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Motion Segmentation Based on Motion/Brightness
Integration and Oscillatory Correlation
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Abstract—A segmentation method based on the integration
of motion and brightness is proposed for image sequences. The
method is composed of two parallel pathways that process motion
and brightness, respectively. Inspired by the visual system, the
motion pathway has two stages. The first stage estimates local
motion at locations with reliable information. The second stage
performs segmentation based on local motion estimates. In the
brightness pathway, the input scene is segmented into regions
based on brightness distribution. Subsequently, segmentation
results from the two pathways are integrated to refine motion
estimates. The final segmentation is performed in the motion
network based on refined estimates. For segmentation, locally
excitatory globally inhibitory oscillator network (LEGION)
architecture is employed whereby the oscillators corresponding to
a region of similar motion/brightness oscillate in synchrony and
different regions attain different phases. Results on synthetic and
real image sequences are provided, and comparisons with other
methods are made.

Index Terms—LEGION, motion and brightness integration, mo-
tion estimation, neural networks, oscillatory correlation.

I. INTRODUCTION

OMPUTATIONAL investigation of motion perception Fig. 1. Example illustrating the blank wall problem.
presents three major challenges. The first one is the
well-known aperture problem [1], which states the insuffiehallenges call for a selective integration of local estimates to
ciency of local motion estimation to uniquely determine theniquely identify the underlying motion. The third challenge is
true underlying motion. This suggests that the integration hbw to represent multiple motions over the same area, which is
a collection of local estimates is essential. The second omecessary in order to model motion transparency [13].
known as the blank wall problem [26], arises from homoge- Neural-network methods consider only a subset of these chal-
neous regions and is closely related to the boundary assignmentes. Most of them address the aperture problem by providing
problem [17]. When a region has relatively uniform brightnesg,scheme to selectively integrate local estimates [10], [11], [18],
local motion estimates at its inner locations are not uniquiQ], [21], [24], [25], [28], [30], [35]. Few consider the blank
This problem is illustrated in Fig. 1, where a homogeneougall problem, e.g., [11]. Similarly, motion transparency has not
circular region is moving on a homogeneous backgroungceived much attention in neural networks [28], [21]. Most of
Consistent with the stimulus, subjects perceive the circulie neural-network methods are designed to model neuronal and
region moving. Although the circular boundary and its motioperceptual behavior [11], [18], [25], [28], usually using psy-
can be extracted, whether the moving boundary belongs dieophysical stimuli, e.g., plaids and random dot images, and
the circular (inner) region or to the (outer) background isave not been tested using real motion scenes.
computationally ambiguous. A solution to this problem seemsUnlike neural-network methods, image processing algo-
to require a combination of the estimates at the inner locatiofihms can deal with real scenes [3], [5], [7], [8], [16], [26],
of a surface and those along its boundary. Hence, both of {29], [33], [34]. However, they also fail to consider all of
the three challenges simultaneously. One class of algorithms
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affine, and planar motions. When translational motion is a
sumed, cross-correlation methods, such as the one propc
by Anandan [3], can be utilized for motion estimation. Blac
and colleagues have employed robust statistics [5], [7], [8]
overcome the difficulty of using fixed neighborhoods in th
assessment of derivatives, especially in the presence of no , :
Finally, only a few image processing algorithms are biolog|.........}] w e v SR 2 PO iy o
cally relevant, and even in these algorithms the biological lir . '
is limited to local motion estimation [2], [33], [21], [26].
Except for the studies by Black and Jepson [8], Bober
al. [9], and Cheyet al. [11], image processing algorithms anc frame -1 frame

neural-network methods perform motion analysis by using onl ) o ] ) ]
. 2. Brightness within matching block&/¢ = 3 x 3) in two consecutive

motl_on cues. Nume_rous psychophysu:_al and _neurObIQIOgl es are cross-correlated by a temporal block matcher to detect a lower right
studies reveal the importance of the integration of differeRiotion of one pixel per frame.

cues, such as stereo, form, and brightness [8], [22].

The aim of our study is to find a solution to all of the thregarent velocities is achieved by sliding correlation blocks in dif-
challenges. We address these challenges by using an oscillafgpgnt quantities and different directions on the previous snap-
neural network to perform motion-based segmentation by intg;qt (frame) of the scene, as shown in Fig. 2. For a temporal
grating motion and brightness cues. Our model consists of ty@ck matcher employing two consecutive image frames, the

parallel pathways for motion and brightness, respectively. TRgrelation corresponding to displacement (r;, r;), at lo-
motion pathway has two stages. Assuming translational motiytion ¢, 7) and timet can be expressed as

the first stage estimates motion by performing adaptive tem-

poral block matching that is a variant of the Reichardt detector Ui, §, t) = Z

[23]. Unlike others, the size of our matching block is adapted at (k, DC N (i, 5)

each location to obtain a reliable estimate, or, in the absence of I(k, 1, t)

strong evidence, motion is not estimated. In the second stage, lo- : I L) — Ik —ri, L — g, £ — 1) 1)

