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Motion Segmentation Based on Motion/Brightness
Integration and Oscillatory Correlation
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Abstract—A segmentation method based on the integration
of motion and brightness is proposed for image sequences. The
method is composed of two parallel pathways that process motion
and brightness, respectively. Inspired by the visual system, the
motion pathway has two stages. The first stage estimates local
motion at locations with reliable information. The second stage
performs segmentation based on local motion estimates. In the
brightness pathway, the input scene is segmented into regions
based on brightness distribution. Subsequently, segmentation
results from the two pathways are integrated to refine motion
estimates. The final segmentation is performed in the motion
network based on refined estimates. For segmentation, locally
excitatory globally inhibitory oscillator network (LEGION)
architecture is employed whereby the oscillators corresponding to
a region of similar motion/brightness oscillate in synchrony and
different regions attain different phases. Results on synthetic and
real image sequences are provided, and comparisons with other
methods are made.

Index Terms—LEGION, motion and brightness integration, mo-
tion estimation, neural networks, oscillatory correlation.

I. INTRODUCTION

COMPUTATIONAL investigation of motion perception
presents three major challenges. The first one is the

well-known aperture problem [1], which states the insuffi-
ciency of local motion estimation to uniquely determine the
true underlying motion. This suggests that the integration of
a collection of local estimates is essential. The second one,
known as the blank wall problem [26], arises from homoge-
neous regions and is closely related to the boundary assignment
problem [17]. When a region has relatively uniform brightness,
local motion estimates at its inner locations are not unique.
This problem is illustrated in Fig. 1, where a homogeneous
circular region is moving on a homogeneous background.
Consistent with the stimulus, subjects perceive the circular
region moving. Although the circular boundary and its motion
can be extracted, whether the moving boundary belongs to
the circular (inner) region or to the (outer) background is
computationally ambiguous. A solution to this problem seems
to require a combination of the estimates at the inner locations
of a surface and those along its boundary. Hence, both of the
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Fig. 1. Example illustrating the blank wall problem.

challenges call for a selective integration of local estimates to
uniquely identify the underlying motion. The third challenge is
how to represent multiple motions over the same area, which is
necessary in order to model motion transparency [13].

Neural-network methods consider only a subset of these chal-
lenges. Most of them address the aperture problem by providing
a scheme to selectively integrate local estimates [10], [11], [18],
[20], [21], [24], [25], [28], [30], [35]. Few consider the blank
wall problem, e.g., [11]. Similarly, motion transparency has not
received much attention in neural networks [28], [21]. Most of
the neural-network methods are designed to model neuronal and
perceptual behavior [11], [18], [25], [28], usually using psy-
chophysical stimuli, e.g., plaids and random dot images, and
have not been tested using real motion scenes.

Unlike neural-network methods, image processing algo-
rithms can deal with real scenes [3], [5], [7], [8], [16], [26],
[29], [33], [34]. However, they also fail to consider all of
the three challenges simultaneously. One class of algorithms
employs motion energy filters for motion detection [2], [21],
[26], [33]. These algorithms can represent motion transparency.
However, they are fundamentally limited to translational
motion and provide limited spatial localization. Starting from
the pioneering study by Horn and Schunck [15], another class
utilizes the brightness constraint equation wherein local motion
components are related to temporal and spatial derivatives [5],
[7], [8], [15], [16]. These algorithms can represent translational,
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affine, and planar motions. When translational motion is as-
sumed, cross-correlation methods, such as the one proposed
by Anandan [3], can be utilized for motion estimation. Black
and colleagues have employed robust statistics [5], [7], [8] to
overcome the difficulty of using fixed neighborhoods in the
assessment of derivatives, especially in the presence of noise.
Finally, only a few image processing algorithms are biologi-
cally relevant, and even in these algorithms the biological link
is limited to local motion estimation [2], [33], [21], [26].

Except for the studies by Black and Jepson [8], Boberet
al. [9], and Cheyet al. [11], image processing algorithms and
neural-network methods perform motion analysis by using only
motion cues. Numerous psychophysical and neurobiological
studies reveal the importance of the integration of different
cues, such as stereo, form, and brightness [8], [22].

The aim of our study is to find a solution to all of the three
challenges. We address these challenges by using an oscillatory
neural network to perform motion-based segmentation by inte-
grating motion and brightness cues. Our model consists of two
parallel pathways for motion and brightness, respectively. The
motion pathway has two stages. Assuming translational motion,
the first stage estimates motion by performing adaptive tem-
poral block matching that is a variant of the Reichardt detector
[23]. Unlike others, the size of our matching block is adapted at
each location to obtain a reliable estimate, or, in the absence of
strong evidence, motion is not estimated. In the second stage, lo-
cations are grouped based on motion similarity in a multilayer
locally excitatory globally inhibatory oscillator network (LE-
GION) [31], [27]. LEGION is based on the idea of oscillatory
correlation [19], [27], [31], whereby phases of neural oscillators
encode region labeling. Oscillators corresponding to one region
have the same phase, which is different from those of other re-
gions. Due to the absence or the inaccuracy of motion estimates
at some locations, a stationary scene analysis is performed in
parallel with the brightness pathway, also using a LEGION net-
work. The partial solutions from the two pathways are com-
bined in the integration stage to refine motion estimates, based
on which the final result is obtained in the motion network.

