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Abstract

We study networks of relaxation oscillators coupled with time delays synapses. A pair of oscillators is analyzed and
shown to attain loosely synchronous solutions for a wide range of initial conditions and time delays. Simulations of one- and
two-dimensional oscillator networks indicate that locally coupled oscillators are also loosely synchronous. Desynchronous
solutions are possible when system parameters are varied. To characterize lossely synchronous networks, we introduce a
measure of synchrony, the maximum time difference between any two oscillators. In locally excitatory globally inhibitory
oscillator networks with time delays, we find that desynchronous solutions for different groups of oscillators are maintained,
and the number of groups that can be segregated is related to the maximum time difference within each group. To examine
the maximum time difference, we display its histograms for oscillator networks in one and two dimensions. Also, a range of

initial conditions is given so that the maximum time difference is contained as the system evolves.

FPACS: 05.45; 87.10; 84.35; 02.30.K
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1. Introduction

Coupled oscillators have been the subject of much
research in fields such as physics [17,43], chemistry
[1,29], and biology [4,45]. Much recent work into
emergent synchronization has been stimulated by ob-
servations of synchronous neural activity with fre-
quencies in 30-80 Hz in various brain regions, referred
to as 40 Hz oscillations. These studies indicate that
neural acitivity can be synchronized over long dis-
tances, e.g., 14 mm in monkey sensorimotor cortex,
and across both hemispheres of the brain [32].

* Corresponding author. Tel.: (614) 292-6827; fax: (614) 292-
2911; e-mail: dwang@cis.ohio-state.edu.

Visual features of an object, such as motion, color,
and orientation, appear to be processed in distinct cor-
tical areas [46]. The brain is able to group, or link,
these features together to create the perception of a
coherent object. How the brain links various features
to form a coherent object is known as the feature bind-
ing problem. Theoreticians have proposed that tem-
poral correlations in the firing patterns of different
neurons may serve to link separate features [21,37].
One may implement temporal correlation with neu-
ral oscillators. In vision, for example, each element,
or pixel of an image, can be represented with an os-
cillator. A temporal labeling process is then imple-
mented such that all oscillators comprising an object
have the same phase. Different objects are represented
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by different phases of oscillation. This particular form
of temporal correlation is referred to as oscillatory
correlation [36]. Using this concept, oscillator net-
works performing a variety of perceptual tasks, e.g.,
sensory segmentation and feature binding, have been
proposed [2,11,14,40]. Oscillatory associative memo-
ries have also been constructed, and have the benefit
that multiple patterns can be recalled simultaneously
[35.41].

Time delays in signal transmission are inevitable
in both the brain and physical systems. In unmyeli-
nated axons, the speed of signal conduction is approx-
imately 1 mm/ms [13]. Connected neurons which are
I mm apart may have a time delay of approximately
4% of the period of oscillation (assuming 40 Hz oscil-
lations). How long range synchronization is achieved
in the presence of significant time delays is an impor-
tant question. Furthermore, in any physical implemen-
tation (such as analog VLSI) of an oscillator network,
transmission delays are unavoidable. Since even small
delays may alter the dynamics of differential equa-
tions with time delays [16], it is necessary to under-
stand how conduction delays change the behavior of
oscillator networks.

The inclusion of time delays in a differential equa-
tions can cause a stable point to destabilize, an unsta-
ble point to become stable [12,20], and in other cases,
chaos can emerge in a system that would otherwise
be described by a stable fixed point [31]. To illustrate
the effects time delays may have, we discuss the fol-
lowing equation:

X)) +2x() = —x().

The above equation has an asymptotically stable fixed
point at zero. A trajectory for the above equation is
the thick curve displayed in Fig. 1. If one introduces
a time delay,

X)) +2x(t —1) = —x(t)

then the trivial solution becomes unstable for any pos-
itive delay 7 [16]. One such trajectory for this time
delay differential equation is the thin curve in Fig. 1.

In this paper we study relaxation oscillators with
time delay coupling. Relaxation oscillators have
properties of fast synchrony when compared to

nonrelaxation type, such as sinusoidal oscillators
[33,34,36,39]. This is an important distinction. If os-
cillatory correlation is to be used to support perception
or in an engineering system, e.g., computer vision,
then synchronization must occur quickly to be useful
in a rapidly changing environment. In many studies of
oscillator networks [3,14,38], simulations were dis-
played that indicated synchrony, but the rate at which
the networks attain synchrony and the size of the net-
works that can synchronize were not studied. Further-
more, how the rate of synchronization changes with
the number of oscillators was not examined. Terman
and Wang [36] showed that a network of locally
coupled relaxation oscillators achieves synchrony at
an exponential rate, independent of the number of
oscillators, or the dimension of the network.