cations are grouped based on motion similarity in a multilayer
locally excitatory globally inhibatory oscillator network (LE-wherel(4, j, t) is the brightness at locatid, ;) in framet and
GION) [31], [27]. LEGION is based on the idea of oscillatoryN(4, ) is centered at locatiofi, ;). The denominator of the
correlation [19], [27], [31], whereby phases of neural oscillatogghove expression, as in the following equations, should include
encode region labeling. Oscillators corresponding to one regiarsmall number to avoid division by zero. A large correlation,
have the same phase, which is different from those of other g1, j, ), implies a high probability of the displacement at
gions. Due to the absence or the inaccuracy of motion estimaligsation (¢, ;) and timet.
at some locations, a stationary scene analysis is performed iDne can view;, as the response of a velocity detector. A spa-
parallel with the brightness pathway, also using a LEGION natal collection of detectors tuned to the same displacement can
work. The partial solutions from the two pathways are conbe visualized as a velocity layer. Different displacements cor-
bined in the integration stage to refine motion estimates, bagedpond to different layers. Detectors from different layers cor-
on which the final result is obtained in the motion network. responding to the same location form a velocity column. When
The following section describes the two building blocks ¢4 location has a single motion, only the corresponding detector
our model. Next is its detailed presentation. Subsequently, figits velocity column should have a substantial response. For
performance of our model is demonstrated on both synthetidocation in a region producing motion transparency, multiple
and real sequences. Finally, comparisons with other methods@seectors should attain high responses in the column at that lo-
made and conclusions are drawn. cation.

B. LEGION

LEGION s based on the idea of oscillatory correlation, where
the phases of the neural oscillators encode the grouping of corre-
The Reichardt bilocal correlator [23] is composed of tw@ponding locations. The building block of a LEGION network is

symmetric parts: rightward and leftward motion detectors. Thesingle relaxation oscillatof;, 7), defined as a feedback loop

rightward motion of a moving dot is detected by correlatingetween an excitatory unit;; and an inhibitory unity;; [31],
brightness at location and timeé € Ai, ¢ — A¢) with that of [27]

(¢, t). Here, the model implicitly assumes the speed\of At.

[Il. METHOD COMPONENTS

A. Temporal Block Matcher

Similarly, the leftward motion detector correlates the brightness Tij =35 — a:f’j +2—y; + L+ 5 +p (2a)
at i + Ai, t — At) and ¢, ¢). Depending on the sign of the dif- ) Tij
ference between the right and the left correlation, the motion of Yij =¢ <04 <1 + tanh <7>> - yu) (2b)

the dot is determined to be rightward or leftward.
A temporal block matcher [3] compares brightness withiHere, I;; represents external stimulation to oscillater 7),
a block, Np, instead of a single location. Selectivity to dif-S;; denotes overall coupling, andis the variance of Gaussian
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A (RB). When it is on RB, the oscillator is called active. After
20 traveling along RB, the oscillator reaches the right knee (RK),
dy/dt =0 where it jumps back to LB. This completes a limit cycle. The
s temporal trace of several limit cycles is depicted in Fig. 3{c).
) is used to control the ratio of the times that an oscillator spends
N on RB or on LB. The larger isy, the shorter is the time the
0 vdx/dt = 0 oscillator spends on RB. Finallg defines the steepness of the
y . _RK B sigmoid function and is chosen to be small.
> / N LK 7 “x / S;; includes a variable called lateral potential and coupling
LB ———e—==" > . from neighboring oscillators and a global inhibitor
0 \\
| Siy= Y.  WijuH(zu) + W,H(pi; - 0.5)
R 1 0 I 2 MENG, 4)
X — WZH(Z — 05) (3)
B where
20 Wi; r  connection weight from oscillataf, {) to oscil-
lator (7, j);
15 H heaviside step function;
0 Wy weight for the lateral potential,
. W, weight for the the global inhibition;
y st N local coupling neighborhood (e.g. four nearest
QISR - neighbors).
0 R — et The lateral potential is introduced for each oscillator to distin-
guish a homogeneous region from a noisy one [32]
s stable fixed point :
10 -1 0 I 2 pii=0—p)H | D H(ww) =6, —epi;  (4)
X ke N, (3, 5)
¢ where N, is the potential neighborhood, which is generally
RB — larger than. The potential of an oscillator is initially set high
RK but continuously decays. When an oscillator is active and has a
X LK number of active neighbors greater thgnits potential rises to
one. Oscillators that maintain high potentials are referred to as
LB leaders while others are called followers. Due to the potential

P term, only a sizable group that contains a leader can form a

segment. Small and noisy groups cannot produce leaders and

Fig. 3. Phase plane diagram of a single oscillator with = 0. The stop oscillating after a short beginning period. Such oscillators
z-nullcline is the dotted line and thg-nulicline is the solid line. (a) When form the network background, which should be d|st|ngu|shed

the nuliclines intersect only along the middle branch of theulicline, the . .
oscillator produces a limit cycle, indicated as a thick solid line. The parametél’?m the background part of an image (referred to as image
ares = 0.005, « = 10.0, 3 = 0.02, I,; = 2.0, andp = 0.02. (b) When background later).

the nullclines in addition intersect along the left branch oftheulicline, the Whether an oscillator is active at a particular time also de-

illat h table fixed point and d t oscillate. All t - N S i
oscria o approachies & siavle hred point ant cos ot oscria‘e paramepe)%snds on the activity of the global inhibitar, which is defined

are the same as in (a) except fhr = —1.0. (c) Temporal activity of an
oscillator that oscillates. Salient portions of a limit cycle are labeled for or’@y
period.
, _ o p=H|Y H(zw)-1| -2 (5)
noise. The parameteris chosen to be a small positive number m
so that (2) defines a relaxation oscillator with two time scales.
The z-nullcline (z = 0) of (2) is a cubic curve while the When no oscillator is active; decays to zero; otherwise it