The following section describes the two building blocks of
our model. Next is its detailed presentation. Subsequently, the
performance of our model is demonstrated on both synthetic
and real sequences. Finally, comparisons with other methods are
made and conclusions are drawn.

II. M ETHOD COMPONENTS

A. Temporal Block Matcher

The Reichardt bilocal correlator [23] is composed of two
symmetric parts: rightward and leftward motion detectors. The
rightward motion of a moving dot is detected by correlating
brightness at location and time ( ) with that of
( ). Here, the model implicitly assumes the speed of .
Similarly, the leftward motion detector correlates the brightness
at ( ) and ( ). Depending on the sign of the dif-
ference between the right and the left correlation, the motion of
the dot is determined to be rightward or leftward.

A temporal block matcher [3] compares brightness within
a block, , instead of a single location. Selectivity to dif-

Fig. 2. Brightness within matching blocks (N = 3� 3) in two consecutive
frames are cross-correlated by a temporal block matcher to detect a lower right
motion of one pixel per frame.

ferent velocities is achieved by sliding correlation blocks in dif-
ferent quantities and different directions on the previous snap-
shot (frame) of the scene, as shown in Fig. 2. For a temporal
block matcher employing two consecutive image frames, the
correlation corresponding to displacement , at lo-
cation ( ) and time can be expressed as

(1)

where is the brightness at location in frame and
is centered at location . The denominator of the

above expression, as in the following equations, should include
a small number to avoid division by zero. A large correlation,

, implies a high probability of the displacement,, at
location and time .

One can view as the response of a velocity detector. A spa-
tial collection of detectors tuned to the same displacement can
be visualized as a velocity layer. Different displacements cor-
respond to different layers. Detectors from different layers cor-
responding to the same location form a velocity column. When
a location has a single motion, only the corresponding detector
in its velocity column should have a substantial response. For
a location in a region producing motion transparency, multiple
detectors should attain high responses in the column at that lo-
cation.

B. LEGION

LEGION is based on the idea of oscillatory correlation, where
the phases of the neural oscillators encode the grouping of corre-
sponding locations. The building block of a LEGION network is
a single relaxation oscillator, , defined as a feedback loop
between an excitatory unit and an inhibitory unit [31],
[27]

(2a)

(2b)

Here, represents external stimulation to oscillator ,
denotes overall coupling, andis the variance of Gaussian
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Fig. 3. Phase plane diagram of a single oscillator withS = 0. The
x-nullcline is the dotted line and they-nullcline is the solid line. (a) When
the nullclines intersect only along the middle branch of thex-nullcline, the
oscillator produces a limit cycle, indicated as a thick solid line. The parameters
are" = 0:005, � = 10:0, � = 0:02, I = 2:0, and� = 0:02. (b) When
the nullclines in addition intersect along the left branch of thex-nullcline, the
oscillator approaches a stable fixed point and does not oscillate. All parameters
are the same as in (a) except forI = �1:0. (c) Temporal activity of an
oscillator that oscillates. Salient portions of a limit cycle are labeled for one
period.

noise. The parameteris chosen to be a small positive number
so that (2) defines a relaxation oscillator with two time scales.
The -nullcline ( ) of (2) is a cubic curve while the
-nullcline ( ) is a sigmoid function, as shown in Fig. 3.

When and , the two nullclines intersect along
the middle branch of the cubic and the system is oscillatory
[Fig. 3(a)]. Otherwise ( and ), the nullclines
intersect at a stable fixed point along the left branch of the cubic
and the system does not oscillate [Fig. 3(b)]. In the former
case, oscillator travels along the left branch (LB) until
reaching the left knee (LK) and then jumps to the right branch

(RB). When it is on RB, the oscillator is called active. After
traveling along RB, the oscillator reaches the right knee (RK),
where it jumps back to LB. This completes a limit cycle. The
temporal trace of several limit cycles is depicted in Fig. 3(c).
is used to control the ratio of the times that an oscillator spends
on RB or on LB. The larger is , the shorter is the time the
oscillator spends on RB. Finally, defines the steepness of the
sigmoid function and is chosen to be small.

includes a variable called lateral potential and coupling
from neighboring oscillators and a global inhibitor

(3)

where
connection weight from oscillator to oscil-
lator ;
heaviside step function;
weight for the lateral potential;
weight for the the global inhibition;
local coupling neighborhood (e.g. four nearest
neighbors).

The lateral potential is introduced for each oscillator to distin-
guish a homogeneous region from a noisy one [32]

(4)

where is the potential neighborhood, which is generally
larger than . The potential of an oscillator is initially set high
but continuously decays. When an oscillator is active and has a
number of active neighbors greater than, its potential rises to
one. Oscillators that maintain high potentials are referred to as
leaders while others are called followers. Due to the potential
term, only a sizable group that contains a leader can form a
segment. Small and noisy groups cannot produce leaders and
stop oscillating after a short beginning period. Such oscillators
form the network background, which should be distinguished
from the background part of an image (referred to as image
background later).

