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Texture Segmentation Using Gaussian–Markov Random Fields and Neural
Oscillator Networks
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Abstract—We propose an image segmentation method based
on texture analysis. Our method is composed of two parts. The
first part determines a novel set of texture features derived from a
Gaussian–Markov random fields (GMRF) model. Unlike a GMRF-
based approach, our method does not employ model parameters
as features or require the extraction of features for a fixed set of
texture typesa priori. The second part is a two-dimensional (2–D)
array of locally excitatory globally inhibitory oscillator networks
(LEGION). After being filtered for noise suppression, features are
used to determine the local couplings in the network. When LE-
GION runs, the oscillators corresponding to the same texture tend
to synchronize, whereas different texture regions tend to corre-
spond to distinct phases. In simulations, a large system of differen-
tial equations is solved for the first time using a recently proposed
method for integrating relaxation oscillator networks. We provide
results on real texture images to demonstrate the performance of
our method.

Index Terms—Dynamical systems, Gaussian Markov random
fields, LEGION, neural networks, relaxation oscillators, texture
segmentation.

I. INTRODUCTION

I MAGE segmentation is a fundamental and yet difficult task
in machine vision. Texture is one of the visual features

playing an important role in scene analysis. Intuitively, it is
related to patterned variations of intensity across an image.
Texture segmentation in general is composed of two steps,
namely, the extraction and the grouping of texture features.
Grouping depends on feature correlation, which generally
improves with a larger extraction window. However, a large
window deteriorates the localization of regions.

There are a number of methods for texture feature extrac-
tion. Among them are geometrical, statistical, signal processing,
and model-based methods [18]. Markov random field (MRF)
models, which fall under the model-based category, have been
quite successful for texture modeling and segmentation [4], [7],
[3]. They capture local characteristics of an image by assuming
a local conditional probability distribution. When this distribu-
tion is Gaussian, the model is called Gaussian–Markov random
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fields (GMRFs) [3]. Model parameters have been proposed to be
texture features by assuming that parameter differences among
different textures facilitate texture discrimination.

Because of their success in classification, neural networks
have been applied to perform texture segmentation. Chellappa
et al. [3] employed a Hopfield-type network to maximizeapos-
teriori probability (MAP) for texture segmentation. Unlike the
approaches employing known filter forms, such as Gabor fil-
ters [1], [10], [23], [9], Jain and Karu trained a multilayer per-
ceptron (MLP) to obtain texture specific filters and to perform
segmentation [11]. The biological relevance of these studies is
limited as are the results on real texture. Eom [6] segmented tex-
ture images using a neural network whereby a two-dimensional
(2-D) moving average model is used to represent textures. Other
than the introduction of a new definition for texture features, the
study does not suggest a unique approach to the texture segmen-
tation problem. Baldi and Meir [1] proposed a network of cou-
pled oscillators, using Gabor filters as texture feature detectors,
for texture discrimination. However, their method is limited by
the use of phase oscillators, which cannot synchronize with local
coupling, a crucial ability for image segmentation (see [19] for
extended discussion on this point).

Temporal correlation [15], [14] has been proposed for
binding (grouping) features together, which is important for
image segmentation. A special form of temporal correlation
is oscillatory correlation, whereby the basic unit is a neural
oscillator [21], [19]. The discovery of synchronous oscillations
in the visual cortex [5], [8] provides neurophysiological support
to this representation. LEGION [21], [19], which is based on
the idea of oscillatory correlation, has been proposed to deal
with image segmentation. When a LEGION network runs,
oscillators corresponding to the same region tend to attain the
same phase, which is different from those of other regions.
Unlike many other image segmentation approaches, LEGION
networks represent a dynamical systems approach. Oscillators
are active agents that are driven by external stimulation and in-
fluence each other through coupling. Segmentation is achieved
in a continuous-time process that corresponds to parallel and
distributed computation. LEGION has been rigorously shown
to be capable of both rapid synchronization and desynchro-
nization, a crucial property for dynamical systems performing
image segmentation [19].