y-nullcline (z = 0) is a sigmoid function, as shown in Fig. 3.rises to one. A leader can jump to RB when the inhibitor is
Whenl;; > 0 andS;; = 0, the two nullclines intersect alongnot triggered. A follower, however, can be active only when
the middle branch of the cubic and the system is oscillatoityhas strong excitatory couplings with active oscillators in
[Fig. 3(a)]. Otherwise f;; < 0 andS,; = 0), the nullclines its neighborhood through the first term in the right-hand-side
intersect at a stable fixed point along the left branch of the culm€ (3). A common form of the LEGION network used for
and the system does not oscillate [Fig. 3(b)]. In the formsegmentation is a two-dimensional (2-D) array of oscillators
case, oscillatofs, j) travels along the left branch (LB) until and a global inhibitor, where each oscillator corresponds to one
reaching the left knee (LK) and then jumps to the right brandbcation in an input scene [see Fig. 6(b)].
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Fig. 4. Flow diagram of the proposed model. Processing starts from the top and proceeds downward. Following the analyzes in the motion andsthe brightne
pathways, results are combined in the integration stage to refine motion estimates. Finally, segmentation is performed in the motion networkfoestd o
motion estimates.

As discussed previously [27], [32], [36], there is a large anehted by this, our method has two stages for motion estimation
robust range to choose the values of intrinsic LEGION pararand grouping, respectively.
eters:«, 3, €, and p. As specified in Section IV-A, an algo- Spatial Pooling: Before we employ our adaptive temporal
rithmic version of LEGION is used in our study to save comblock matcher to estimate local motion, we choose a matching
puting time; the above four parameters are absorbed in the labck, namely, a pooling neighborhood, at each location using
gorithmic version. a reliability criterion. This criterion serves two purposes. First,
locations with strong motion evidence are identified. Second,
pooling neighborhoodsyg, at these locations are adaptively
IIl. M ODEL DESCRIPTION selected to produce more accurate estimates. Similar to the mea-

The two parallel pathways in our model are shown in Fig. ure used by Iraret al. [16], we calculate a mobility value at

One of the pathways, contained in a dash box, performs moti®ach location and time;, j, ¢)
analysis. The other pathway segments the scene based on bright-

ness distribution. Combining the results from the pathways, the Z Ik, 1, £) — Ik, 1, £ — 1)
integration stage refines initial motion estimates. The final seg- (ko DE Nag i ) 7 Y

mentation is performed in the motion network based on refinedM (i, j, t) = — M (6)
motion estimates. S Ik 1)

(k, )€ N (4, §)

A. Motion Pathway where Ny, is a mobility neighborhood. Our mobility analysis

There is strong evidence from both psychology and neurcaptures temporal brightness changes in a local neighborhood.
physiology supporting at least two separate stages of motiNote that changes are normalized by summated local brightness.
processing in the visual system (see [25] for a review). Motk large value ofM at a location indicates a high probability of
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(@) (b)

Fig. 5. Adaptive spatial pooling. (a) Middle frame of an input sequence. (b) Mobility image for the frame in (a), where intensities indicate ffendorges
mobility values. The initial and the final pooling blocks are depicted as white rectangles for a location near the boundary (white dot). Noteidabthbeaod
extends along the boundary to encompass locations with large mobility values.

motion presence at that location. Otherwise, the presence of mbdisplacements varying from R to R in the¢- andj-direc-
tion is uncertain since noise could also cause a temporal brigtién. Our additional modification is to match not onlz's but
ness change. Thus, we do not obtain motion estimates at loakso local spatial correlation surfaces to make estimation more
tions with small mobility values. robust against temporal illumination variations. Consider a lo-
Initially, a small neighborhood 5 is assumed to be sufficient cation, P, and its neighborsg’s in a neighborhood centered
for spatial pooling. When the sum of the mobility valuds and  at P, Ng(P). CorrespondinglyP and@’s have pooling neigh-
the average mobility/,, over Nz are large enough, matching isborhoodsNg(P) and Ng(Q))'s. A spatial correlation surface
performed. Whe/, or M, is small, Ny is expanded in the di- (SCS), which has the size dfs, is obtained af* by matching
rection that maximally increaséd,. The expansion continues Ng(FP) and Ng(@)’'s. Note that this operation is exactly the
until either bothM, and M, are sufficiently large or the size same as in (1). Instead of a neighborhood in the next frame, a
of Np reaches an upper limit. In the latter case, estimation ieighborhood in the same frame but centered at a neighboring
not performed. In the former casA/s is used for estimation. location is matched wittv 5 (P). SCS’s at all reliable locations
Fig. 5 illustrates the adaptive changes\ig for an image com- including those in the neighboring frames are obtained similarly.
posed of a rectangular region and a background, both homo§ebsequently, both pooling neighborhoodg;, and SCS'’s of
neous [Fig. 5(a)]. Among the three consecutive input framesize Ns are matched across time for different displacements to
only the middle one is depicted. Fig. 5(b) shows the mobilitybtain the temporal correlation surface at a location. Using (7),
image, where the intensity at a location indicates its mobilitpatching two SCS'’s results ig.(¢, j, ¢) for displacement at
value. In this image, initial and findVg's are depicted at a lo- (¢, 4, t). Consequently, the temporal correlatior(aty, t) for
cation near one boundary. Initially}z = 5x 5 and the stopping displacement: is
condition is not met. Since boundaries and surface markings of
moving regions have Iarge_moblllty _valué@,_; usua_llly extends Vi(i, i, £) = wn(d, J, D)enlés 4, 1) ®)
toward them. For the location considered in the imagg,ex-

pands to cover a considerable portion of the boundary. Whegjge, gisplacement resulting in the maximum temporal correla-
location does not have large mobility values inNs;, €.9. @ i, ot alocation yields the local motion estimate at that location.
location away from moving boundaries in Fig. 5(BY, or M, Network: Under certain circumstances, a region can be per-
|s_small. In th'_s caseVp wil reach the upper limit gnd_m_otlon ceived to have multiple (usually two) different motions simul-
will not be estimated at that location. Such a location is 'nfe"‘?gneously, a phenomenon known as motion transparency [13].
to be L_mrellab_le. i ) i In order to allow for multiple overlapping motions, we adopt