To implement oscillatory correlation effectively, a
robust and quick method of desynchronization must
also exist. Several authors have proposed models that
perform both synchronization and desynchroniza-
tion [2,28,38]. However, the process of separating
groups of oscillators was shown in simulations, but
not analyzed. Terman and Wang [36] proved that
desynchronization is achieved in their locally excita-
tory globally inhibitory oscillator network (LEGION)
[42]. A global inhibitor, connected with all oscilla-
tors, is able to desynchronize groups of oscillators
without destroying synchrony within a group. It is
further shown that n groups can be separated in at
most n cycles. LEGION is able to quickly synchro-
nize a group of oscillators, as well as desynchronize
different groups of oscillators. These properties are
thoroughly understood analytically. Due to these
unique properties, we have chosen to examine the
effects of time delays in relaxation oscillators.

To our knowledge, time delays in networks of relax-
ation oscillators have not been extensively studied. In
[9], a perturbation analysis was carried out for coupled
relaxation oscillators with time delays. The coupling
was assumed to be small and the interaction term was
not based on excitatory chemical synapses, as is ours.
Due to the differences in the coupling term, it is not
surprising their results do not agree with ours. Studies
of time delays in other oscillator networks have re-
vealed a diverse and interesting range of behaviors. In
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Fig. 1. A trajectory of x is plotted as a function of 7 without time delay (thick curve) and with time delay (thin curve), using v = 0.15.
The latter trajectory quickly grows beyond the boundaries of the box and begins to appear as a sequence of nearly vertical lines.

anetwork of identical phase oscillators with local cou-
pling, the inclusion of a time delay in the interactions
decreases the frequency [24]. A network of phase 0s-
cillators with pulsatile coupling is known to synchro-
nize perfectly with excitatory couplings and no time
delay [22]. However, if time delays are included in
this same network, clusters of synchronous oscillators
form, but become desynchronized after a time [6]. If
the coupling is changed to be inhibitory, stable syn-
chronous groups of oscillators emerge. Furthermore,
in time delay systems one must specify initial condi-
tions during the time [—t, 0]. Different initial condi-
tions may lead to different asymptotic behaviors [8].
See [5,19,20,26,30] for examples of delays in differ-
ential equations.

In this paper, the dynamics of relaxation oscilla-
tors without time delay coupling is first described

in Section 2. In Section 3 we present analysis for
a pair of relaxation oscillators with time delay cou-
pling. We show that loose synchrony is possible for
a wide range of initial conditions and time delays. In
Section 4 we describe that the dynamics of one- and
two-dimensional oscillator networks is similar to that
of a pair of oscillators. Here we define our measure of
synchrony for networks of oscillators. We also show
a simulation of LEGION with time delay coupling
between oscillators, and suggest that its properties of
grouping oscillators together and desynchronizing dif-
ferent oscillator groups are maintained. In Section 5
we study our measure of synchrony for one- and two-
dimensional networks of oscillators. A particular case
of initial conditions is discussed, where the degree of
synchrony does not degrade as the network evolves.
Section 6 concludes the paper.
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Fig. 2. A plot of the nuliclines and limit cycle of a relaxation oscillator defined in (1). The dotted curve is the x-nullcline and the
dash—dot curve is the y-nullcline. The thick solid curve represents the limit cycle, which is the result of numerical calculation. The

parameters used are A =8, y = 12, ¢ = 0.005, and g8 = 1000.

2. Basic dynamics of neural oscillators

Before treating the dynamics of relaxation oscilla-
tors coupled with time delays, it is useful to describe
their dynamics without time delays. We examine a spe-
cific oscillator model. A more general description of
a pair of coupled relaxation oscillators can be found
in [33]. The oscillator we study is defined as

x:3x—x3—y, (1a)
vy =¢(r + y tanh(Bx) — y). (1b)

These functions are equivalent to those used in [36].
The x-nullcline, x = 0, is a cubic function. Two im-
portant values of this cubic are the y-values of the
local extrema, In Fig. 2 the extrema are denoted by
RK (right knee) and LK (left knee). The y-nullcline,
y = 0, is a sigmoid and is assumed to be below the
left branch (LB) and above the right branch (RB) of
the cubic as shown in Fig. 2. The parameter B con-
trols the steepness of the sigmoid and we use 8 >> 1.
The value ¢ is chosen to be small, 0 < ¢ < 1, s0 x is

a fast variable and y is a slow variable. The oscillator
thus defined is a typical relaxation oscillator. The limit
cycle is made up of four pieces: two slowly chang-
ing pieces along the LB and RB, and two fast pieces
that connect the left and right solutions. The parame-
ters A and y are used to modify the amount of time
an oscillator spends in the left and right branches. The
trajectory and nullclines for this oscillator are shown
in Fig. 2. The parameter values used to produce these
specific curves are given in the caption of Fig. 2.