In this paper, we describe a texture-based image segmenta-
tion method combining GMRF modeling and neural oscillator
networks. Although our texture features are not GMRF model
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parameters, they still have a local dependence structure, a no-
tion essential for texture segmentation (for more details, see
Section II). The extraction of features is followed by filtering
for noise suppression. Finally, local couplings in LEGION are
defined based on filtered features. We emphasize the notion of
spatial context by allowing only a dynamic set of neighbors to
determine local couplings and reinforce desynchronization by
an additional inhibitor. In previous studies, an algorithm was de-
signed to mimic the network behavior for image segmentation
[21]. In order to assess the network dynamics more faithfully,
our study directly integrates a large number of differential equa-
tions governing the behavior of oscillators. Note that such in-
tegration is computationally very expensive when dealing with
real images typically having 128 128 pixels or more. Our in-
tegration is made feasible by the singular limit method that is
recently proposed specifically for integrating relaxation oscil-
lator networks [12], of which our network is an example. The
method integrates relaxation oscillator networks in the singular
limit (more details in Section II) and gives rise to remarkable
speedup compared to the commonly used Runge–Kutta method.

In sum, this paper proposes a set of texture features derived
from a GMRF model and, for the first time, demonstrates image
segmentation by integrating a large set of differential equations
corresponding to a biologically plausible oscillator network.

The rest of this paper is organized as follows. Section II pro-
vides the description of our method. We demonstrate its per-
formance on real images in Section III. Some comparisons are
drawn in Section IV, and we conclude in Section V.

II. PROPOSEDMODEL

We outline our method in Fig. 1. First, we extract texture fea-
tures at each site. After filtering them for noise suppression,
local couplings are determined using a similarity measure de-
fined in feature space. Finally, LEGION encodes segmented re-
gions by different oscillator phases.

A. Texture Features

The idea of GMRF in image processing is to represent local
image characteristics in terms of a local conditional probability
distribution which is assumed to be Gaussian [4]. The size and
the topology of the local dependence are designated as the order
of the model. For example, a second-order GMRF contains eight
nearest neighbors. Let denote the
set of grid points in the lattice corresponding to the
pixels in the image, and and be a set
of labels and intensities (with zero mean), respectively.
is the symmetric second-order clique neighborhood at site.
Assuming that and its neighbors have the same label,, the
conditional probability density over intensity is

(1)

Fig. 1. Flow diagram for texture segmentation, which is composed of three
stages: feature extraction, noise suppression, and LEGION network. Next to
each stage are shown the related variables.

Here is the partition function of the condi-
tional probability density, corresponding to the sum of the nu-
merator for all possible realizations of and

(2)

where is the variance and s are GMRF model parameters
of label satisfying . Assuming con-
ditional independence, the joint probability in a window

centered at site is given by

(3)

where is the partition function, represents the intensity
array in , and

(4)

Here,
is a set of shift vectors corresponding to the

second-order GMRF model.
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Among several methods for estimating GMRF model param-
eters are maximum likelihood (ML) estimation, coding scheme,
and least square estimation [3]. Our texture features are derived
from GMRF parameters estimated by the least square method,
which is easy to compute and has a reasonable efficiency [3].

We assume a second-order GMRF model where
and consider an estimation window, at site ,
which contains a single texture. The least square estimate of a
GMRF model parameter vector, , is given
by [3]

(5)

where and the
intensity variance, , within is

(6)

A general GMRF-based approach employs GMRF model pa-
rameters, s, and the variance,, as its texture feature set (see,
e.g., [3]). We assume the same model and employ the same tech-
nique to estimate the model parameters,s, and the variance,

. However, instead of directly using them as features, we uti-
lize them in the derivation of a different set of texture features,

s:

(7)

where is the th component of and
or . Due to the similarity between (6) and (7),s behave like
variances in four directions defined by the shift vectors,s. Be-
cause of directionality, s show orientation selectivity, an es-
sential property in texture segregation. Also, note that our pur-
pose is not to synthesize a texture type given its samples, but
to assess a discrimination measure among different textures. In
Fig. 2, we display both the set of our features and that of the
variance and GMRF parameters for three different texture types.
These textures are from the image shown in Fig. 2(a). First, we
determine both sets at each site using an estimation window,

. Next, we obtain the distribution of each feature
within a square area of the size 2121 placed in each textured
region. We plot the distributions (histograms) ofs and those
of s and in Fig. 2(b) and (c), respectively. Each graph con-
sists of the distributions of only one feature for all textures. For
example, the top graph in Fig. 2(b) shows the distribution of
for all textures simultaneously. Likewise, the second graph in
Fig. 2(c) depicts the distribution of for all textures.

We observe two major differences between the two sets. First,
s are more discriminatory; in this example, they result in three

nonoverlapping distributions, each corresponding to one tex-
ture type [Fig. 2(b)]. s and of the same textures, however,
are similar [Fig. 2(c)]. In particular, the distributions ofs al-
most completely coincide for the texture types in the upper right

Fig. 2. (a) Square windows, each sampling a different texture type, show the
areas where the distributions (histograms) of features are obtained. Each graph
corresponds to the distribution of one feature for different texture types. Solid,
dot, and dash-dot lines correspond to the distributions in the squares located in
the upper right, left, and lower right regions, respectively. (b) Distributions of
f s. (c) Distributions of the variance,�, and GMRF model parameters,^� s.