Whether an oscillator is active at a particular time also de-
pends on the activity of the global inhibitor,, which is defined
by

(5)

When no oscillator is active, decays to zero; otherwise it
rises to one. A leader can jump to RB when the inhibitor is
not triggered. A follower, however, can be active only when
it has strong excitatory couplings with active oscillators in
its neighborhood through the first term in the right-hand-side
of (3). A common form of the LEGION network used for
segmentation is a two-dimensional (2-D) array of oscillators
and a global inhibitor, where each oscillator corresponds to one
location in an input scene [see Fig. 6(b)].
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Fig. 4. Flow diagram of the proposed model. Processing starts from the top and proceeds downward. Following the analyzes in the motion and the brightness
pathways, results are combined in the integration stage to refine motion estimates. Finally, segmentation is performed in the motion network based on refined
motion estimates.

As discussed previously [27], [32], [36], there is a large and
robust range to choose the values of intrinsic LEGION param-
eters: , and . As specified in Section IV-A, an algo-
rithmic version of LEGION is used in our study to save com-
puting time; the above four parameters are absorbed in the al-
gorithmic version.

III. M ODEL DESCRIPTION

The two parallel pathways in our model are shown in Fig. 4.
One of the pathways, contained in a dash box, performs motion
analysis. The other pathway segments the scene based on bright-
ness distribution. Combining the results from the pathways, the
integration stage refines initial motion estimates. The final seg-
mentation is performed in the motion network based on refined
motion estimates.

A. Motion Pathway

There is strong evidence from both psychology and neuro-
physiology supporting at least two separate stages of motion
processing in the visual system (see [25] for a review). Moti-

vated by this, our method has two stages for motion estimation
and grouping, respectively.

Spatial Pooling: Before we employ our adaptive temporal
block matcher to estimate local motion, we choose a matching
block, namely, a pooling neighborhood, at each location using
a reliability criterion. This criterion serves two purposes. First,
locations with strong motion evidence are identified. Second,
pooling neighborhoods, , at these locations are adaptively
selected to produce more accurate estimates. Similar to the mea-
sure used by Iraniet al. [16], we calculate a mobility value at
each location and time,

(6)

where is a mobility neighborhood. Our mobility analysis
captures temporal brightness changes in a local neighborhood.
Note that changes are normalized by summated local brightness.
A large value of at a location indicates a high probability of
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(a) (b)

Fig. 5. Adaptive spatial pooling. (a) Middle frame of an input sequence. (b) Mobility image for the frame in (a), where intensities indicate the corresponding
mobility values. The initial and the final pooling blocks are depicted as white rectangles for a location near the boundary (white dot). Note that the neighborhood
extends along the boundary to encompass locations with large mobility values.

motion presence at that location. Otherwise, the presence of mo-
tion is uncertain since noise could also cause a temporal bright-
ness change. Thus, we do not obtain motion estimates at loca-
tions with small mobility values.

Initially, a small neighborhood is assumed to be sufficient
for spatial pooling. When the sum of the mobility values and
the average mobility over are large enough, matching is
performed. When or is small, is expanded in the di-
rection that maximally increases . The expansion continues
until either both and are sufficiently large or the size
of reaches an upper limit. In the latter case, estimation is
not performed. In the former case, is used for estimation.
Fig. 5 illustrates the adaptive changes in for an image com-
posed of a rectangular region and a background, both homoge-
neous [Fig. 5(a)]. Among the three consecutive input frames,
only the middle one is depicted. Fig. 5(b) shows the mobility
image, where the intensity at a location indicates its mobility
value. In this image, initial and final ’s are depicted at a lo-
cation near one boundary. Initially, and the stopping
condition is not met. Since boundaries and surface markings of
moving regions have large mobility values, usually extends
toward them. For the location considered in the image,ex-
pands to cover a considerable portion of the boundary. When a
location does not have large mobility values in its , e.g. a
location away from moving boundaries in Fig. 5(b), or
is small. In this case, will reach the upper limit and motion
will not be estimated at that location. Such a location is inferred
to be unreliable.

Motion Estimation: Having selected at reliable loca-
tions, we apply an adaptive temporal block matcher to three
consecutive frames, instead of two, to improve accuracy. We
assume only translational motion in our method. The correla-
tion corresponding to displacementis

(7)

where and are the correlations at
between the image frames atand and those at and ,
as given in (1). We have a total number of dif-
ferent displacements, hence velocities, corresponding to a set

of displacements varying from to in the - and -direc-
tion. Our additional modification is to match not only ’s but
also local spatial correlation surfaces to make estimation more
robust against temporal illumination variations. Consider a lo-
cation, , and its neighbors, ’s in a neighborhood centered
at . Correspondingly, and ’s have pooling neigh-
borhoods and ’s. A spatial correlation surface
(SCS), which has the size of , is obtained at by matching

and ’s. Note that this operation is exactly the
same as in (1). Instead of a neighborhood in the next frame, a
neighborhood in the same frame but centered at a neighboring
location is matched with . SCS’s at all reliable locations
including those in the neighboring frames are obtained similarly.
Subsequently, both pooling neighborhoods,, and SCS’s of
size are matched across time for different displacements to
obtain the temporal correlation surface at a location. Using (7),
matching two SCS’s results in for displacement at

. Consequently, the temporal correlation at for
displacement is

(8)

The displacement resulting in the maximum temporal correla-
tion at a location yields the local motion estimate at that location.