To illustrate the coupling, we examine two oscilla-
tors, defined as

i1 =3x — x] =y +aSx), (2a)
y1 =¢&(x + y tanh(Bx;) — y1), (2b)
%y =3x —x3 — y2 + aS(x), (20)
y2 = (A + y tanh(Bx2) — y2). (2d)

The value « is the coupling strength, and the interac-
tion term is a sigmoid, S(x) = [1 +exp(x (@ —x)] 7",
mimicking excitatory synaptic coupling. The value of
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Fig. 3. A plot of the nullclines and limit cycle for a pair of relaxation oscillators as defined in (2). See the caption of Fig. 2 for
curve conventions. All trajectories in this figure are the result of numerical calculation. The parameters used are o = 2, @ = —0.5,
and x = 500, with the other parameters as listed in the caption of Fig. 2.

k modifies the steepness of this sigmoid and we use
k > 1. Increasing the value of o S(x) results in a raise
of the x-nulicline, x; = 0. This is a property seen in
several descriptions of neural behavior [7,10,23,44].
In the limit, ¢ — 0, with the threshold of the in-
teraction term, 6, between the outer branches of the
cubic, the system behaves as if S(x) is a step function.
Thus the interaction is either nonexistent, or excita-
tory. When an oscillator travels from a LB to a RB,
the other oscillator receives excitation. The excitation
raises the x-nullcline of the oscillator. The excited os-
cillator then exhibits dynamics based on its modified
phase space, a mechanism referred to as fast threshold
modulation [33]. The three pertinent nullclines for this
system are pictured in Fig. 3. As before, the pertinent
values of the x-nullclines are the y-values of their lo-
cal extrema. For the particular equations we use in (2),
the x-nulicline shifts upward in direct proportion with
a change in ¢S(x). The local extrema are denoted by
the lower left knee (LLK) and the lower right knee
(LRK) for the unexcited x-nullcline, and the upper left

knee (ULK) and the upper right knee (URK) for the
excited nullcline. The values of the extrema for the
x-nullclines given in (2) are:

LLK = (LLK,, LLKy) = (-1, -2),
LRK = (LRK,, LRK,) = (1,2),
ULK = (LLK,, LLK, + «),
URK = (LRK,, LRK, + o).

The term ‘jump’ is used when an oscillator moves
from either of the LBs to either of the RBs, or vice
versa. The term ‘hop’ is used to describe the relatively
smaller movements when an oscillator moves from an
upper to a lower branch, or vice versa. Also, when an
oscillator is on either of the LBs, we say that it is in
the silent phase and when an oscillator is on either of
the RBs, we say that it is in the active phase.

A basic description of the behavior of (2) now fol-
lows. Let the oscillators be denoted O and O;. Let
both oscillators begin on the lower left branch (LLB),
with y, > y;. We assume that the time an oscillator
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spends traveling along LLB is longer than the time
an oscillator spends on the upper right branch (URB).
Because the motion is counter-clockwise along the
limit cycle O leads Oz. The leading oscillator, Oy,
will reach LL K, first, and jump up to the lower right
branch (LRB). There are four basic trajectories that
can arise based on the position of O; at the time O
jumps up. Somers and Kopell [33] have described
similar trajectories, so we give only a brief summary
here. If O, is below LLK + ¢, it will jump up to
URB. When O, crosses the interaction threshold, O
will hop from LRB to URB. The order of the oscilla-
tors is reversed for this case. If, however, O, is above
LLK,+a when O jumps up, O will hop to the up-
per left branch (ULB). Its motion will continue along
ULB until it reaches LL K, + «, at which time it will
jump up to URB. There are two possibilities for the
relative positions of the oscillators on the active phase:
the order may be reversed or not. This accounts for
two more cases. The fourth trajectory occurs when
O) jumps up, and O> is above LLK, + « by such an
amount that it is possible for Oy to traverse the active
phase, and return to the silent phase before 0> can
jump up. Parameters can be found so that each case
results in a significant phase contraction between the
two oscillators. Terman and Wang [36] showed that
rapid synchrony is achieved in a network of locally
coupled relaxation oscillators. This fast synchrony
is independent of the dimension, or the size of the
network.