(solid line) and the left (dotted line) regions of the image, as seen
in the lower four graphs in Fig. 2(c). Second, when we compare
the top graph with the other four graphs in Fig. 2(c), we see
that the range of is much larger than those of s. As a re-
sult, a similarity measure defined ons and has to consider
their range differences. These differences are usually offset by
normalizing each parameter by its standard deviation. However,
this requires the prior knowledge of standard deviations fors
and for all texture types. Without normalization,would play
too big a role in the discrimination of different textures. Since

s have about the same range as shown in Fig. 2(b), our method
does not require normalization.

B. Noise Suppression

As outlined in Fig. 1, texture feature vectors,
, are filtered for noise suppression, following their
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Fig. 3. (a) Filtering a single image using an edge preserving noise suppressing
quadrant filter (EPNSQF). Five square subwindows of the same size are formed
within each filtering window which is centered at the sitei shown as a black
dot. In this case, the center location is in regionG and close to the boundary
of regionG . When processing is performed, region information is not known.
(b) Filtering multiple images with EPNSQF. Four filtering windows, each
represented by a square, are formed at the same location on four feature images.

extraction in an estimation window,. Since the feature vector
has four components, we can view them as a set of four feature
images. For filtering, we employ an extended version of an
edge preserving noise suppressing quadrant filter (EPNSQF),
which was originally proposed to process one image at a time
[20]. Filtering starts by forming five square subwindows,
on feature image , within a filtering window centered at
each site in an image, as shown in Fig. 3(a). The mean and the
variance of intensities are calculated within each subwindow on
each feature image [Fig. 3(b)]. Note that variance calculations
in filtering are different from the variance estimated in (6).
The variances of subwindows covering the same locations are
summated to obtain their total variance. The set of subwindows
having the minimum total variance is selected as the winners. As
a result, the means ofs within the winner subwindow set are
assigned to the filtered feature vector,
where , is the winner
subwindow on feature image , and is the number
of pixels in it. Similar to feature images, each component of

Fig. 4. Architecture of a LEGION network with eight-nearest neighbor
coupling. The fast and the slow inhibitors are indicated by two black circles.

filtered feature vectors for all sites forms one filtered feature
image. In EPNSQF, blurring due to averaging operation across
the region boundaries is minimized by choosing the filter
outputs as the mean intensities of only those subwindows with
the smallest variance.

C. Oscillator Networks

With filtered features, we briefly describe our LEGION net-
work for texture segmentation. The part of our network that has
been previously published is omitted here; the reader is referred
to [22] for a complete description. The network is a 2-D array
of relaxation oscillators with two global inhibitors, as shown in
Fig. 4. The limit cycle trajectory of a single relaxation oscillator
in phase space is composed of four pieces: two pieces on a slow
time scale and two pieces on a fast time scale. The two slow
pieces are called the left branch (LB) and the right branch (RB).
The lower end of LB, where an oscillator jumps from LB to
RB on the fast time scale is called the left knee (LK). Similarly,
the upper end of RB is the right knee (RK) where an oscillator
jumps from RB to LB on the fast time scale.

The coupling to each oscillator, , is a sum of four terms:
1) local excitatory coupling with the neighboring oscillators;
2) a potential term encoding the differences between noisy and
homogeneous parts; 3) fast global inhibition; and 4) slow global
inhibition

(8)

represents the Heaviside step function.
Local excitatory coupling between a filtered feature vector at

site and those at neighboring sites takes place via
dynamic connection weights

(9)
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where and are the th component of filtered feature
vectors, and , corresponding to oscillatorsand , re-
spectively. Note that a small value is always added to a denom-
inator to avoid division by zero. is a normalization factor, de-
termined by

(10)

where
number of active neighbors;

magnitude of ;
magnitude of the average feature
vector of the active oscillators in

.

(11)

Note that assesses the local feature changes independent of
their magnitudes and considers feature vectors of only active
neighbors.

The motivation behind (9)–(11) is to have a large dynamic
weight when is similar to .1 Large tends to re-
cruit oscillator to synchronize with oscillator. To further il-
lustrate local interactions, let us consider an oscillator at site
and assume that, at a particular time, only a subset of its neigh-
bors belong to an active region as depicted in Fig. 5(a).
Note that only these active neighbors contribute to the total sim-
ilarity, making the activity of oscillator depend on a neighbor-
hood that evolves dynamically. Accordingly, oscillatoris re-
cruited by the active region only if its similarity to its dynamic
neighborhood inside is larger than .

