the minimum total variance is selected as the winners. Ale ¢ and those at neighboring sitésc V(7) takes place via
a result, the means gfs within the winner subwindow set aredynamic connection weights

assigned to the filtered feature vectdr, = [, 1 6; 2 &;,3 6;. 4]

whereé; ;j = (1/|Ns,;)(Xren, ; fi,k): Ns,j is the winner X 4

subwindow on feature imag¢;, and |N, ;| is the number Wi = F/ Z|&m — g5 9)
of pixels in it. Similar to feature images, each component of j=1
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whereé; ; and . ; are thejth component of filtered feature (@)
vectors,A; and Ay, corresponding to oscillatorsand %, re- —
spectively. Note that a small value is always added to a denom- ]

inator to avoid division by zerd: is a normalization factor, de- active region
termined by

F = F,(F, - Fy)Y* (10)

where
Fy =3 jeney H(zk) number of active neighbors; i
Fi=Y,_,62; magnitude ofA,; \
Iy magnitude of the average feature | .
vector of the active oscillators in L sted

N(i). N(i)

2 (b)

4
Fy = Z Z 6k,jH(-Tk)/Fa . (11) R, R,
i=1 | keN()
7 \

Note that# assesses the local feature changes independent of

their magnitudes and considers feature vectors of only active
neighbors. N(i) '4/

V.

The motivation behind (9)—(11) is to have a large dynamic / % R
weight W;, whenA; is similar toA;.1 LargeW;;, tends to re- //// \ 3
cruit oscillatori to synchronize with oscillatok. To further il-
lustrate local interactions, let us consider an oscillator atisite
and assume that, at a particular time, only a subset of its neigh-
bors N (i) belong to an active region as depicted in Fig. 5(a). site I
Note that only these active neighbors contribute to the total sim- _ o _ -
larity, making the actviy of oscilator depend on a neighbor- (5.5 @ Thecalulationofive e simiary foran osclatoratsigrey
hood that evolves dynamically. Accordingly, oscillaais re-  region around the siteis the neighborhood (i), and the intersection o¥ (i)

cruited by the active region only if its similarity to its dynamigwith the active region is the set of oscillators forming the dynamic neighborhood

. . e of oscillatori. Feature vectors of only this dynamic neighborhood are included
nelghbo_rhooq 'ngdéJ(L) I_S larger th?‘rﬂ' . . in the calculation of the similarity. (b) The effect of dynamic neighborhood on
A main rationale for using dynamic neighborhood is to dea|nchronization when texture boundaries are not sharply defineé similar

with large variations across region boundaries. With dynanticthe average feature vector of its neighborstinand R5 but not to that of
neighborhood, only the oscillators belonging to the currentlj°se inftz, whereN (i) = Rty U > and Ry C ..

active region are used in the grouping process. Thus, within

a neighborhood, similarity is measured separately within eagi the right region anymore, and its neighborsfin win the
region, producing better localized boundaries than does fixe@mpetition for the oscillator. Without dynamic neighborhood,
neighborhood. Another benefit of using dynamic neighborhoe@wever, oscillatof groups wrongly with the right region; even
occurs when a feature-defined boundary between two regiamsrse, it likely causes the merging of the left and the right re-
is not sharp. In this case, dynamic neighborhood plays an igions. Thus, dynamic neighborhood makes segmentation more
portant role in grouping as illustrated in Fig. 5(b). Take, for exobust to local variations.

ample, oscillatog, which is located in the left region but close The second term of (8), whege is referred to as potential,

to the boundary between the two distinct regions. Let us divig€introduced to distinguish between relatively homogeneous re-
N(z) into By and R», as shown in the figure. Assume that  gions and noisy fragments [22]. Oscillators with high potentials
is similar to the average feature vector of its neighbor&in  are calledeaders Oscillators corresponding to a noisy fragment
but not that of/2;. At the same timeA; is also similar to that il stop oscillation after a brief initial period. These oscillators
of a small group of neighbor&; within R,. A possible sce- together form the background.

nario is thatiz is active simultaneously and hence recriits | addition to the synchronization within a group of oscilla-
to join K3. But, when the oscillators i, are synchronized, tors that have similar features, different groups need to be desyn-
is grouped (correctly) withi, and hence, with the left region. chronized to complete the segmentation. We extend the notion
Whenss neighbors infZ; get synchronized with the rest &k, of global inhibition by introducing a slow inhibitor, [see (8)]

R, as a whole will not recruit because; is not similar to - jong with a fast inhibitor introduced by Terman and Wang
the average feature vector &. Thus, will not be recruited [19]. Slow inhibition is needed due to dynamic neighborhood.