3. Dynamics including time delay
3.1. Singular solutions

We now introduce a time delay in the interactions,
The equations are:

Xy = 3xg —x13 —y1 +aSx( — 1)), (3a)
yvi =&(A + y tanh(Bx1) — v1), (3b)
¥2=3x2 —x3 — y2 +aS(x)(t — 7)), (3¢)

y2=¢e(x + v tanh(Bx2) — y2). (3d)

The time delay is only in the interaction between the x
variables. The fast system of (3) is obtained by setting
& = 0. This results in

X =3x —x) — yi +aS(x;(t — 1)), (4a)
yi =0, (4b)

where i = 1,2 and j = 3 — i. The slow system for
(3) is derived by introducing a slow time scale t' = et
and then setting ¢ = 0. The slow system for LLB is

X = h(yi)s (53)
Vi = A + y tanh[BA(y)] — vi. (5b)

where x = h(y) describes LLB of (3). System (5)
determines the slow evolution of an oscillator on the
LLB. Because 8 > 1 and 2(y) < —1, we rewrite (5b)
as

Vi =A==y =i (6)

For an oscillator on ULB, (6) will again result because
he(y) < —1, where x = h.(y) defines the ULB. Thus
an oscillator has the same velocity in the y-direction
along either of LBs. For RBs, these same steps result
in the following analogous equation:

Yi=x+y— . (7

The velocity in the y-direction of an oscillator along
either of RBs is given by (7). Because of this, the
hops that occur along the upper and lower cubics do
not affect the time difference between the two oscil-
lators. Only the jumps form a LB to a RB and vice
versa can result in changes in the time difference be-
tween the two oscillators. In more generalized versions
of relaxation oscillators, the speed along different cu-
bics may be different. We briefly address this issue in
Section 3.4.

In the singular limit, ¢ = 0, system (3) reduces
to two variables. The exact form of the x-nullcline
is not important as long as a general cubic shape is
maintained. The evolution of the system is determined
by solving (6) and (7). The equation describing y; (¢)
along either of the LBs is

i) = i@ =i+ +r-y. (8)
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The y-position of an oscillator along either of the RBs
is given by

yilt)= (i) —r—yle " +r+y. 9)

We compute 7T, the total period of oscillation using
(8) and (9), for a loosely synchronous solution. The
time it takes to travel from LLK, to LRK , +«, along
URB, is given by

LLK, —y —
vV ) (10)

T =lo
URB g(LRK_‘.+a—y—)\

The time it takes to travel from LRK, + o to LLK,,
along LLB, is given by

LRK),+a+y—A>

1
LLK,+y — X (o

T = log (
Thus, we have T = tyrB + TLLB.

Our analysis in this section and Section 3.2 is de-
rived at the singular limit, i.e. ¢ = 0. We have not
carried out a perturbation analysis. We note, however,
that Terman and Wang [36] have carried out an analy-
sis of networks of relaxation oscillators in the singular
limit and extended their analysis from & = 0 to small
positive e. Our networks differ from theirs in the in-
clusion of time delays between the oscillators, but it
may be possible that a singular perturbation analysis
can be carried out similarly. We have done substantial
testing with various values of &. Our results indicate
that values of 0 < ¢ « | do not significantly alter any
of the dynamics discussed.

3.2. Loosely synchronous solutions

As part of our analysis, we need a measure of the
distance between the two oscillators. The Euclidean
measure of distance does not yield intuitive results
because of the constantly changing speed of motion
along the limit cycle. We instead use the time dif-
ference between the two oscillators, I (y1(¢), y2(t))
[18,36]. This function measures the time it takes
an oscillator at y»(¢) to travel to yi(r) and is only
valid if both oscillators are on the same branch of
the limit cycle. In this paper two oscillators are de-
fined to be loosely synchronous if the time difference

between them is less than or equal to the time delay,
or I'(y1(t), y2(1)) < t.

We describe various solutions for (3) in the singular
limit, but only for a set of specific initial conditions and
a limited range of time delays. We assume that both
oscillators lie on LLB so that they are on the limit cycle
during the time [—7, 0] with y; > y,. The maximum
initial time difference is 7y g — t. By restricting the
initial conditions in this manner, the behavior of the
system is determined by two parameters; the initial
time difference between the two oscillators and the
time delay. In broad regions of this parameter space we
find distinct classes of trajectories. For some of these
classes we are able to calculate the time difference
between the two oscillators. For other regions we rely
on numerical simulations to indicate the final state of
the system. In Fig. 4 we summarize five regions of the
parameter space that we have examined. In regions I-
IV we show that loosely synchronous solutions arise
provided that the coupling strength is appropriately
bounded. Numerical simulations in region V indicate
that antiphase solutions of high frequency can result.
We examine time delays in the range O-tryp. The value
TrMm (the subscript RM stands for right minimum) is
the time needed to traverse the fastest branch in the
system, which in our system is LRB, and is given by