Network: Under certain circumstances, a region can be per-
ceived to have multiple (usually two) different motions simul-
taneously, a phenomenon known as motion transparency [13].
In order to allow for multiple overlapping motions, we adopt
a multilayer structure in the velocity representation where a
2-D LEGION network corresponds to each layer as depicted in
Fig. 6(a). Oscillators at the same location in all layers form a ve-
locity column and correspond to a single location in a scene. The
coupling weight between two oscillators, and , on a
velocity layer is determined based on their temporal correla-
tion for displacement . Dropping time from the expressions
for convenience, the coupling weight is given by

(9)
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Fig. 6. Neural-network architecture of our model. Small circles represent
oscillators and the big black circle the global inhibitor. The global inhibitor is
connected to all oscillators in each pathway. (a) Multilayer motion network
where each velocity layer corresponds to a LEGION network. Each layer is
tuned to a particular velocity indicated by a filled square in a small rectangular
grid representing the set of velocities varying from�R to R in the i- and
j-direction. Units interact vertically within a velocity column and horizontally
within each velocity layer. Vertical interactions are shown only for one
oscillator. (b) Brightness network. Each oscillator is locally coupled with its
four nearest neighbors.

When oscillators have similar correlations for a particular dis-
placement, they are strongly coupled in the corresponding ve-
locity layer. At locations without estimates, couplings are set to
zero. We replace in (3) by where

is a threshold and

(10)

Note that the major change is the two multiplicative terms in
the potential part, which extends the standard definition of a
leader. The first one ensures that only locations with large mo-
bility values can become leaders. The second one allows for
just a single leader within each velocity column. Due to the

inhibitory interaction within each column, only the oscillator
with the largest correlation becomes a winner. If such a winner
also has sufficiently high mobility, , and potential,

, it becomes a leader and forms a segment. A leader
recruits oscillators on its layer through local couplings. As in
the original LEGION network [31], [27], [32], these recruited
oscillators synchronize. Because of the global inhibition across
all layers, different segments desynchronize.

The complete activity of all layers can be captured in an
output network where each unit summates the activity of the
entire corresponding velocity column. Since at most one oscil-
lator is active in a column at any time, the output network dis-
plays segments without ambiguity.

Note that the selection of a single leader within each column
does not prevent the network from representing multiple mo-
tions at a location. An oscillator can become active if it is a
leader or a follower that is recruited by a leader on its layer.
Since there can be several followers in a velocity column in ad-
dition to a leader, more than one oscillator at a single location
can become active, thus representing different motions. This is
key to our representation of motion transparency.

B. Brightness Pathway

In the brightness pathway, the middle frame of the sequence
analyzed in the motion pathway is processed in terms of bright-
ness. In this pathway, a 2-D LEGION network is employed as
depicted in Fig. 6(b), where each oscillator corresponds to a
single location in the input scene. Assuming that each region
has similar brightness, the coupling weight between two oscil-
lators at two neighboring locations, and , is defined
as

(11)

Thus, locations that have relatively similar brightness establish a
strong coupling weight. We employ the network model given in
(3) where is replaced by and is a threshold.
Similar to the motion network, a strongly coupled group of os-
cillators with at least one leader becomes synchronized. Oscil-
lators corresponding to different regions become active at dif-
ferent times (desynchronization). Textured regions, on the other
hand, tend not to produce leaders or segments, and thus they are
distinguished from homogeneous ones. This property has a sig-
nificant role in the subsequent integration stage.

C. Integration Stage

So far, the motion and the brightness pathways perform seg-
mentation independently. Relatively homogeneous regions have
low mobility values in their interior areas and thus, only mo-
tion estimates along their moving boundaries are obtained. Con-
versely, textured regions, due to their high brightness variations,
generally cannot form their own segments and thus stay in the
network background. The integration stage combines the partial
results from the two pathways to yield more accurate results.
Our integration stage has two steps, namely, unreliable estimate
elimination and motion filling-in.

Elimination of Unreliable Estimates:Unreliable estimates
are eliminated based on the brightness analysis. The mobility
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Fig. 7. Schematic illustration of induced motion. Regardless of the motion of
regionB, locationP possesses an erroneously induced motion estimate due to
the texture in moving regionA and the homogeneity in regionB.

analysis in the motion pathway is only effective in identifying
inner locations of homogeneous regions. Locations along mo-
tion boundaries are assumed to be reliable due to their large
mobility values. A typical case where this assumption does not
hold is illustrated in Fig. 7. Assume that regionis textured and
moves in the right direction. Without loss of generality, a neigh-
boring region is assumed to be homogeneous and stationary.
Due to the texture, the locations acrosshave reliable motion
estimates. The inner locations of, on the other hand, do not
have estimates since they have low mobility values. However,
location in obtains an estimate because its pooling neigh-
borhood, indicated by the small square in the figure, partially
covers an area of , which has large mobility values. Because
of the motion in and the homogeneity in , an induced mo-
tion similar to that of is estimated at . Other locations similar
to are also assigned an induced motion. Note that these esti-
mates are erroneous. The same analysis applies whenmoves
but with a different velocity than that of .