10ther formulations may also achieve a similar effect; our particular choid/hen the OS_C'"atorS in a currently a.Ct'VG region are jumping
is mainly motivated by simplicity. down to LB, it may cause other oscillators near the region to
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jump up before the entire region has jumped to LB. Again, co= Randomize the location of each oscil-
sider Fig. 5(b). It is possible that, during the processRgrto lator in phase space; both fast and slow
jump down to LB,R3 is the last part of2, to jump down. When  inhibitors are initialized accordingly.
this happens, the similarity betwe&y and oscillator canre- 2. Determine the time that it takes the
cruit ¢ to jump up to RB before the right region completes its closest oscillator to reach either LK or
jumping down. This may lead to the merging of the left and the RK.
right regions. To prevent this from happening, the slow inhibit@. March oscillators, namely update their
rises slowly but decays quickly. Due to its slow rise, it does not locations in the phase space, by the
influence the process of grouping when oscillators recruit eachtime determined in Step 2 and update the
other to jump up. However, when an active region tracks RB oninhibitors and potentials of the oscil-
the slow time scale, slow inhibition increases and makes it im-lators accordingly.
possible for other oscillators that are not active to jump to RB. Jump the oscillator(s) at the knee,
This continues until the entire active region has jumped down,which is a leader when there is no ac-
and after that slow inhibition decays quickly. Formallyjs de- tive oscillator, to the opposite branch
fined by and update the inhibitors.
5. lterate until no further jumping oc-
4 curs in one iteration: update each os-
dzs cillator’'s location in phase space due
a " [Z Hzy) = ZS] T 12 jumping in the previous iteration; if
» the updated location is beyond either LK
or RK jump the oscillator to the oppo-
Here[z]* = z if z > 0 and[z]™ = 0 otherwise. The parameter site branch.
¢ is a small positive number that characterizes relaxation os@l- Update the lateral potential of each
lations [19],« is a parameter, argk together causes slow rise. oscillator.
But the decay part of the inhibitor is in fast time. 7. Repeat Steps 2-6 until a predetermined
One of the challenges of simulating a LEGION network for simulation time is reached. Note that
segmenting real images is the amount of numerical computatiorthe oscillators that are on RB together
needed. To reduce it, an algorithm was extracted and appliedorm the segment of the textured region.
to intensity image segmentation in a previous study [22], [24].
Although the algorithm exhibits the essential properties of the = ] )
network, it does not completely capture network dynamics, ang” Similar but simpler system has been rigorously analyzed
does not, for example, exhibit the segmentation capacity whiRh Terman and Wang [19], [22], [24], and the analysis ensures
refers to the property that oscillatory dynamics can separate oRgiD the stability of limit cycle solutions and fast rates of syn-
a few segments due to finite temporal resolution [22], [24]. c_hromzatlon and desynch_ronlzatlon. Though we have not car-
To faithfully exhibit oscillatory dynamics in segmentation,rIeOI out a rigorous ar_1a|y5|_s of our extended LEGION sys_tenj,
we employ the singular limit method [13] for integrating Iargé)“r gxtenswt_e numerical simulations shO\_/v that its behavior is
relaxation oscillator networks. This recently proposed meth§gnsistent with the Terma”—Wa”Q analysis.
is based on the observation that a single relaxation oscillatorJn our LEGION network, the weights except ;s are set
travels along either LB or RB slowly, but jumps quickly betweefP V¥ = 1.0 W, = 0.4, W; = 0.5 andV, = 0.6, respectively,
them. It is this motion structure that is exploited in the singulé’? all simulations. The corresponding neighborhoods for the first
limit method. In the singular limie — 0, the limit cycle re- two terms of () areV = 7 x 7and N, = 11 x 11. We_use
duces to two analytically solvable intervals of LB and RB [13]],Vc =3 X 3andR=9x9 fpr the t.extl.Jre m.odel, a subwindow
and two instantaneous jumps. In a network of such oscillatofd, (€ SizeNs,; = 21 x 21 in the filtering window. The values
time can be divided into consecutive intervals that are separaigfjother network parameters mclud,_ez 11-11-0.75 = 90.75,
by jumps. During each interval, analytic solutions are used fo— 1'3 andg = 2‘0‘ The_threshold?, IS ‘h? only paran_we_terthat
march the system in large time steps. At each jumping instanl:seadJUSted for different images. In our simulations, it is always