A main rationale for using dynamic neighborhood is to deal
with large variations across region boundaries. With dynamic
neighborhood, only the oscillators belonging to the currently
active region are used in the grouping process. Thus, within
a neighborhood, similarity is measured separately within each
region, producing better localized boundaries than does fixed
neighborhood. Another benefit of using dynamic neighborhood
occurs when a feature-defined boundary between two regions
is not sharp. In this case, dynamic neighborhood plays an im-
portant role in grouping as illustrated in Fig. 5(b). Take, for ex-
ample, oscillator, which is located in the left region but close
to the boundary between the two distinct regions. Let us divide

into and , as shown in the figure. Assume that
is similar to the average feature vector of its neighbors in,
but not that of . At the same time, is also similar to that
of a small group of neighbors within . A possible sce-
nario is that is active simultaneously and hence recruits
to join . But, when the oscillators in are synchronized,
is grouped (correctly) with and hence, with the left region.
When s neighbors in get synchronized with the rest of ,

as a whole will not recruit because is not similar to
the average feature vector of . Thus, will not be recruited

1Other formulations may also achieve a similar effect; our particular choice
is mainly motivated by simplicity.

Fig. 5. (a) The calculation of the total similarity for an oscillator at sitei. Gray
region represents a group of oscillators that are currently active. The square
region around the sitei is the neighborhoodN(i), and the intersection ofN(i)
with the active region is the set of oscillators forming the dynamic neighborhood
of oscillatori. Feature vectors of only this dynamic neighborhood are included
in the calculation of the similarity. (b) The effect of dynamic neighborhood on
synchronization when texture boundaries are not sharply defined.� is similar
to the average feature vector of its neighbors inR andR but not to that of
those inR , whereN(i) = R [ R andR � R .

by the right region anymore, and its neighbors in win the
competition for the oscillator. Without dynamic neighborhood,
however, oscillator groups wrongly with the right region; even
worse, it likely causes the merging of the left and the right re-
gions. Thus, dynamic neighborhood makes segmentation more
robust to local variations.

The second term of (8), where is referred to as potential,
is introduced to distinguish between relatively homogeneous re-
gions and noisy fragments [22]. Oscillators with high potentials
are calledleaders. Oscillators corresponding to a noisy fragment
will stop oscillation after a brief initial period. These oscillators
together form the background.

In addition to the synchronization within a group of oscilla-
tors that have similar features, different groups need to be desyn-
chronized to complete the segmentation. We extend the notion
of global inhibition by introducing a slow inhibitor [see (8)]
along with a fast inhibitor introduced by Terman and Wang
[19]. Slow inhibition is needed due to dynamic neighborhood.
When the oscillators in a currently active region are jumping
down to LB, it may cause other oscillators near the region to
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jump up before the entire region has jumped to LB. Again, con-
sider Fig. 5(b). It is possible that, during the process forto
jump down to LB, is the last part of to jump down. When
this happens, the similarity between and oscillator can re-
cruit to jump up to RB before the right region completes its
jumping down. This may lead to the merging of the left and the
right regions. To prevent this from happening, the slow inhibitor
rises slowly but decays quickly. Due to its slow rise, it does not
influence the process of grouping when oscillators recruit each
other to jump up. However, when an active region tracks RB on
the slow time scale, slow inhibition increases and makes it im-
possible for other oscillators that are not active to jump to RB.
This continues until the entire active region has jumped down,
and after that slow inhibition decays quickly. Formally,is de-
fined by

(12)

Here if and otherwise. The parameter
is a small positive number that characterizes relaxation oscil-

lations [19], is a parameter, and together causes slow rise.
But the decay part of the inhibitor is in fast time.

One of the challenges of simulating a LEGION network for
segmenting real images is the amount of numerical computation
needed. To reduce it, an algorithm was extracted and applied
to intensity image segmentation in a previous study [22], [24].
Although the algorithm exhibits the essential properties of the
network, it does not completely capture network dynamics, and
does not, for example, exhibit the segmentation capacity which
refers to the property that oscillatory dynamics can separate only
a few segments due to finite temporal resolution [22], [24].