_ Motion Estimation: Having selectedVp at reliable loca- 5 1 iilayer structure in the velocity representation where a
tions, we apply an adaptive temporal block matcher to thréep | £g1oN network corresponds to each layer as depicted in
consecutive frames, _mstead O.f tW.O’ to Improve accuracy. Vl\f?g 6(a). Oscillators at the same location in all layers form a ve-
assume only tra_mslatlonal motion in our method. The C()”e'ﬁ')'city column and correspond to a single location in a scene. The
tion corresponding to displacements coupling weight between two oscillators, j) and(k, 7), on a
velocity layerr is determined based on their temporal correla-
tion for displacement. Dropping timet from the expressions
wherez, (i, j, t) ands,.(i, j, t+1) are the correlations &t, j) for convenience, the coupling weight is given by
between the image framestand¢ — 1 and those at+ 1 andt¢,

as given in (1). We have a total numberlof= (2R + 1)? dif- Vi, §) + Vi(k, D)
ferent displacements, hence velocities, corresponding to a set W iju = [Vi(iy 3) — Vielk, D]

U‘I‘(i7 ]’7 t) = i}r('[:7 ]’7 t) + i}r('[:7 ]’7 t + 1) (7)

9)
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A inhibitory interaction within each column, only the oscillator
with the largest correlation becomes a winner. If such a winner
also has sufficiently high mobility/;; > 0.25, and potential,
ganea|  pri; > 0.5, itbecomes a leader and forms a segment. A leader
nooene recruits oscillators on its layer through local couplings. As in
the original LEGION network [31], [27], [32], these recruited
oscillators synchronize. Because of the global inhibition across

om
oo
oo
oo
0ad

OomOOO
/ E E § § all layers, different segments desynchronize.
! onooo The complete activity of all layers can be captured in an
output network where each unit summates the activity of the
py— entire corresponding velocity column. Since at most one oscil-
: poooo lator is active in a column at any time, the output network dis-
coono plays segments without ambiguity.

Note that the selection of a single leader within each column
does not prevent the network from representing multiple mo-
tions at a location. An oscillator can become active if it is a
leader or a follower that is recruited by a leader on its layer.
Since there can be several followers in a velocity column in ad-
dition to a leader, more than one oscillator at a single location
can become active, thus representing different motions. This is
key to our representation of motion transparency.

oooon
coooo
coROo0O
oocooo
ROOO00

B. Brightness Pathway

In the brightness pathway, the middle frame of the sequence
analyzed in the motion pathway is processed in terms of bright-
ness. In this pathway, a 2-D LEGION network is employed as
depicted in Fig. 6(b), where each oscillator corresponds to a
single location in the input scene. Assuming that each region
2 Z. has similar brightness, the coupling weight between two oscil-
lators at two neighboring location&, j) and(k, 1), is defined

as
Fig. 6. Neural-network architecture of our model. Small circles represent I, )+ 1k, 1)
oscillators and the big black circle the global inhibitor. The global inhibitor is Wij, kl = |I(L J) — I(k l)| . (11)
? ?

connected to all oscillators in each pathway. (a) Multilayer motion network

where each velocity layer corresponds to a LEGION network. Each layer4 . . _ . .
tuned to a particular velocity indicated by a filled square in a small rectangulﬁjus’ locations that have relatlvely similar brlghtness establisha

grid representing the set of velocities varying frerR to R in the:- and  Strong coupling weight. We employ the network model given in
“ihin_ aach velocly fayer. Vertical ineracions. arc '“S?Qﬁﬁdoﬁ?yr'zfi?t?'nyg wheres;, is replaced byi (i, —fs) andf; is a threshold.

oscillator. (b) Brightness network. Each oscillator is locally coupled with it _'m"ar to _the motion network, a strongly coupled ng’Up of OS'_
four nearest neighbors. cillators with at least one leader becomes synchronized. Oscil-

lators corresponding to different regions become active at dif-
When oscillators have similar correlations for a particular digerent times (desynchronization). Textured regions, on the other
placement, they are strongly coupled in the corresponding V&nd, tend not to produce leaders or segments, and thus they are
locity layer. At locations without estimates, couplings are set thistinguished from homogeneous ones. This property has a sig-

zero. We replacé;; in (3) by S ;; = H(S, ;; — 6x) where nificant role in the subsequent integration stage.

6, is a threshold and )
C. Integration Stage

Srij = Z Wi ij, ki H (z) — W2H(z = 0.5) So far, the motion and the brightness pathways perform seg-
ke N(E, 9) mentation independently. Relatively homogeneous regions have
+ W,H (py,ij — 0.5)H(M;; — 0.25) low mobility values in their interior areas and thus, only mo-

. tion estimates along their moving boundaries are obtained. Con-
versely, textured regions, due to their high brightness variations,
H Z H(Ve,ij = Vai) = L - (10) generglly cannot fogrm their own segmegnts agrl]d thus stay in the
=t network background. The integration stage combines the partial
Note that the major change is the two multiplicative terms iresults from the two pathways to yield more accurate results.
the potential part, which extends the standard definition of@ur integration stage has two steps, hamely, unreliable estimate
leader. The first one ensures that only locations with large melimination and motion filling-in.
bility values can become leaders. The second one allows foiElimination of Unreliable EstimatesUnreliable estimates
just a single leader within each velocity column. Due to thare eliminated based on the brightness analysis. The mobility
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regions cannot produce brightness segments, filling-in does not
| take place in these regions. On the other hand, locations within
| these regions should have reliable motion estimates.