iterative operations are executed so that appropriate phase sHYf[Q'n 2.0 and 3.6.
are made and the nullclines of oscillators are updated. As ana-
lyzed in [12], the singular limit method produces remarkable . RESULTS
reduction of computing time compared to commonly used inte-we demonstrate our method using a set of nine images of the
gration methods such as that of Runge—Kutta. size 128x 128. The setincludes an indoor image from Hofmann
We summarize the singular limit method employed here ints al. [9], textures from Brodatz Photography Album [2] and the
the algorithm below. MIT Vision Texture Image Archive [16].
We illustrate the segmentation process using the image shown
in Fig. 6(a), which is composed of four quadrant regions
0. Determine the filtered feature vectors each with a different texture. Assuming a second-order GMRF
at all locations and form the LEGION model, we extract texture features in an estimation window,
network accordingly. R =9 x 9, forming a texture feature vector at each site.
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)

5, 8, 8, 84

Fig. 6. Texture feature extraction and noise suppression. (a) Inputimage composed of four quadrant regions each with a different texturat({og Foagtes.
Each one is formed by one component of the texture feature vétter,[f1 f2 fs fa], for all sites. (c) Four filtered feature images, each corresponding to one
component ofA = [6; 6> &3 d4], are obtained after filtering the feature images in (b) for noise suppression.

Because of the image border effects, the resulting featuheoughout the simulation. The activities of the two inhibitors
images have the size of 120 120, as shown in Fig. 6(b). are plotted in addition to those of the oscillators in the four
Following their extraction, features are filtered in a windowegions and in the background, which is composed of those
of the size of 41x 41 with a subwindow of the size 2% oscillators that become silent shortly after the network starts
21 resulting in four filtered feature images of the size 80 running. Aligned activities of the oscillators indicate the syn-
80, as depicted in Fig. 6(c). Note that while small variationshronization of the corresponding regions. When comparing the
within different regions are removed, region boundaries atep four traces, it is easy to see that the oscillators of different
mostly preserved. After defining the couplings in our LEGIONegions achieve high activities at different times, namely, they
network, the segmentation is performed in a network ofx80 are desynchronized. Notice that the dynamic evolution of the
80 oscillators. Snapshots of the network activities at differemhibitors is consistent with the activation of different groups
stages of the dynamic evolution are provided in Fig. 7(a). Adif oscillators, as depicted in the lower two traces. The fast
oscillators start on LB along which their initial locations arénhibitor has sequences of four consecutive activation traces,
determined by their initial phases. For computational efficienagach of which corresponds to the synchronization of one group
we preset initial phases of the oscillators in accordance withioscillators. Similarly, the slow inhibitor shows four gradually
their filtered feature vectors; oscillators having similar filteredsing traces in concert with the activity of the fast inhibitor.
features start at similar phases. After a few cycles followirighe inhibitors together assure proper desynchronization among
the initialization, a group of oscillators becomes highly activdifferent groups of oscillators.
while the others keep low activity levels, as depicted in the ¢;s in Fig. 6(c) do not equally distinguish different textures.
leftmost snapshot in Fig. 7(a), indicating the segregation &f, for instance, can discriminate the upper right texture and
the lower right region from the other regions in terms dhe lower right texture but not the upper left texture and the
phase. A short time later, the oscillators stimulated by thgper right one. On the other harég,can distinguish the latter
lower left region become active and segregate from the rgutir. Sinces;s have comparable ranges, distinct discrimination
as shown in the second image of Fig. 7(a). Subsequently, tiglities fromé;s are readily integrated in our feature detection
oscillators of the other two regions become active in turmethod.
completing the segmentation. Five additional input images and their segmentation results
Once synchronized within each group and desynchronizark provided in Fig. 8. Except for the threshofd,all results
among different groups, oscillators in our LEGION networkare obtained with the same set of parameters as used for the
keep their relative phase relations unless the input imageirisage in Fig. 6(a). Input images are composed of four quadrant
changed. To provide a complete picture of dynamic evolutioregions each with a different texture. Next to each image is its
Fig. 7(b) depicts the temporal activity of each oscillatasegmentation result which is displayed as a gray level image,
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Fig. 7. The segmentation result for the input image shown in Fig. 6(a). (a)