To faithfully exhibit oscillatory dynamics in segmentation,
we employ the singular limit method [13] for integrating large
relaxation oscillator networks. This recently proposed method
is based on the observation that a single relaxation oscillator
travels along either LB or RB slowly, but jumps quickly between
them. It is this motion structure that is exploited in the singular
limit method. In the singular limit , the limit cycle re-
duces to two analytically solvable intervals of LB and RB [13],
and two instantaneous jumps. In a network of such oscillators,
time can be divided into consecutive intervals that are separated
by jumps. During each interval, analytic solutions are used to
march the system in large time steps. At each jumping instance,
iterative operations are executed so that appropriate phase shifts
are made and the nullclines of oscillators are updated. As ana-
lyzed in [12], the singular limit method produces remarkable
reduction of computing time compared to commonly used inte-
gration methods such as that of Runge–Kutta.

We summarize the singular limit method employed here into
the algorithm below.

0. Determine the filtered feature vectors
at all locations and form the LEGION
network accordingly.

1. Randomize the location of each oscil-
lator in phase space; both fast and slow
inhibitors are initialized accordingly.

2. Determine the time that it takes the
closest oscillator to reach either LK or
RK.

3. March oscillators, namely update their
locations in the phase space, by the
time determined in Step 2 and update the
inhibitors and potentials of the oscil-
lators accordingly.

4. Jump the oscillator(s) at the knee,
which is a leader when there is no ac-
tive oscillator, to the opposite branch
and update the inhibitors.

5. Iterate until no further jumping oc-
curs in one iteration: update each os-
cillator’s location in phase space due
to jumping in the previous iteration; if
the updated location is beyond either LK
or RK jump the oscillator to the oppo-
site branch.

6. Update the lateral potential of each
oscillator.

7. Repeat Steps 2–6 until a predetermined
simulation time is reached. Note that
the oscillators that are on RB together
form the segment of the textured region.

A similar but simpler system has been rigorously analyzed
by Terman and Wang [19], [22], [24], and the analysis ensures
both the stability of limit cycle solutions and fast rates of syn-
chronization and desynchronization. Though we have not car-
ried out a rigorous analysis of our extended LEGION system,
our extensive numerical simulations show that its behavior is
consistent with the Terman–Wang analysis.

In our LEGION network, the weights except for s are set
to , , and , respectively,
in all simulations. The corresponding neighborhoods for the first
two terms of (8) are and . We use

and for the texture model, a subwindow
of the size in the filtering window. The values
for other network parameters include ,

and . The threshold,, is the only parameter that
is adjusted for different images. In our simulations, it is always
within 2.0 and 3.6.

III. RESULTS

We demonstrate our method using a set of nine images of the
size 128 128. The set includes an indoor image from Hofmann
et al.[9], textures from Brodatz Photography Album [2] and the
MIT Vision Texture Image Archive [16].

We illustrate the segmentation process using the image shown
in Fig. 6(a), which is composed of four quadrant regions
each with a different texture. Assuming a second-order GMRF
model, we extract texture features in an estimation window,

, forming a texture feature vector at each site.
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Fig. 6. Texture feature extraction and noise suppression. (a) Input image composed of four quadrant regions each with a different texture. (b) Four feature images.
Each one is formed by one component of the texture feature vector,F = [f f f f ], for all sites. (c) Four filtered feature images, each corresponding to one
component of� = [� � � � ], are obtained after filtering the feature images in (b) for noise suppression.

Because of the image border effects, the resulting feature
images have the size of 120 120, as shown in Fig. 6(b).
Following their extraction, features are filtered in a window
of the size of 41 41 with a subwindow of the size 21
21 resulting in four filtered feature images of the size 80
80, as depicted in Fig. 6(c). Note that while small variations
within different regions are removed, region boundaries are
mostly preserved. After defining the couplings in our LEGION
network, the segmentation is performed in a network of 80
80 oscillators. Snapshots of the network activities at different
stages of the dynamic evolution are provided in Fig. 7(a). All
oscillators start on LB along which their initial locations are
determined by their initial phases. For computational efficiency,
we preset initial phases of the oscillators in accordance with
their filtered feature vectors; oscillators having similar filtered
features start at similar phases. After a few cycles following
the initialization, a group of oscillators becomes highly active
while the others keep low activity levels, as depicted in the
leftmost snapshot in Fig. 7(a), indicating the segregation of
the lower right region from the other regions in terms of
phase. A short time later, the oscillators stimulated by the
lower left region become active and segregate from the rest
as shown in the second image of Fig. 7(a). Subsequently, the
oscillators of the other two regions become active in turn,
completing the segmentation.