Based on the above analysis, we propose an elimination rule
to remove these erroneous estimates. First, the number of os-
cillators belonging to the network background of the brightness
network is obtained for each motion segment. When they oc-
cupy more than half of a motion segment, we consider that the
segment belongs to a moving textured surface. The locations
that are in this motion segment but also belong to a brightness
segment are inferred to have induced motion estimates and thus,
their estimates are eliminated. Otherwise, these estimates stay
intact. In other words, when a homogeneous region is occluded
by a moving textured surface, our method eliminates the esti-
mates in the homogeneous region along the boundary of the tex-
tured surface.

Motion Filling-In: Recall that there is a winner within each
velocity column. Following the removal of unreliable estimates,
the distribution of winner velocities within each brightness seg-
ment is obtained in a 2-D form. The dimensions correspond to
translational velocity components in the- and -direction. The
dominant motion of each brightness segment is identified by
finding the maximum of the motion distribution. Subsequently,
locations within each brightness segment are filled in with this
dominant motion. As a result of filling in, estimates become
available for all locations in homogeneous moving regions. This
represents our solution to the blank wall problem. Since texture

regions cannot produce brightness segments, filling-in does not
take place in these regions. On the other hand, locations within
these regions should have reliable motion estimates.

To be consistent with the perception of homogeneous image
backgrounds, an additional constraint is incorporated into our
model. Depending on moving regions, there can be locations
on a homogeneous background with induced motion estimates.
As shown in Fig. 9, which is discussed later in detail, locations
in the image background along the boundary of a texture re-
gion are assigned incorrect induced estimates. With the elimi-
nation process, these estimates are removed. When induced mo-
tions are caused by the motion of a homogeneous region oc-
cluding the image background (cf. Fig. 1), our method does
not eliminate them. Consequently, the motion of the occluding
region may incorrectly become the dominant motion for the
image background. In other words, the image background ap-
pears to move with the occluding region. However, a homoge-
neous background extending beyond the image border should
be perceived as stationary. In order to simulate this perception,
we introduce, for homogeneous regions along the image border,
zero-velocity estimates at these locations that do not have esti-
mates. As a result, when an image background is homogeneous,
a large portion of its area takes on the zero velocity and hence,
the motion distribution of the image background is biased to-
ward the zero velocity.

Final Output: Following the integration stage, couplings in
the motion network are updated based on the refined estimates
and the final segmentation result is obtained. Note that the time
scale in the evolution of networks is faster than that of an input
scene. The analysis described so far takes place in the network
time, while time (frame) with respect to the input sequence
stays the same.

IV. RESULTS

The performance of our method is demonstrated on two sets
of image sequences. The first set includes synthetic scenes
where we illustrate our design principles. The second set is
a collection of real scenes acquired under various viewing
conditions.

A. Parameter Values

We choose which is also the initial
size of . The thresholds for , , and the maximum one-
dimensional (1-D) length for are , ,

, respectively. These thresholds are selected to maximize the
size of while allowing it to have locations only from a single
moving surface.

The selection of the number of velocity layers,
, is not critical as long as the maximum speed in motion

scenes can be accommodated. We employ for synthetic,
for real scenes, corresponding to a set of displacements

varying from to and from to in the - and -di-
rection, respectively. Images are of size 100100 for the first
set and 160 120 for the second set, except for the first scene of
the second set, which is of size 120170. Due to image border
effects, output images are smaller. In order to minimize these ef-
fects, we simplify our estimation method for the locations near
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the image border. We obtain estimates by using only a fixed spa-
tial neighborhood, , when these locations have an
average mobility larger than . Thus, the size of output
images is limited only by the maximum speed considered. The
larger the maximum speed is considered, the wider is the border
band without estimates [see Fig. 10(d)]. As a result, we obtain
output images of size 92 92, 140 100, and 100 150 for
the above three different image sizes, respectively. Because we
are not aware of psychophysical conditions under which a ho-
mogeneous background should be perceived as stationary, we
empirically assign the zero velocity to locations in all homoge-
neous regions if these locations lack estimates and are within a
distance of pixels from the image border.

In the simulation of LEGION networks, an algorithmic ver-
sion is employed for computational efficiency where the param-
eters , and are incorporated into the algorithm (see
[32] for details). The weights except for ’s in (3) are
fixed. We choose and

to achieve proper synchronization and desynchro-
nization. The first condition, which also applies to ’s,
implies that an oscillator receiving strong local excitation can
overcome the global inhibition. The second condition ensures
that no leader of a different segment can jump to RB when
there are oscillators on RB. Specifically, we use ,

, and in all simulations. Regarding var-
ious neighborhoods in our method, the smalleris, the more
accurate is the localization of region boundaries but the more
sensitive is the network to image noise. The smalleris, the
smaller is the size of regions that can be segmented. In our sim-
ulations, , , and

(0.75 indicates 75%). Finally, for different
scenes, we adjust and , the thresholds for the initial
and the final segmentation in the motion network, respectively,
and , that of the brightness network. It is desirable that
and initially do not group locations with significantly dif-
ferent motion and brightness. Since refined estimates are more
accurate, the selection of is relatively easy. We consider
three frames for each scene since our temporal cross-correla-
tion requires only three snapshots.