LLK}.——A—)/>

it A 12
LRK, —A—y (12

TrM = log (
This value can be a significant portion of the period of
oscillation and we present analytic results within this
range. Numerical simulations indicate that for 7 >
TRM, loose synchrony is not commonly achieved.
We first describe region [ of Fig. 4. Here the os-
cillators have an initial time difference of less than
equal to 7, or I"(y1(0), y2(0)) < t. In this situation,
0> will jump up to LRB before receiving excitation.
Thus, the only effect of the interaction is to cause 0>
to hop from LRB to URB. Since this hop does not af-
fect the speed of an oscillator in the y-direction, or its
y-value, it has no effect on the time difference between
the two oscillators. In this region the oscillators have
simple periodic motion and maintain a constant time
difference. Any small perturbation within this region
changes the time difference; thus region I is neutrally
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Fig. 4. A diagram in parameter space indicating regions of distinct behaviors. Regions I-IV are distinguished by specific classes of
trajectories and these regions result in loosely synchronous solutions. Numerical simulations indicate that much of region V consists
of desynchronous solutions. The unlabeled region is not analyzed because it contains initial conditions which do not lie on the limit
cycle for a given value of the time delay. The axes do not have the same scale. The equations specifying the boundaries of regions

I-IV are given in Section 3 and also in Appendix A.

stable. Solutions in region I are always loosely syn-
chronous. Typical trajectories for a pair of oscillators
in region I are shown in Fig. 5(A). There are two
boundaries for region I, and the first is given simply
by ' (y1(0), y2(0)) < r for 0 < 7 < trMm/2. For time
delays larger than TrMm/2, there is a different relation
between the initial separation and the time delay. In

order for loose synchrony to occur, we must ensure
that O does not traverse LRB and jump down to LLB
before receiving excitation. This condition results in
T'(y1(0), y2(0)) + 7 < trM for trM/2 < T < TRM-
If I"'(y1(0), ¥2(0)) + t = trM, then O receives ex-
citation after it has jumped down to LLB. For this
case, one oscillator is in the silent phase, and the other
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Fig. 5. Plots of trajectories in x and y space tor various classes of initial conditions. All lrajectories are numerically calculated
using parameters listed in the captions of Figs. 2 and 3 with a time delay of 7 = 0.037 and o = 2. The thin solid curve represents
the trajectory of O}, which is always the first oscillator to jump-up in (A), (B), (C), and (D). Oy is also the first oscillator to
jump-down in (E) and (F). The thick dashed curve represents the trajectory for O;. (A) This graph displays typical trajectories for
a pair of oscillators whose initial time difference is in region [ of Fig. 4. (B) Trajectories for a pair of oscillators whose initial time
difference is in region II. (C) Trajectories for region III. (D) Trajectories for region IV. In this region it is possible for antiphase
solutions to arise if the coupling strength is not large enough. In (E) and (F) we display the two classes of trajectories arising when
two oscillators jump-down from the active phase to the silent phase of the limit cycle. (E) This graph displays the trajectories for a
typical initial condition as described in Appendix B and is analogous to region II of Fig. 4. (F) This graph displays the trajectories
for the oscillators as they jump-down from RBs to LBs with initial conditions analogous to region III of Fig. 4.
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oscillator is in the active phase. Numerical simulations
indicate that desynchronous solutions typically result
from this type of trajectory.

Region II of Fig. 4 contains trajectories such that
when O; receives excitation, it is able to immediately
jump up to URB, and O, receives excitation at time
27. If t > TRM/2, then O jumps down to LRB and
one oscillator is in the silent phase and the other os-
cillator is in the active phase. As previously noted,
desynchronous solutions typically result from this type
of trajectory. However, if the time delay satisfies 0 <
7 < TrM/2, then O hops from LRB to URB when it
receives excitation and both oscillators are on URB.
The evolution of the system can then readily be cal-
culated. Region 1I is thus defined for time delays 0 <
T < trMm/2. Typical trajectories for a pair of oscilla-
tors in this region are shown in Fig. 5(B). The initial
time difference is bounded by t < I"(¥1(0), y2(0)) <
11 + 1, where 77 is given by

| (LLKV+oz—A+y
T = - .
! LLK, —A+7y

(13)

This is the time of travel from LLK, +a to LLK,
on LLB. With zero time delay, the y-distance between
the two oscillators remains the same before and af-
ter the jump up, but the time difference between them
changes. If the ratio of the initial time difference on
LLB to the time difference after the jump (on URB)
is less than 1, then there is compression [33], and
the oscillators synchronize at a geometric rate. With
time delay, the y-distance between the two oscillators
changes before they are both on URB. From Fig. 5(B),
one can see that O travels upward on LRB, while O;
travels downward on LLB until receiving excitation.
Depending on the initial conditions, the y-distance
between the two oscillators can shrink, or increase.
When the y-distance decreases, the time difference
decreases by a factor greater than the compression
ratio alone. When the y-distance increases, the time
difference is less than or equal to the time delay. In
Appendix A, we derive the time difference between
the two oscillators after one period, and show that it
descreases.