> +—? To be consistent with the perception of homogeneous image
| backgrounds, an additional constraint is incorporated into our
° | model. Depending on moving regions, there can be locations
N on a homogeneous background with induced motion estimates.
region A \ region B As shown in Fig. 9, which is discussed later in detail, locations

in the image background along the boundary of a texture re-
gion are assigned incorrect induced estimates. With the elimi-
nation process, these estimates are removed. When induced mo-
tions are caused by the motion of a homogeneous region oc-
Fig. 7. Schematic illustration of induced motion. Regardless of the motion 6fuding the image background (cf. Fig. 1), our method does
region B, locationP possesses an erroneously induced motion estimate duertot eliminate them. Consequently, the motion of the occluding
the texture in moving regiod and the homogeneity in regiof. region may incorrectly become the dominant motion for the
image background. In other words, the image background ap-

analysis in the motion pathway is only effective in identifyingpears to move with the occluding region. However, a homoge-
inner locations of homogeneous regions. Locations along nfggous background extending beyond the image border should
tion boundaries are assumed to be reliable due to their laRfeperceived as stationary. In order to simulate this perception,
mobility values. A typical case where this assumption does nd¢ introduce, for homogeneous regions along the image border,
hold isillustrated in Fig. 7. Assume that regidris textured and Z€ro-velocity estimates at these locations that do not have esti-
moves in the right direction. Without loss of generality, a neighnates. As a result, when an image background is homogeneous,
boring regionB is assumed to be homogeneous and Stationaiylarge portion of its area takes on the zero velocity and hence,
Due to the texture, the locations acros$iave reliable motion the motion distribution of the image background is biased to-
estimates. The inner locations Bf on the other hand, do notward the zero velocity.
have estimates since they have low mobility values. However,Final Output: Following the integration stage, couplings in
location P in B obtains an estimate because its pooling neigke motion network are updated based on the refined estimates
borhood, indicated by the small square in the figure, partial3nd the final segmentation result is obtained. Note that the time
covers an area oft, which has |arge mob|||ty values. Becausécaje in the evolution of networks is faster than that of an input
of the motion inA and the homogeneity i, an induced mo- Scene. The analysis described so far takes place in the network
tion similar to that ofA is estimated aP. Other locations similar time, while time (frame} with respect to the input sequence
to P are also assigned an induced motion. Note that these etays the same.
mates are erroneous. The same analysis applies Whaaves
but with a different velocity than that of. IV. RESULTS
Based on the above analysis, we propose an elimination rul .
to remove these erroneousyestimateps. I?:irst, the number of oe[he performance of our m(_ethod 'S _demonstrated on two sets
cillators belonging to the network background of the brightneg Image sequences. The f-|rst se_t mcludes synthetic Scenes
network is obtained for each motion segment. When they oghere we lllustrate our design pr.|n0|ples. The s.econd. se.t IS
cupy more than half of a motion segment, we consider that tI%‘eCOI.l(.aCtlon of real scenes acquired under various viewing
: . conditions.
segment belongs to a moving textured surface. The locatiohs
that are in this motion segment but also belong to a brightness
segment are inferred to have induced motion estimates and tHtis Parameter Values
their estimates are eliminated. Otherwise, these estimates staye chooseN,; = Ns = 5 x 5 which is also the initial
intact. In other words, when a homogeneous region is occludgde of Nz. The thresholds foi/,, M,,, and the maximum one-
by a moving textured surface, our method eliminates the eslimensional (1-D) length foN s aref, = 10,60, = 0.1, ¢,,, =
mates in the homogeneous region along the boundary of the téx; respectively. These thresholds are selected to maximize the
tured surface. size of Ng while allowing it to have locations only from a single
Motion Filling-In: Recall that there is a winner within eachmoving surface.
velocity column. Following the removal of unreliable estimates, The selection of the number of velocity layefs= (2R +
the distribution of winner velocities within each brightness sedy?, is not critical as long as the maximum speed in motion
ment is obtained in a 2-D form. The dimensions correspond $oenes can be accommodated. We emplay 4 for synthetic,
translational velocity components in theandj-direction. The R = 10 for real scenes, corresponding to a set of displacements
dominant motion of each brightness segment is identified bgrying from—4to +4 and from—10 to +10 in thei- and;-di-
finding the maximum of the motion distribution. Subsequentlygection, respectively. Images are of size 20000 for the first
locations within each brightness segment are filled in with thiget and 160< 120 for the second set, except for the first scene of
dominant motion. As a result of filling in, estimates becomthe second set, which is of size 120L70. Due to image border
available for all locations in homogeneous moving regions. Theffects, output images are smaller. In order to minimize these ef-
represents our solution to the blank wall problem. Since textuiects, we simplify our estimation method for the locations near

P
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the image border. We obtain estimates by using only a fixed sj A
tial neighborhoodNg = 5 x 5, when these locations have ar
average mobility larger thafy, = 0.1. Thus, the size of output
images is limited only by the maximum speed considered. T
larger the maximum speed is considered, the wider is the bor
band without estimates [see Fig. 10(d)]. As a result, we obte
output images of size 92 92, 140x 100, and 100 150 for
the above three different image sizes, respectively. Because 1

are not aware of psychophysical conditions under which a t B
mogeneous background should be perceived as stationary,
empirically assign the zero velocity to locations in all homoge
neous regions if these locations lack estimates and are withi
distance ofR + 10 pixels from the image border.