B. Synthetic Image Sequences

We illustrate the segmentation process on three synthetic
image sequences. The first sequence is shown in Fig. 8,
where two homogeneous rectangular regions are moving on
a homogeneous background. As depicted in Fig. 8(a), the
larger rectangle is moving two pixels per frame rightward and
the smaller one is moving three pixels per frame downward,
occluding the former. First, mobility values at all locations are
determined in the motion pathway and the result is depicted
in Fig. 8(b). Following the selection of ’s, estimates are
obtained for reliable locations and are depicted as a needle
diagram in the left image of Fig. 8(c). For better visualization,
estimates in needle diagrams are displayed after a spatial
subsampling by a factor of three in all results. Based on the
initial estimates, the motion network segments the scene into
regions as shown in the right image of Fig. 8(c). Due to the
missing and induced estimates, the segmentation result is bad.

Fig. 8. Application of the proposed method to a synthetic image sequence,
where the blank wall problem is present. (a) Three consecutive frames of
the input sequence. (b) Mobility image. (c) Initial motion estimates and the
segmentation result in the motion pathway. (d) Segmentation result in the
brightness pathway. (e) Refined motion estimates and the final segmentation
result. Here,� = � = � = 10.

In parallel, the brightness pathway segments the middle frame
of the input sequence as shown in Fig. 8(d). The regions are
accurately segmented in the brightness network. Because of the
empty network background in the brightness pathway, the first
step of the integration stage does not modify any estimate. After
including zero velocity estimates in the image background
along the image border, motion distributions within brightness
segments are obtained in the second step of the integration. Due
to this bias, the dominant motion in the segment corresponding
to the image background is identified to be of zero velocity,
which, in turn, is assigned to all locations in the image back-
ground. Similarly, the dominant motions of rectangular regions
are determined and spread over all locations in these regions.
The refined estimates over the entire scene are provided in
the left image of Fig. 8(e). Subsequently, the motion network
correctly segments the scene based on the refined estimates
as depicted in the right image of Fig. 8(e). Note that, without
the zero-velocity bias, the image background would not have
the zero velocity. Also, incorrectly induced motions due to
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Fig. 9. Application of the proposed method to a synthetic image sequence,
illustrating the elimination of erroneously induced motion estimates. (a) Three
consecutive frames of the input sequence. (b) Mobility image. (c) Initial
motion estimates and the segmentation result in the motion pathway. (d)
Segmentation result in the brightness pathway. (e) Refined estimates and the
final segmentation result where� = � = � = 10.

rectangular regions would spread over the image background,
causing the large rectangle to merge with the background. This
sequence illustrates how the brightness pathway is utilized to
address the blank wall problem.

In the second sequence, a textured rectangular region is
moving two pixels per frame rightward on a homogeneous
background as depicted in Fig. 9(a). Locations in the rectangular
region are determined to have large mobility values as shown
in Fig. 9(b). Motion is estimated at all locations with large
mobility values. Since the locations in the image background
along the boundary of the rectangular region also have large
mobility values, they are assigned incorrect motions (cf. Fig. 7).
Due to motion similarity, the motion segment corresponding to
the rectangular region includes these background locations as
shown in the right image of Fig. 9(c). Unlike the scene in Fig. 8,
the brightness pathway is only able to group the locations in
the image background. Since the oscillators corresponding to
the texture region do not have strong couplings, they form the
background in the brightness network indicated as the dark
region in Fig. 9(d). Next, the number of the oscillators in the

Fig. 10. Application of the proposed method to a synthetic scene, illustrating
motion transparency. (a) Schematic diagram of the input, where two oppositely
moving rectangles partially overlap. (b) Middle frame of the input sequence.
(c)–(d) Final segmentation result in the motion network. The overlapping part
is grouped with both rectangles. Here,� = � = 20 and� = 50.

network background of the brightness network is obtained for
the motion segment corresponding to the rectangle. Since they
occupy the majority of the segment, the estimates for the loca-
tions in this segment that are part of the image background are
eliminated, and the motion distribution within the brightness
segment corresponding to the image background is obtained.
Since the induced motions are eliminated, the injected zero
velocity becomes the dominant motion and fills in the entire
image background. The final result is depicted in the left image
of Fig. 9(e). Based on the refined estimates, the rectangular
region and the background are accurately segregated as shown
by the right image of Fig. 9(e). This scene illustrates how
two partial segmentation results from the two pathways are
integrated to obtain accurate segmentation.