The initial conditions of region III of Fig. 4 are
bounded by 714+t < I'(31(0), »2(0)) < 11 +TRM —T.

In region III, O receives excitation, hops to ULB,
and jumps up to URB before O; jumps down to LLB.
Typical trajectories for a pair of oscillators in region
111 are shown in Fig. 5(C). For this class of trajectories,
it is shown in Appendix A that after one cycle, the
time difference between the two oscillators decreases.

Region 1V of Fig. 4 is bounded by 71 + tTpm + 7 <
I'(y1(0), y2(0)) < 7L — t. If the initial separation
of the oscillators is larger than the upper bound, then
the oscillators cannot be on the limit cycle and on
the LLB during the time [z, 0], and we do not ex-
amine initial time differences beyond this range. In
region IV, O receives excitation and hops to ULB.
However, O, does not receive excitation long enough
to reach LLK, + a and hops back to LLB after O,
has traversed LRB. Typical trajectories for a pair of
oscillators in region IV are shown in Fig. 5(D). In
Appendix A we show that the time difference between
the two oscillators decreases if the coupling strength
is sufficiently large, i.e. satisfies condition (A.35). We
also show that if that condition is met, then the os-
cillators whose initial conditions are in region IV do
not map into region V, but instead map to regions
I, IT, or TII. If condition (A.35) is not satisfied then
desynchronous solutions can occur for some initial
conditions.

The analysis of regions II-IV of Fig. 4 requires
that we calculate the change in the time difference be-
tween the two oscillators when they jump down from
the active to the silent phase as well. We do this in
Appendix B. The cases examined are analogous to re-
gions I and III and are called region IIg and Ilig. In
Fig. 5(E) we display trajectories for a pair of oscilla-
tors in region IIgr. The leading oscillator in this region
jumps down and the other oscillator is able to jump
down from URB to LLB when it no longer receives
excitation. In region Il the leading oscillator jumps
down and the other oscillator hops from URB to LRB
when it no longer receives excitation and then jumps
to LLB. Typical trajectories for a pair of oscillators
in region IIlIr are shown in Fig. 5(F). We assume that
LRB is the fastest branch in the system. This places a
limit on the size of «, and also limits the number of
trajectories that can arise from the RBs. The resulting
restriction on ¢ is given in (B.14). Both restrictions,
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(A.35) and (B.14), on the coupling strength are sum-
marized to

[cacicy Ccle2 — €3¢4
e T~ <o < ———— (14)
) €3 —C)

where the values of ¢; are given by

ag=LLKy,—A—y, cs=LLK,+a—-Xx~-y,
cy=LLKy—-A+y, ce=LLKy+oa—A+y,
c3=LRK,—-XA~-y, c7=LRKy+a—-i—y,
c4=LRK, —-A+y, c¢cgs=LRK,+a—A+y.

For the parameters listed in the caption of Fig. 7,
for example, the coupling strength must be within
the following values 1.1334 < @ < 16 according to
(14). Note that in the case of zero time delay, the
conditions in (14) must still be satisfied in order for
loose synchrony (in this case perfect synchrony) to
occur.

Within the bounds specified in (14), and given ini-
tial conditions in regions II-IV of Fig. 4, the time
difference between the two oscillators will always de-
crease. As the system evolves, the time difference will
decrease until it becomes less than the time delay. The
oscillators will then be loosely synchronous.

Note that the diagram obtained in Fig. 4 is not com-
pletely generic for all parameter values. One can mod-
ify parameters, «, ¥, A, LRK, and LLKy, so that the
value of Ty g changes. This is the value that controls
the height of the thick line in Fig. 4. By shifting this
line up or down one can change the relative sizes of
the regions or even remove region IV. But, since we
have assumed that T g > tyrs the value of 7y
cannot be altered so that regions II or Il are removed,
i.e. T > 71 + TrRM. Thus regions 1I and III always
exist. If T g is made larger, then region IV becomes
larger, but no new regions are created in this manner.

3.3. Desynchronous solutions

If o is larger than the upper bound in (14), nu-
merical simulations indicate that loose synchrony is
still possible. If « is less than the lower bound in
(14), then our analysis shows that neutrally stable

desynchronous solutions of period less than 7' arise
for some initial conditions in region of IV of Fig. 4.
The period is less than the period of the loosely
synchronous solution in part because the oscillators
traverse LRB, instead of the longer URB. This desyn-
chronous solution is analogous to a case of antiphase
behavior as discussed by Kopell and Somers [15]. In
[15] it was stated that antiphase solutions can arise
given a coupling strength between relaxation oscilla-
tors that is not too large, with limit cycles such that
the time spent on the active and silent phases are
sufficiently unequal. Our results for region IV are in
agreement with these statements. Region IV exists
only when the time spent on the silent phase is suffi-
ciently larger than the time spent on the active phase,
i.e. TLLB > 71 + TRM > TURB, and desynchronous
solutions can arise in this region only if the coupling
strength is below the lower bound of (14). Because
the speed of an oscillator is identical on both up-
per and lower cubics, these desynchronous solutions
are neutrally stable, that is, any small perturbation
moves the oscillators into another neraby desyn-
chronous solution. This possibility is also noted in
[15]. The range of possible desynchronous solutions
does not cover the entire area of region IV. We do
not delve further into these particular desynchronous
solutions.