Once synchronized within each group and desynchronized
among different groups, oscillators in our LEGION network
keep their relative phase relations unless the input image is
changed. To provide a complete picture of dynamic evolution,
Fig. 7(b) depicts the temporal activity of each oscillator

throughout the simulation. The activities of the two inhibitors
are plotted in addition to those of the oscillators in the four
regions and in the background, which is composed of those
oscillators that become silent shortly after the network starts
running. Aligned activities of the oscillators indicate the syn-
chronization of the corresponding regions. When comparing the
top four traces, it is easy to see that the oscillators of different
regions achieve high activities at different times, namely, they
are desynchronized. Notice that the dynamic evolution of the
inhibitors is consistent with the activation of different groups
of oscillators, as depicted in the lower two traces. The fast
inhibitor has sequences of four consecutive activation traces,
each of which corresponds to the synchronization of one group
of oscillators. Similarly, the slow inhibitor shows four gradually
rising traces in concert with the activity of the fast inhibitor.
The inhibitors together assure proper desynchronization among
different groups of oscillators.

s in Fig. 6(c) do not equally distinguish different textures.
, for instance, can discriminate the upper right texture and

the lower right texture but not the upper left texture and the
upper right one. On the other hand,can distinguish the latter
pair. Since s have comparable ranges, distinct discrimination
abilities from s are readily integrated in our feature detection
method.

Five additional input images and their segmentation results
are provided in Fig. 8. Except for the threshold,, all results
are obtained with the same set of parameters as used for the
image in Fig. 6(a). Input images are composed of four quadrant
regions each with a different texture. Next to each image is its
segmentation result which is displayed as a gray level image,
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Fig. 7. The segmentation result for the input image shown in Fig. 6(a). (a)
Snapshots of the network activity. Oscillators corresponding to the lower right
region reach high activity level while the others have low levels of activity. A
short time later, the oscillators stimulated by the lower left region reach high
values. Subsequently, the oscillators representing the other two regions become
highly active in turn. (b) Temporal activities of the oscillators in the four regions
and in the background, and those of the fast and the slow inhibitors throughout
the simulation.� = 2:0.

instead of temporal activity of the network. Sites corresponding
to the same group of synchronized oscillators are colored with
the same gray level while different groups are assigned different
gray levels. Finally, sites corresponding to the oscillators in the
background are indicated as black.

In all cases of Fig. 8, our method is able to segment
four regions successfully except for some errors along the
boundaries. In Fig. 8(a), except for the lower right region and
where all regions meet, the segmentation result is very close
to the ground truth. The fact that GMRF modeling is not
very good at regular textures reveals itself for the lower right
region which is relatively more regular than the other regions.
The center area is prone to misclassification partially due to
filtering. When the filtering window for noise suppression is
in this area, it is more likely to choose a wrong subwindow
set for the output assignment than elsewhere in the image.
Another source of error is the texture extraction process. Our
method makes errors usually along the boundaries because the
estimation windows contain two different texture types, and
therefore the estimated features are different from that of either
of the two textures. Fig. 8(b) and (c) have relatively better
segmentation results than the other examples in Fig. 8. Aside

Fig. 8. (a)–(e) Segmentation results. The left image in each case is an input
image of the size128 � 128. Next to each input image is the corresponding
segmentation result, where segmented regions are assigned different gray levels.
� = 3:0; 2:9; 2:8;2:8; and3:2 for (a)–(e), respectively.

from the errors along the boundaries, segmented regions do
not have holes except for the lower right region in Fig. 8(b).
Note that even though the texture in the lower right regions
of Fig. 8(a) and (c) is the same, the segmentation results
are not the same for this texture type. This is because of
the difference in the values of. Holes in the lower right
region of Fig. 8(a), which are part of the background, do not
appear in the result of Fig. 8(c), since the threshold for the
latter image tolerates more dissimilarity. In Fig. 8(d) and (e),
similar to the previous results, errors occur along the boundaries
and the central region. In Fig. 8(d), even though all regions
seem to be uniform to the human eye, our method identifies
inhomegeneities in the lower left region. This is an example
illustrating that GMRF-based texture features do not always
agree with perception. Finally, Fig. 8(e) illustrates another
problem due to the size of the texture elements. The upper right
region in the image has diagonal line structures. Since these
structures have larger sizes than that of the estimation window,
our texture features do not capture them well, resulting in a
large undecided region (background) between the upper left
and the upper right regions. This does not present a problem
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along the boundary between the upper right and the lower
right regions since the two regions have a relatively larger
intensity difference as compared to that between the upper
left and the upper right regions.