In the simulation of LEGION networks, an algorithmic ver-
sion is employed for computational efficiency where the parar
eterse, p, a, and g are incorporated into the algorithm (se¢
[32] for details). The weights except fa¥;; :'s in (3) are
fixed. We choosg(w) € NG, j) Wij e H (xr)+1i; > W, and
W, < W, to achieve proper synchronization and desynchr
nization. The first condition, which also appliesid, ;; 'S,
implies that an oscillator receiving strong local excitation ca
overcome the global inhibition. The second condition ensur
that no leader of a different segment can jump to RB whe
there are oscillators on RB. Specifically, we Usg = —0.25,
W, = 0.74, andW_ = 1.0 in all simulations. Regarding var-
ious neighborhoods in our method, the smalleis, the more
accurate is the localization of region boundaries but the mc
sensitive is the network to image noise. The smaNeris, the
smaller is the size of regions that can be segmented. In our s
ulations,N = 3 x 3, N, = 7 x 7,andf, = 0.75 x ||N,| =
0.75 x 49 = 36.75 (0.75 indicates 75%). Finally, for different
scenes, we adjush;, 1 andé,;, », the thresholds for the initial
and the final segmentation in the motion network, respectively,
andfg, that of the brightness network. It is desirable thagt, Fig. 8. Application of the proposed method to a synthetic image sequence,
and; initially do not group locations with significantly dif- yC5E e SR R R S e (O motion eetimates and the.
ferent motion and brightness. Since refined estimates are M@igmentation result in the motion pathway. (d) Segmentation result in the
accurate, the selection éme is relatively easy. We considerbrightness pathway. (e) Refined motion estimates and the final segmentation
three frames for each scene since our temporal cross-corr&fadit- Herefu, 1 = 01,2 = 05 = 10.
tion requires only three snapshots.

t +1

In parallel, the brightness pathway segments the middle frame
B. Synthetic Image Sequences of the input sequence as shov_vn in Fig. 8(d). The regions are
accurately segmented in the brightness network. Because of the
We illustrate the segmentation process on three synthegimpty network background in the brightness pathway, the first
image sequences. The first sequence is shown in Fig. sp of the integration stage does not modify any estimate. After
where two homogeneous rectangular regions are moving iocluding zero velocity estimates in the image background
a homogeneous background. As depicted in Fig. 8(a), thng the image border, motion distributions within brightness
larger rectangle is moving two pixels per frame rightward argbgments are obtained in the second step of the integration. Due
the smaller one is moving three pixels per frame downwart this bias, the dominant motion in the segment corresponding
occluding the former. First, mobility values at all locations ar® the image background is identified to be of zero velocity,
determined in the motion pathway and the result is depictedhich, in turn, is assigned to all locations in the image back-
in Fig. 8(b). Following the selection aNg's, estimates are ground. Similarly, the dominant motions of rectangular regions
obtained for reliable locations and are depicted as a needle determined and spread over all locations in these regions.
diagram in the left image of Fig. 8(c). For better visualizationfhe refined estimates over the entire scene are provided in
estimates in needle diagrams are displayed after a spatiad left image of Fig. 8(e). Subsequently, the motion network
subsampling by a factor of three in all results. Based on tleerrectly segments the scene based on the refined estimates
initial estimates, the motion network segments the scene ir® depicted in the right image of Fig. 8(e). Note that, without
regions as shown in the right image of Fig. 8(c). Due to thtbe zero-velocity bias, the image background would not have
missing and induced estimates, the segmentation result is thed. zero velocity. Also, incorrectly induced motions due to
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Fig. 10. Application of the proposed method to a synthetic scene, illustrating
motion transparency. (a) Schematic diagram of the input, where two oppositely
moving rectangles partially overlap. (b) Middle frame of the input sequence.
(c)—(d) Final segmentation result in the motion network. The overlapping part
is grouped with both rectangles. Hefa; 1 = 61,2 = 20 andés = 50.

network background of the brightness network is obtained for

Fig. 9. Application of the proposed method to a synthetic image sequengea motion segment Corresponding to the rectangle Since they
illustrating the elimination of erroneously induced motion estimates. (a) Three )

consecutive frames of the input sequence. (b) Mobility image. (c) Inii&CCUPY the majority of the segment, the estimates for the loca-
motion estimates and the segmentation result in the motion pathway. {idns in this segment that are part of the image background are