In regions I, II, and III of Fig. 4, O| always receives
excitation before jumping down, and both oscillators
are on URB for some amount of time. This situation
does not occur in region V and this is the reason why
loosely synchronous solutions exhibited in regions I,
II, and II1, generally disappear in region V. In this
region, with time delays larger than trM/2, O tra-
verses LRB and jumps down to LLB before receiv-
ing excitation. Meanwhile, O, receives excitation and
jumps to URB. One oscillator is in the silent phase,
and the other oscillator is in the active phase, or the
oscillators are on the opposite sides of the limit cy-
cle. From these initial conditions, numerical simula-
tions indicate that desynchronous solutions typically
arise. They can quickly become perfectly antiphase,
with one oscillator receiving excitation and traveling
upward along URB, while the other oscillator is not
receiving excitation and is traveling downward along
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Fig. 6. A plot of antiphase behavior arising in region V of Fig. 4. The parameter values used are listed in the captions of Figs. 2

and 3 with t = 0.07T, « = 6, and ¢ = 0.025.

LLB. After a time equal to the time delay, the oscil-
lator on the active phase ceases to receive excitation
and jumps down to LLB, while the oscillator on the
silent phase begins to receive excitation, and jumps
up to URB. This solution has period 2t. The behavior
just described is one of many desynchronous solutions
that can exist in region V dependent on the location
of the knees and the coupling strength. We have ob-
tained some analytic results for a few small convex
areas within region V. Our results are not shown here
because they do not cover a significant portion of
region V. Also, the derivations are quite lengthy. The
areas we have examined analytically in region V have
desynchronous or antiphase solutions of period less
than T. Numerical simulations suggest that region V
consists mostly of solutions in which the oscillators
are nearly antiphase and have a period less than 7. In
Fig. 6 we display an example of antiphase behavior in
region V. The period of oscillation measured in this
figure is approximately 2z.

3.4. Time delays in other oscillators

For the oscillator model we use, the speed of an os-
cillator depends only on its y-value, or in other words,
the speed of an oscillator is the same no matter which
cubic it is on. This condition allows for exact solu-
tions, but is not very general. As noted in [15], differ-
ent speeds of motion along different cubics can give
rise to different behaviors. We have tested this sce-
nario by using the Morris—Lecar equations [23] and
other relaxation oscillators that exhibit different speeds
along different cubics, and our results from numeri-
cal simulations indicate that the predominant behvior
of loose synchrony is still observed. A pair of oscil-
lators quickly converges to a solution in which the
time difference between the two oscillators is less than
or equal to the time delay. However, the loosely syn-
chronous solutions are no longer neutrally stable. We
observe several possible solutions for two oscillators,
the full analysis of which will be treated elsewhere.
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For this paper, it suffices to point out that loose syn-
chrony persists under analogous conditions to those
given in Section 3.2.

We find that for initial conditions analogous to re-
gion IV of Fig. 4, several desynchronous solutions can
exist for small coupling strengths. These solutions are
analogous to those described by Somers and Kopell
[15], in their analysis of a pair of relaxation oscillators
without time delay coupling.

For time delays larger than half the amount of time
spent on the fastest branch of the system, we find
equivalent behaviors to those observed in region V of
Fig. 4. The oscillators frequently exhibit nearly an-
tiphase relations with periods of approximately 2z,
thus conforming to earlier results when the speed of
motion is the same for the upper and lower cubics.

In summary, we have analyzed a pair of relaxation
oscillators in the singular limit, with initial conditions
such that the oscillators are on the silent phase of the
limit cycle during the time [—7, 0], and with time de-
lays of less than trM. Given the appropriate upper and
lower bounds on the coupling strength, as specified in
(14}, loosely synchronous solutions arise for regions
I-IV of Fig. 4. For coupling strengths less than the
lower bound in (14) and initial conditions such that
the time difference between the two oscillators is in
region IV, desynchronous solutions can occur. Exten-
sive numerical simulations in region V indicate that
loosely synchronous solutions occur, as do antiphase
and desynchronous solutions with periods less than T'.
In numerical studies with Morris—Lecar oscillators and
other relaxation oscillators, in which the speed along
different cubics is not identical, we find similar results.