Snapshots of the network activity. Oscillators corresponding to the lower right

region reach high activity level while the others have low levels of activity. A

short time later, the oscillators stimulated by the lower left region reach high

values. Subsequently, the oscillators representing the other two regions become . . . . .
highly active in turn. (b) Temporal activities of the oscillators in the four region§!9- 8- (&)—(€) Segmentation results. The left image in each case is an input

and in the background, and those of the fast and the slow inhibitors throughBlifge of the size 28 x 128. Next to each input image is the corresponding
the simulationg = 2.0. segmentation result, where segmented regions are assigned different gray levels.

6 = 3.0,2.9,2.8,2.8, and3.2 for (a)—(e), respectively.

instead of temporal activity of the network. Sites corresponding
to the same group of synchronized oscillators are colored witom the errors along the boundaries, segmented regions do
the same gray level while different groups are assigned differerdt have holes except for the lower right region in Fig. 8(b).
gray levels. Finally, sites corresponding to the oscillators in tidote that even though the texture in the lower right regions
background are indicated as black. of Fig. 8(a) and (c) is the same, the segmentation results
In all cases of Fig. 8, our method is able to segmeare not the same for this texture type. This is because of
four regions successfully except for some errors along thiee difference in the values df. Holes in the lower right
boundaries. In Fig. 8(a), except for the lower right region anmégion of Fig. 8(a), which are part of the background, do not
where all regions meet, the segmentation result is very clasgpear in the result of Fig. 8(c), since the threshold for the
to the ground truth. The fact that GMRF modeling is ndatter image tolerates more dissimilarity. In Fig. 8(d) and (e),
very good at regular textures reveals itself for the lower riglsimilar to the previous results, errors occur along the boundaries
region which is relatively more regular than the other regionand the central region. In Fig. 8(d), even though all regions
The center area is prone to misclassification partially due $#em to be uniform to the human eye, our method identifies
filtering. When the filtering window for noise suppression isnhomegeneities in the lower left region. This is an example
in this area, it is more likely to choose a wrong subwindowWlustrating that GMRF-based texture features do not always
set for the output assignment than elsewhere in the imaggree with perception. Finally, Fig. 8(e) illustrates another
Another source of error is the texture extraction process. Qumoblem due to the size of the texture elements. The upper right
method makes errors usually along the boundaries becauseréggon in the image has diagonal line structures. Since these
estimation windows contain two different texture types, arngtructures have larger sizes than that of the estimation window,
therefore the estimated features are different from that of eitrarr texture features do not capture them well, resulting in a
of the two textures. Fig. 8(b) and (c) have relatively bettdarge undecided region (background) between the upper left
segmentation results than the other examples in Fig. 8. Asialed the upper right regions. This does not present a problem
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along the boundary between the upper right and the lower @) (b)
right regions since the two regions have a relatively larger %
intensity difference as compared to that between the upper
left and the upper right regions.

An additional image having different boundary shape and ori-
entations among three textured regions is segmented and the re-
sult is shown in Fig. 9(a). One of the three regions is a quadrant
of a circular region (lower right corner of the image). The other
two regions are separated by a diagonal border from the upper
left corner to the lower right corner. The result is summarized
in Fig. 9(b). As compared to the ground truth, the segmentation
is successful except for the errors located nearby the area where
the three regions meet. Although our filtering windows have in-
trinsic square shapes, they are still able to locate the diagonal
and the circular borders satisfactorily.