Segmentation result in the brightness pathway. (e) Refined estimates a”déﬂ?ninated and the motion distribution within the brightness
final segmentation result wheée,;, 1 = 6,2 = 05 = 10. ’ . . . .
segment corresponding to the image background is obtained.
Since the induced motions are eliminated, the injected zero
rectangular regions would spread over the image backgrourélocity becomes the dominant motion and fills in the entire
causing the large rectangle to merge with the background. Thisage background. The final result is depicted in the left image
sequence illustrates how the brightness pathway is utilizeddpFig. 9(e). Based on the refined estimates, the rectangular
address the blank wall problem. region and the background are accurately segregated as shown
In the second sequence, a textured rectangular regionbysthe right image of Fig. 9(e). This scene illustrates how
moving two pixels per frame rightward on a homogeneouw/o partial segmentation results from the two pathways are
background as depicted in Fig. 9(a). Locations in the rectanguiiaregrated to obtain accurate segmentation.
region are determined to have large mobility values as shownln the last synthetic scene shown in Fig. 10, two random-dot
in Fig. 9(b). Motion is estimated at all locations with larggectangular regions are horizontally moving two pixels per
mobility values. Since the locations in the image backgrourichme in the opposite directions on a background of random-dot
along the boundary of the rectangular region also have langeise. During this motion sequence, there is an overlapping
mobility values, they are assigned incorrect motions (cf. Fig. @rea where both motions are simultaneously perceived [13],
Due to motion similarity, the motion segment corresponding tehich indicates motion transparency. A schematic diagram
the rectangular region includes these background locationsofghe input scene and the middle frame of the sequence are
shown in the right image of Fig. 9(c). Unlike the scene in Fig. §rovided in Fig. 10(a) and (b), respectively. Note that the
the brightness pathway is only able to group the locations liactangles cannot be segregated using a stationary brightness
the image background. Since the oscillators correspondingaiealysis. Thus, the initial estimates are not modified in the
the texture region do not have strong couplings, they form tir@egration stage. Our method obtains two rectangular segments
background in the brightness network indicated as the darkthe corresponding layers. As explained in the dynamics of
region in Fig. 9(d). Next, the number of the oscillators in ththe motion network, leaders in nonoverlapping areas of the
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A B a brightness segment, the estimates at the occluded locations of
the canal wall are identified to be incorrect and eliminated in
the integration stage. These locations, in turn, are assigned the
dominant motion of their brightness segment [Fig. 11(c)]. Note
that some locations near the image border do not have estimates
since their average mobility is small. Despite the zero-velocity
bias, none of the homogeneous regions in the image back-
ground, such as the sky in the upper right corner, assume the
zero velocity; their motions are correctly estimated. Finally,
based on the refined estimates, the rider with his motorcycle is
accurately segmented from the image background as depicted
in Fig. 11(d). As in the segment of the rider and his motorcycle,
regions with different texture and brightness are grouped into a
single segment due to common motion. Although some regions
have similar brightness, e.g., the jacket of the rider and the
trees, they are separated due to different motion. The boundary
between the rider segment and the background segment in the
right part of the scene is not as well defined, due to motion
blurring and the inhomogeneous image background.

Fig. 12 shows the results for the four remaining real scenes.
Only the middle frame of each input sequence, the refined esti-
mates, and the final segmentation result are depicted. In the first
scene, an airplane is flying diagonally in the lower left direc-
tion on the relatively homogeneous sky and there is a mountain
in the lower right corner. The mountain appears to be moving
rightward due to the camera motion. Following the initial seg-
mentation in the two pathways, the integration stage refines the
estimates based on which the three segments, namely, the air-
plane, the mountain, and the sky are segmented. Without the in-
tegration stage, the airplane segment would have a round shape
due to erroneously induced estimates. Because of the zero-ve-
locity bias, the sky segment is stationary, consistent with its per-
ceived motion. As in the case of the sky and the middle part of

Fig. 11. A real scene sequence. (a) Middle frame of the input sequence. ) mountain, when regions have different motions, brightness

Initial motion estimates. (c) Refined motion estimates after integrating tl S : :
results from the two pathways. (d) Final segmentation. Hexe,, = 20, Em”amy does not lead to incorrect grouping.

B2 = 10,andfp = 50. In the second scene depicted in the second row of Fig. 12, as
a result of the camera motion, a woman and a big and a small
. . . satellite dishes all have different motions due to their depth dif-
two rectangles recruit the locations in each area as well BPences. Alona the boundary between the woman's hat and the
the overlapping area. Thus, the overlapping area is correclg?%] S gthe ybe . o
; ; dish, there are induced motions, which are not eliminated
grouped with both rectangles [Fig. 10(c) and (d)]. : o . ’ .
in the first integration step. However, the brightness pathway
accurately segments the two regions. Following that, the domi-
C. Real Image Sequences nant motion in each segment fills in not only the inner locations
The second set of results illustrates the performance of dat also the locations near the common boundary. Due to the
method on real scenes. The first sequence is from a scezxgo-velocity bias, the homogenous image background is cor-
where a motorcycle rider jumps to a (dry) canal with higectly analyzed. The woman, the dishes, and the sky are the re-
motorcycle while the camera is tracking him. This is shown isulting segments.
Fig. 11(a). Here, only the middle frame of the input sequenceln the third scene, the camera tracks a person falling off a
is depicted. Due to the camera motion, the rider and hiem. Due to the camera motion, the dam has an upward motion
motorcycle have a downward motion with a small rightwardhile the person appears to be stationary. Since the person oc-
component and the image background has an upright diagoaabies a relatively small area in the scene, spatial pooling within
motion. Besides the mobility analysis and estimation in threefixed neighborhood would fail to detect the person. However,
motion pathway [Fig. 11(b)], the scene is segmented intmr adaptive pooling scheme is well suited to the task. The in-
regions in the brightness pathway. Note that locations on ttegration stage eliminates the induced motions at the locations
canal wall (lighter homogeneous region) occluded by the lowalong the inner boundary of the person and segregates the person
part of the motorcycle have induced motion estimates. In tHimm the image background. Consistent with perception, the sky
particular area, since the motorcycle is part of the netwonkthe upper left corner is grouped with the dam despite the zero
background in the brightness network and the canal wall formaslocity bias.
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Fig. 12. Additional real scene sequences. (a) Middle frame of the input sequences. (b) Final motion estimates after integrating the resuli®fpatnteyts.
(c) Final segmentations. Here, the corresponding threshilgs (614, 2, 8 ) for each sequence are (20, 2, 20), (20, 10, 10), (10, 2, 10), and (10, 4, 30), respectively.