In the last synthetic scene shown in Fig. 10, two random-dot
rectangular regions are horizontally moving two pixels per
frame in the opposite directions on a background of random-dot
noise. During this motion sequence, there is an overlapping
area where both motions are simultaneously perceived [13],
which indicates motion transparency. A schematic diagram
of the input scene and the middle frame of the sequence are
provided in Fig. 10(a) and (b), respectively. Note that the
rectangles cannot be segregated using a stationary brightness
analysis. Thus, the initial estimates are not modified in the
integration stage. Our method obtains two rectangular segments
in the corresponding layers. As explained in the dynamics of
the motion network, leaders in nonoverlapping areas of the
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Fig. 11. A real scene sequence. (a) Middle frame of the input sequence. (b)
Initial motion estimates. (c) Refined motion estimates after integrating the
results from the two pathways. (d) Final segmentation. Here,� = 20,
� = 10, and� = 50.

two rectangles recruit the locations in each area as well as
the overlapping area. Thus, the overlapping area is correctly
grouped with both rectangles [Fig. 10(c) and (d)].

C. Real Image Sequences

The second set of results illustrates the performance of our
method on real scenes. The first sequence is from a scene,
where a motorcycle rider jumps to a (dry) canal with his
motorcycle while the camera is tracking him. This is shown in
Fig. 11(a). Here, only the middle frame of the input sequence
is depicted. Due to the camera motion, the rider and his
motorcycle have a downward motion with a small rightward
component and the image background has an upright diagonal
motion. Besides the mobility analysis and estimation in the
motion pathway [Fig. 11(b)], the scene is segmented into
regions in the brightness pathway. Note that locations on the
canal wall (lighter homogeneous region) occluded by the lower
part of the motorcycle have induced motion estimates. In this
particular area, since the motorcycle is part of the network
background in the brightness network and the canal wall forms

a brightness segment, the estimates at the occluded locations of
the canal wall are identified to be incorrect and eliminated in
the integration stage. These locations, in turn, are assigned the
dominant motion of their brightness segment [Fig. 11(c)]. Note
that some locations near the image border do not have estimates
since their average mobility is small. Despite the zero-velocity
bias, none of the homogeneous regions in the image back-
ground, such as the sky in the upper right corner, assume the
zero velocity; their motions are correctly estimated. Finally,
based on the refined estimates, the rider with his motorcycle is
accurately segmented from the image background as depicted
in Fig. 11(d). As in the segment of the rider and his motorcycle,
regions with different texture and brightness are grouped into a
single segment due to common motion. Although some regions
have similar brightness, e.g., the jacket of the rider and the
trees, they are separated due to different motion. The boundary
between the rider segment and the background segment in the
right part of the scene is not as well defined, due to motion
blurring and the inhomogeneous image background.

Fig. 12 shows the results for the four remaining real scenes.
Only the middle frame of each input sequence, the refined esti-
mates, and the final segmentation result are depicted. In the first
scene, an airplane is flying diagonally in the lower left direc-
tion on the relatively homogeneous sky and there is a mountain
in the lower right corner. The mountain appears to be moving
rightward due to the camera motion. Following the initial seg-
mentation in the two pathways, the integration stage refines the
estimates based on which the three segments, namely, the air-
plane, the mountain, and the sky are segmented. Without the in-
tegration stage, the airplane segment would have a round shape
due to erroneously induced estimates. Because of the zero-ve-
locity bias, the sky segment is stationary, consistent with its per-
ceived motion. As in the case of the sky and the middle part of
the mountain, when regions have different motions, brightness
similarity does not lead to incorrect grouping.

In the second scene depicted in the second row of Fig. 12, as
a result of the camera motion, a woman and a big and a small
satellite dishes all have different motions due to their depth dif-
ferences. Along the boundary between the woman’s hat and the
big dish, there are induced motions, which are not eliminated
in the first integration step. However, the brightness pathway
accurately segments the two regions. Following that, the domi-
nant motion in each segment fills in not only the inner locations
but also the locations near the common boundary. Due to the
zero-velocity bias, the homogenous image background is cor-
rectly analyzed. The woman, the dishes, and the sky are the re-
sulting segments.

In the third scene, the camera tracks a person falling off a
dam. Due to the camera motion, the dam has an upward motion
while the person appears to be stationary. Since the person oc-
cupies a relatively small area in the scene, spatial pooling within
a fixed neighborhood would fail to detect the person. However,
our adaptive pooling scheme is well suited to the task. The in-
tegration stage eliminates the induced motions at the locations
along the inner boundary of the person and segregates the person
from the image background. Consistent with perception, the sky
in the upper left corner is grouped with the dam despite the zero
velocity bias.



ÇESMELI: MOTION SEGMENTATION BASED ON MOTION/BRIGHTNESS INTEGRATION AND OSCILLATORY CORRELATION 945

Fig. 12. Additional real scene sequences. (a) Middle frame of the input sequences. (b) Final motion estimates after integrating the results from the two pathways.
(c) Final segmentations. Here, the corresponding thresholds (� , � , � ) for each sequence are (20, 2, 20), (20, 10, 10), (10, 2, 10), and (10, 4, 30), respectively.

In the lastsceneofFig.12, thecamera tracksahelicopter flying
inthecloudyskyoveraport.Duetothecameramotion, theclouds,
the mountain, the port, and the lighthouse appear to move right-
ward while the helicopter appears relativelystationary. As shown
inthemiddleimage,thehelicopter isdetectedtobeapproximately
stationary while the other regions are estimated to have a right-
wardmotion.Thesky isassignedthezerovelocity.Thehelicopter
segments from the remaining regions which, despite their similar
motion, result in five different segments. Note that our method
does not group locations with similar motion when they belong
to spatially discontiguous regions.