An additional image having different boundary shape and ori-
entations among three textured regions is segmented and the re-
sult is shown in Fig. 9(a). One of the three regions is a quadrant
of a circular region (lower right corner of the image). The other
two regions are separated by a diagonal border from the upper
left corner to the lower right corner. The result is summarized
in Fig. 9(b). As compared to the ground truth, the segmentation
is successful except for the errors located nearby the area where
the three regions meet. Although our filtering windows have in-
trinsic square shapes, they are still able to locate the diagonal
and the circular borders satisfactorily.

To demonstrate the performance of our method for input im-
ages with more than four regions, an input image similar to the
ones in Figs. 6 and 8 but with an additional square region in the
center of the image is used as shown in Fig. 9(c). Unlike the
networks used for the previous images, and an addi-
tional condition is incorporated: An oscillator can respond to an
excitation only if it has more than two neighboring oscillators
active simultaneously. This condition is to avoid one pixel wide
region extensions. As it is depicted in Fig. 9(d), the five regions
are successfully segregated along with the background region.
There is an interesting “error” related to the boundary between
the upper left and the upper right regions in the segmentation re-
sult. Even though the boundary should vertically bisect the top
edge of the image according to the ground truth, our segmenta-
tion result shifts the boundary to the left. In fact, one can observe
that the segmentation result is more consistent with that of per-
ception in this particular case.

Finally, an indoor image that was used in Hofmannet al. [9]
and the resulting segmentation are shown to demonstrate the
performance of our method in the presence of both textured
and untextured regions (Fig. 10). For this purpose, a filtering
window of the size 21 21 and are used. The con-
dition where an oscillator can respond only if it has more than
two simultaneously active neighboring oscillators is also em-
ployed to eliminate possible narrow extensions of the regions.
Our method is able to segregate the couch with a rich texture,
the floor, the couch with approximately uniform luminance, the
drawer part of the bookshelf, and the books on top of it in the
upper right corner of the image. Fuzzy regions along the borders
of the different objects constitute the background. The result is
summarized in Fig. 10(b).

IV. COMPARISON WITH OTHER METHODS

A. Methodology

In their pioneering study, Gemanet al. [7] incorporated prior
knowledge about regions and boundaries into a probabilistic
framework, and segmentation is achieved by searching for MAP
solutions using simulated annealing. Hofmannet al.[9] defined
texture segmentation as a pairwise clustering problem based on
a similarity measure using Gabor filter outputs and employed a
deterministic annealing technique to solve the problem. Jain and
Farrokhnia [10] used Gabor filters as texture feature detectors

Fig. 9. The performance of our method in the presence of different boundary
shape and orientations. (a) An input image of the size 128� 128 with circular
and diagonal border orientations. (b) Its segmentation result of the size80�80,
with � = 3:0. (c) An input image of the size 128� 128 with five different
textured regions. (d) Its segmentation result of the size 80� 80, with� = 3:6.

Fig. 10. The performance of our method in the presence of both textured and
untextured regions. (a) An indoor image of the size 128� 128 (from [9]). (b)
Its segmentation result of the size 90� 90, with� = 3:0.

and a variation of the -means algorithm for clustering. How-
ever, the selection and/or the integration of filter outputs still
remain to be an unsolved problem [18]. Maliket al. [13] ad-
dressed a similar problem requiring the combination of texture
and brightness-defined contours and employed a normalized cut
algorithm for grouping.

A core issue in combining multiple features of different kind,
as in the case of incorporating a large set of filters as well as
spatial proximity, is that different features generally have dif-
ferent ranges of values. Thus, a set of features with comparable
ranges is highly desired to eliminate at least one variability in
the problem. Unlike most other approaches, our features,s,
have similar ranges. Using s not only facilitates combining
features but also strengthens the orientation selectivity in fea-
ture detection which is an important property in texture segre-
gation. In fact, our early attempts to use Gabor filters produced
unsatisfactory results partly due to large magnitude variations
in the filter outputs.

Most methods require prior training either in feature extrac-
tion or grouping. GMRF-based approaches, for instance, require
prior feature estimation for a selected set of textures and the
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tuning of additional parameters. Neural networks, such as the
one proposed by Jain and Karu [11], usually involve training ei-
ther in the filter selection stage or in the grouping process. Our
method, on the other hand, does not involve texture dependent
training in feature extraction or grouping and thus, lends itself
as an unsupervised segmentation system.

Different from other methods, which usually require prior in-
formation about the number of labels (regions), LEGION uses
a flexible way of expressing labels as phases of oscillators. The
interactions between oscillators are in terms of phase only, and
operations are formulated in terms of just one phase variable,
which implicitly expresses multiple labels. With implicit la-
beling LEGION does not entail more local operations when
more regions need to be segmented. On the other hand, more la-
bels increase local operations in methods employing explicit la-
beling, such as deterministic and stochastic relaxation methods,
because operations are formulated in terms of different labels.
Implicit labeling in LEGION comes from the fact that it per-
forms segmentation intime.