Inthe lastscene of Fig. 12, the cameratracks a helicopter flyipgrted by neurobiological findings of coherent oscillations in
inthe cloudy sky overaport. Duetothe cameramotion, the cloudlse visual cortex. Taken together, our model is the only one,
the mountain, the port, and the lighthouse appear to move rigtd-our knowledge, that addresses simultaneously the three chal-
ward while the helicopter appears relatively stationary. As showanges described in Section I.
inthe middleimage, the helicopteris detectedtobe approximatelySince only image processing algorithms are tested on real mo-
stationary while the other regions are estimated to have a rigtibn scenes, we compare in the following our method against
ward motion. The skyis assignedthe zero velocity. The helicoptaese algorithms. To focus our comparison, we choose three
segments from the remaining regions which, despite their simil@presentative algorithms proposed by Horn and Schunck [15],
motion, result in five different segments. Note that our methoshandan [3], and Black [5], [7], [8], respectively, and the scene
does not group locations with similar motion when they belorgjven in Fig. 11(a). We use the implementation of the first two

to spatially discontiguous regions. algorithms by Barron [4] available online and the last one by
Black [6] also available online. The algorithm by Horn and
V. COMPARISON Schunck is a pioneering study on motion analysis. The study

by Anandan, like ours, employs a temporal block matcher. Fi-
Our method differs from others in several aspects. First, loagally, Black’s algorithm represents recent approaches that use
motion is estimated in a pooling neighborhood that expandsbust statistics. Using the parameter sets suggested in their im-
adaptively, conditioned on a mobility analysis. Second, motiggiementations, we employ eleven, two, and three consecutive
analysis and brightness analysis are integrated in a unique wegmes for the three algorithms, respectively.
Third, the building architecture of our model, LEGION, per- The results of the algorithms of Horn and Schunck, Anandan,
forms flexible grouping and segmentation in time, and is supnd Black for the scene in Fig. 11(a) are given in Fig. 13(a)—(c),
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A B By comparing Figs. 11 and 13, itis clear that the performance
of our model is highly competitive. Except for the limitation that
our model does not produce motion estimates near the image
border while others do, our neural-network model yields the
most accurate motion boundaries.

VI. CONCLUDING REMARKS

A. Contributions

Our proposed method is the first study that simultaneously
addresses the aperture, blank wall, and motion transparency
problems. The method is composed of two biologically plau-
sible building blocks, i.e., an adaptive temporal block matcher
and LEGION. The former is based on Reichardt's classic
study of the fly visual system [23]. We have extended common
versions of the temporal block matcher by using adaptive
pooling and spatial correlation surfaces.

We have employed the LEGION architecture for mo-
tion-based segmentation, and extended the one-layer version to
a multilayer LEGION network that allows for multiple motions
at the same location, and thus naturally represents motion
transparency. LEGION perform segmentation in phase space
in a flexible way, and is supported by synchronous oscillations
recorded in the visual cortex [12], [14].

Our segmentation method integrates partial solutions from
the motion pathway and the brightness pathway. This integra-
tion contributes to motion analysis in two ways. First, motion
ambiguity inhomogeneous regions, i.e., the blank wall problem,
is addressed. Second, the number of erroneously induced mo-
tion estimates is minimized, significantly improving boundary
localization. We have also introduced the zero-velocity bias for

a homogeneous image background to obtain perceptually valid
Fig. 13. Performance comparison using the sequence in Fig. 11(a). (a) Re, gults
of the Horn and Schunck algorithm. (b) Result of the Anandan algorithm. (E? !
Result of the Black algorithm.

B. Limitations

respectively. Due to the use of a fixed pooling neighborhood Our current model has a number of limitations, which need to
and the relatively poor assessment of derivatives, the Horn dreladdressed in future research. Translational motion is used in
Schunck algorithm cannot capture the motion of the regioasir model for simplicity, and must be replaced by a more real-
[Fig. 13(a)]. Similarly, the Anandan algorithm cannot accustic affine modelin order to capture a larger set of motion types.
rately localize the motion boundaries [Fig. 13(b)]. This podPur method considers only three consecutive frames for each
performance of the Anandan algorithm seems to result fromotion scene, while it is clear that longer sequences of frames
a fixed pooling neighborhood, the employment of only tware needed to process more complex motion scenes. Our method
image frames, and the use of only motion cues. On the otieay need to be extended in order to model motion transparency
hand, this algorithm estimates motion at the inner locations isfduced by overlapping homogeneous regions, such as moving
surfaces, e.g., the rider, accurately. The Black algorithm offgeaids. In the integration stage, we have employed a simple tech-
the best result among the three. Unlike the other algorithraigiue to resolve the depth relationship among surfaces, where
or ours, the Black algorithm requires the number of regioriBe network background is exploited to infer the occlusion re-
as an input parameter. When two regions are assumed, it &tfonship in neighboring textured and homogeneous regions.
group the locations into two segments that best account for fi@re sophisticated techniques, such as detailed analysis of mo-
motion distribution in the scene. Thus, despite the incorreid@n-induced changes of surface occlusion [17], may be more
motion direction assigned to the background, this algorithaifective generally.
successfully segregates the rider and his motorcycle from the

background. Since the algorithm pools locations that are not

necessarily proximate, the resulting estimates vary smoothly

across the scene. As a result, local motions are not estimate@he authors would like to thank J. T. Todd, D. T. Lindsey, and
accurately and the motion boundary between the rider/motdine three anonymous referees for their comments which signif-
cycle segment and the image background is not well localizeidantly improved the presentation.
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