To demonstrate the performance of our method for input im-
ages with more than four regions, an input image similar to the
ones in Figs. 6 and 8 but with an additional square region inth@g 9. The performance of our method in the presence of different boundary
center of the image is used as shown in Fig. 9(c). Unlike tlsBape and orientations. (a) An input image of the size X128 with circular
networks used for the previous imagess- 3.0 and an addi- o desere Porir enons S scomenaten e,
tional condition is incorporated: An oscillator can respond to 88ktured regions. (d) Its segmentation result of the size @D, with# = 3.6.
excitation only if it has more than two neighboring oscillators
active simultaneously. This condition is to avoid one pixel wid @ , (b)
region extensions. As it is depicted in Fig. 9(d), the five regior ;- coRE ‘
are successfully segregated along with the background regi ;
There is an interesting “error” related to the boundary betwe %
the upper left and the upper right regions in the segmentation

tion result shifts the boundary to the left. In fact, one can obser
that the segmentation result is more consistent with that of pi
ception in this particular case.

Finally, an indoor image that was used in Hofmaatral. [9]
and the resulting segmentation are shown to demonstrate the10 The bert f hodinth both 4 and

H . . e performance of our method in the presence of both textured an

performance of Our_ methqd in the pre;ence of both t_eXtu_rE:qextured regions. (a) An indoor image of the size 32828 (from [9]). (b)
and untextured regions (Fig. 10). For this purpose, a filtering segmentation resuit of the size 9090, with¢ = 3.0.
window of the size 21x 21 andx = 2.5 are used. The con-
dition where an oscillator can respond only if it has more thaghd a variation of thé&-means algorithm for clustering. How-
two simultaneously active neighboring oscillators is also eraver, the selection and/or the integration of filter outputs still
ployed to eliminate possible narrow extensions of the regiorgmain to be an unsolved problem [18]. Matk al. [13] ad-
Our method is able to segregate the couch with a rich textutgessed a similar problem requiring the combination of texture
the floor, the couch with approximately uniform luminance, thgnd brightness-defined contours and employed a normalized cut
drawer part of the bookshelf, and the books on top of it in thg@gorithm for grouping.
upper right corner of the image. Fuzzy regions along the bordersa core issue in combining multiple features of different kind,
of the different objects constitute the background. The resultds in the case of incorporating a large set of filters as well as

summarized in Fig. 10(b). spatial proximity, is that different features generally have dif-
ferent ranges of values. Thus, a set of features with comparable
V. COMPARISON WITH OTHER METHODS ranges is highly desired to eliminate at least one variability in

the problem. Unlike most other approaches, our featufgs,

A. Methodology have similar ranges. Usingjs not only facilitates combining

In their pioneering study, Gemaat al.[7] incorporated prior features but also strengthens the orientation selectivity in fea-
knowledge about regions and boundaries into a probabilistice detection which is an important property in texture segre-
framework, and segmentation is achieved by searching for MARtion. In fact, our early attempts to use Gabor filters produced
solutions using simulated annealing. Hofmaxal.[9] defined unsatisfactory results partly due to large magnitude variations
texture segmentation as a pairwise clustering problem basedmthe filter outputs.
a similarity measure using Gabor filter outputs and employed aMost methods require prior training either in feature extrac-
deterministic annealing technique to solve the problem. Jain aiwh or grouping. GMRF-based approaches, for instance, require
Farrokhnia [10] used Gabor filters as texture feature detectgmsor feature estimation for a selected set of textures and the
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tuning of additional parameters. Neural networks, such as theblem of segmenting images composed of both textured and
one proposed by Jain and Karu [11], usually involve training eintextured regions. Jain and Farrokhnia pointed out that their
ther in the filter selection stage or in the grouping process. Omethod can segregate textured regions from untextured regions
method, on the other hand, does not involve texture dependbeuat cannot discriminate one untextured region from another.
training in feature extraction or grouping and thus, lends itsétfofmann et al. assumed a preprocessing step to segregate
as an unsupervised segmentation system. untextured regions from textured regions in order to process
Different from other methods, which usually require prior inthe indoor image in Fig. 10.
formation about the number of labels (regions), LEGION usesIn general, we observe that our results are at least as good as
a flexible way of expressing labels as phases of oscillators. Tim®se of the above methods. Like ours, they all have classifica-
interactions between oscillators are in terms of phase only, amgh errors around the boundaries, where decision windows in-
operations are formulated in terms of just one phase variabt#jde two or more regions simultaneously during segmentation.
which implicitly expresses multiple labels. With implicit la-The main advantage of the methods based on training using a
beling LEGION does not entail more local operations wheiixed set of textures is that they can produce good results on im-
more regions need to be segmented. On the other hand, moragges with a large number of different textures. Since our method
bels increase local operations in methods employing explicit Istarts with a weaker assumption about texture types, its perfor-
beling, such as deterministic and stochastic relaxation methogignce for such images is generally not as good. On the other
because operations are formulated in terms of different labdisind, our method would perform better for novel texture types.
Implicit labeling in LEGION comes from the fact that it per-Also, unlike other methods, our method generates a background
forms segmentation itime. that is composed of unclassified sites. We claim that the inclu-
The present study differs from previous LEGION networksion of a background makes our method more amenable to a real
for image segmentation in three main aspects. First, the inceRrvironment, where textured and untextured regions mingle to-
sion of dynamic neighborhood and slow inhibition significantlgether as do uninteresting regions and interesting ones.
expands the ability of LEGION for image segmentation in gen- When only neural network methods are considered, our
eral, and texture segmentation in particular. Second, the pres@ethod presents clearly better results. The only other method
study, for the first time, integrates a large system of differerased on coupled oscillators [1] does not have results on real
tial equations rather than relying on algorithmic abstractiontexture images. We believe that our method has substantially
Third, the extraction of texture features is a significant topiexpanded the applicability of neural networks in texture image
in its own right, which has not been addressed in previous LEnalysis.