V. COMPARISON

Our method differs from others in several aspects. First, local
motion is estimated in a pooling neighborhood that expands
adaptively, conditioned on a mobility analysis. Second, motion
analysis and brightness analysis are integrated in a unique way.
Third, the building architecture of our model, LEGION, per-
forms flexible grouping and segmentation in time, and is sup-

ported by neurobiological findings of coherent oscillations in
the visual cortex. Taken together, our model is the only one,
to our knowledge, that addresses simultaneously the three chal-
lenges described in Section I.

Since only image processing algorithms are tested on real mo-
tion scenes, we compare in the following our method against
these algorithms. To focus our comparison, we choose three
representative algorithms proposed by Horn and Schunck [15],
Anandan [3], and Black [5], [7], [8], respectively, and the scene
given in Fig. 11(a). We use the implementation of the first two
algorithms by Barron [4] available online and the last one by
Black [6] also available online. The algorithm by Horn and
Schunck is a pioneering study on motion analysis. The study
by Anandan, like ours, employs a temporal block matcher. Fi-
nally, Black’s algorithm represents recent approaches that use
robust statistics. Using the parameter sets suggested in their im-
plementations, we employ eleven, two, and three consecutive
frames for the three algorithms, respectively.

The results of the algorithms of Horn and Schunck, Anandan,
and Black for the scene in Fig. 11(a) are given in Fig. 13(a)–(c),
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Fig. 13. Performance comparison using the sequence in Fig. 11(a). (a) Result
of the Horn and Schunck algorithm. (b) Result of the Anandan algorithm. (c)
Result of the Black algorithm.

respectively. Due to the use of a fixed pooling neighborhood
and the relatively poor assessment of derivatives, the Horn and
Schunck algorithm cannot capture the motion of the regions
[Fig. 13(a)]. Similarly, the Anandan algorithm cannot accu-
rately localize the motion boundaries [Fig. 13(b)]. This poor
performance of the Anandan algorithm seems to result from
a fixed pooling neighborhood, the employment of only two
image frames, and the use of only motion cues. On the other
hand, this algorithm estimates motion at the inner locations of
surfaces, e.g., the rider, accurately. The Black algorithm offers
the best result among the three. Unlike the other algorithms
or ours, the Black algorithm requires the number of regions
as an input parameter. When two regions are assumed, it can
group the locations into two segments that best account for the
motion distribution in the scene. Thus, despite the incorrect
motion direction assigned to the background, this algorithm
successfully segregates the rider and his motorcycle from the
background. Since the algorithm pools locations that are not
necessarily proximate, the resulting estimates vary smoothly
across the scene. As a result, local motions are not estimated
accurately and the motion boundary between the rider/motor-
cycle segment and the image background is not well localized.

By comparing Figs. 11 and 13, it is clear that the performance
of our model is highly competitive. Except for the limitation that
our model does not produce motion estimates near the image
border while others do, our neural-network model yields the
most accurate motion boundaries.

VI. CONCLUDING REMARKS

A. Contributions

Our proposed method is the first study that simultaneously
addresses the aperture, blank wall, and motion transparency
problems. The method is composed of two biologically plau-
sible building blocks, i.e., an adaptive temporal block matcher
and LEGION. The former is based on Reichardt’s classic
study of the fly visual system [23]. We have extended common
versions of the temporal block matcher by using adaptive
pooling and spatial correlation surfaces.

We have employed the LEGION architecture for mo-
tion-based segmentation, and extended the one-layer version to
a multilayer LEGION network that allows for multiple motions
at the same location, and thus naturally represents motion
transparency. LEGION perform segmentation in phase space
in a flexible way, and is supported by synchronous oscillations
recorded in the visual cortex [12], [14].

Our segmentation method integrates partial solutions from
the motion pathway and the brightness pathway. This integra-
tion contributes to motion analysis in two ways. First, motion
ambiguity in homogeneous regions, i.e., the blank wall problem,
is addressed. Second, the number of erroneously induced mo-
tion estimates is minimized, significantly improving boundary
localization. We have also introduced the zero-velocity bias for
a homogeneous image background to obtain perceptually valid
results.

B. Limitations

Our current model has a number of limitations, which need to
be addressed in future research. Translational motion is used in
our model for simplicity, and must be replaced by a more real-
istic affine model in order to capture a larger set of motion types.
Our method considers only three consecutive frames for each
motion scene, while it is clear that longer sequences of frames
are needed to process more complex motion scenes. Our method
may need to be extended in order to model motion transparency
induced by overlapping homogeneous regions, such as moving
plaids. In the integration stage, we have employed a simple tech-
nique to resolve the depth relationship among surfaces, where
the network background is exploited to infer the occlusion re-
lationship in neighboring textured and homogeneous regions.
More sophisticated techniques, such as detailed analysis of mo-
tion-induced changes of surface occlusion [17], may be more
effective generally.
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