The present study differs from previous LEGION networks
for image segmentation in three main aspects. First, the inclu-
sion of dynamic neighborhood and slow inhibition significantly
expands the ability of LEGION for image segmentation in gen-
eral, and texture segmentation in particular. Second, the present
study, for the first time, integrates a large system of differen-
tial equations rather than relying on algorithmic abstractions.
Third, the extraction of texture features is a significant topic
in its own right, which has not been addressed in previous LE-
GION studies.

B. Performance

For a more comprehensive evaluation of our method, we first
consider results of other methods that are not based on neural
networks. For this purpose, we compare our results with those of
Gemanet al. [7], Jain and Farrokhnia [10], and Chellappaet al.
[3], because of their novel approaches and relatively successful
results on a common set of real textures, namely, Brodatz tex-
tures [3]. In addition, we include two more recent studies in our
comparison, since their images are quite similar to Brodatz tex-
tures [11], [9]. Note that these studies include both supervised
[7], [4], [11] and unsupervised [10], [9] segmentation methods.

The methods by Gemanet al.[7] and Hofmannet al.[9] gen-
erate segmentation results of lower resolution than what we ob-
tain. Because of the large resolution reduction, the two methods
would lose boundary accuracy. Recently, Puzicha and Buhmann
[17] improved the work of Hofmannet al. in terms of compu-
tation and resolution. After prior training and elaborate adjust-
ment of several parameters, the methods by Gemanet al. and
Chellappaet al.[3] obtain similar results compared to ours. The
results of Jain and Farrokhnia [10] would be similar to ours,
too, if the correct number of regions is provided to their method
and the set of Gabor filters used is able to capture differences in
textures forming the test images. In the study by Jain and Karu
[11], after successful training on MLP their neural network can
generate similar results compared to ours.

Among the five methods selected for comparison, Jain
and Farrokhnia [10] and Hofmannet al. [9] considered the

problem of segmenting images composed of both textured and
untextured regions. Jain and Farrokhnia pointed out that their
method can segregate textured regions from untextured regions
but cannot discriminate one untextured region from another.
Hofmann et al. assumed a preprocessing step to segregate
untextured regions from textured regions in order to process
the indoor image in Fig. 10.

In general, we observe that our results are at least as good as
those of the above methods. Like ours, they all have classifica-
tion errors around the boundaries, where decision windows in-
clude two or more regions simultaneously during segmentation.
The main advantage of the methods based on training using a
fixed set of textures is that they can produce good results on im-
ages with a large number of different textures. Since our method
starts with a weaker assumption about texture types, its perfor-
mance for such images is generally not as good. On the other
hand, our method would perform better for novel texture types.
Also, unlike other methods, our method generates a background
that is composed of unclassified sites. We claim that the inclu-
sion of a background makes our method more amenable to a real
environment, where textured and untextured regions mingle to-
gether as do uninteresting regions and interesting ones.

When only neural network methods are considered, our
method presents clearly better results. The only other method
based on coupled oscillators [1] does not have results on real
texture images. We believe that our method has substantially
expanded the applicability of neural networks in texture image
analysis.

In terms of computational complexity, for a network of the
size 80 80, our network simulation takes typically a minute
of CPU time on an HP workstation. This computational perfor-
mance is comparable with the steepest descent and Monte Carlo
algorithms used in those MAP-based approaches that reported
computing times [23].

To summarize, after carefully evaluating our method against
existing methods in terms of both methodology and perfor-
mance, we are led to the conclusion that our method offers
unique computational advantages, in addition to the fact that
our approach has a strong biological link.

V. CONCLUSION

Our method is composed of two parts, the extraction of tex-
ture features and a neural oscillator network. Both parts are
based on the notion of local computations, which is important
for parallel and distributed processing. Our method, with only
one parameter to adjust and no prior training, is able to obtain
comparable segmentation results with other successful studies.
Four main factors give rise to the performance of our method.
First, a second-order GMRF can describe the dependency of a
pixel intensity on that of its neighboring pixels. Second, our tex-
ture features seem more discriminatory than GMRF model pa-
rameters. Third, our computational framework is a biologically
plausible neural network, where a measure of similarity incor-
porates a dynamic neighborhood. Finally, a large set of differ-
ential equations are solved efficiently using the singular limit
method.
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