GION studies. In terms of computational complexity, for a network of the
size 80x 80, our network simulation takes typically a minute
B. Performance of CPU time on an HP workstation. This computational perfor-

mance is comparable with the steepest descent and Monte Carlo

For a more comprehensive evaluation of our method, we firgigorithms used in those MAP-based approaches that reported
consider results of other methods that are not based on neg@ghputing times [23].
networks. For this purpose, we compare our results with those offo summarize, after carefully evaluating our method against
Gemaret al.[7], Jain and Farrokhnia [10], and Chellapgizal.  existing methods in terms of both methodology and perfor-
[3], because of their novel approaches and relatively successfiince, we are led to the conclusion that our method offers
results on a common set of real textures, namely, Brodatz teique computational advantages, in addition to the fact that
tures [3]. In addition, we include two more recent studies in o@iur approach has a strong biological link.
comparison, since their images are quite similar to Brodatz tex-
tures [11], [9]. Note that these studies include both supervised
[7], [4], [11] and unsupervised [10], [9] segmentation methods.

The methods by Gemaat al.[7] and Hofmanret al.[9] gen-
erate segmentation results of lower resolution than what we ob-Our method is composed of two parts, the extraction of tex-
tain. Because of the large resolution reduction, the two methadge features and a neural oscillator network. Both parts are
would lose boundary accuracy. Recently, Puzicha and Buhmésased on the notion of local computations, which is important
[17] improved the work of Hofmanet al. in terms of compu- for parallel and distributed processing. Our method, with only
tation and resolution. After prior training and elaborate adjustne parameter to adjust and no prior training, is able to obtain
ment of several parameters, the methods by Geetah. and comparable segmentation results with other successful studies.
Chellappeet al.[3] obtain similar results compared to ours. Thé=our main factors give rise to the performance of our method.
results of Jain and Farrokhnia [10] would be similar to our&irst, a second-order GMRF can describe the dependency of a
too, if the correct number of regions is provided to their methgsixel intensity on that of its neighboring pixels. Second, our tex-
and the set of Gabor filters used is able to capture differencesume features seem more discriminatory than GMRF model pa-
textures forming the test images. In the study by Jain and Kaameters. Third, our computational framework is a biologically
[11], after successful training on MLP their neural network caplausible neural network, where a measure of similarity incor-
generate similar results compared to ours. porates a dynamic neighborhood. Finally, a large set of differ-

Among the five methods selected for comparison, Jaemtial equations are solved efficiently using the singular limit
and Farrokhnia [10] and Hofmanet al. [9] considered the method.

V. CONCLUSION
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