4. Networks of oscillators
4.]1. Relationship with pairs of oscillators

Analysis of more than two locally coupled oscilla-
tors quickly becomes infeasible because the number
of possible initial configurations and their resultant
possible trajectories increase dramatically with the
number of oscillators. The rest of the paper is based
on numerical simulations of oscillator networks. The

connection strengths are normalized so that the sum
of the weights is the same for every oscillator [40].
For example, in a chain of oscillators, an oscillator
at one end receives input from only one oscillator.
This connection weight is twice the amount of the
connection weight to an oscillator in the center of
the chain, which receives input from its two nearest
neighbors. Initially, oscillators are randomly placed
on LLB of the limit cycle so that the time difference
between every pair of oscillators is in regions I-III of
Fig. 4. These simulations reveal that the behavior of
a network has similarities to that of two oscillators.
The most pertinent similalry is that after the network
has settled into a stable periodic solution, any two
neighboring oscillators i and j have a time difference
as follows:

IF(yi(0), yi)l < 7. (15)

In Fig. 7 we demonstrate this behavior by displaying
the x-values of a chain of 50 oscillators with nearest
neighbor coupling and t = 0.037. We use the term
loosely synchronous to describe networks of oscilla-
tors in which condition (15) is met because each oscil-
lator is still loosely synchronized with its neighbors.
In Fig. 7 it appears that the network has stabilized
by the 3rd or 4th cycle. In our numerical simulation,
we call network stable if the changes in time differ-
ence between neighboring oscillators remains below
a threshold for more than two periods. This threshold
is set to 0.00757. With this measure, the network in
Fig. 7 meets our criteria of stability by the 3rd cycle.

We have also examined networks in which the con-
nection weights are not normalized, thus the two os-
cillators at the ends of the chain receive only half as
much input as the other oscillators. We find that loose
synchrony is achieved so long as the coupling strength
to the end oscillators are still within the bounds spec-
ified in (14). Also, in tests where 10% noise is added
to the coupling strengths and with no normalization,
we find that loose synchrony can still be achieved. The
oscillators quickly attain solutions such that they are
within region I or II with respect to their neighbors,
and are thus able to jump when they receive excita-
tion. If the conditions in (14) are not satisfied, then
desynchronous solutions can arise. We also note that
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Fig. 7. Loose synchrony in a chain of relaxation oscillators. The temporal activities of 50 oscillators with nearest neighbor coupling
are shown. Numerical calculations indicate that this network achieves stability by the 3rd cycle and that all neighboring oscillators
satisfy |7 (v (2), yi+1())| < t. The parameter values used are A =8, y = 12, 8 = 1000, « = 500, r = 0.037, « = 6, 6 = 0.5,

and ¢ = 0.025.

similar behaviors hold in networks of relaxation os-
cillators in which the speed of motion is different for
different cubics. Loose synchrony is quickly achieved,
but, as in the case for two oscillators, loose synchrony
is no longer neutrally stable.

We find through extensive simulations that two-
dimensional locally coupled networks also display
loose synchrony. In these simulations, all oscillators
are randomly distributed on the LLB so that the time
difference between every pair of oscillators is within
regions [-1I1 of Fig. 4. After the network has achieved

stability, using the same criteria of stability men-
tioned previously, the time differences between any
oscillator and its nearest neighbors are always less
than or equal to the time delay. Thus two-dimensional
networks also exhibit loose synchrony, similar to a
pair of oscillators or a chain. In Fig. 8 we display an
example of loose synchrony in a 10 x 10 network of
oscillators. We have combined the x-values of all 100
oscillators in the figure to facilitate the comparison
between phases. The network in Fig. 8 meets our
criteria of stability by the third cycle.
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Fig. 8. Loose synchrony in a two-dimensional grid of oscillators. This figure displays the temporal activities of every oscillator from
a 10 x 10 network. Each oscillator is coupled with its four nearest neighbors. The network achieves stability by the third cycle, and
for all neighboring oscillators i and j, |I"(y;i(#), y;(t))| < 7. The parameter values used are the same as in Fig. 7.
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Fig. 9. Antiphase behavior in a chain of relaxation oscillators. The temporal activities of 15 oscillators in a one-dimensional chain
with nearest neighbor connections are shown. Neighboring oscillators exhibit antiphase relationships and approach a period of
approximately 27. The parameter values are listed in the caption of Fig. 7 with © = 0.08T.
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Fig. 10. Desynchronous solutions in a chain of relaxation oscillators. If the coupling strength is below the lower bound specified in
(14), desynchronous solutions can arise. In this simulation, & = 1, which is below the lower bound specified in (14), and all other
parameters are listed in the caption of Fig. 7. Oscillators 12 and 13 had initial conditions such that they are able to remain in a
desynchronous relationship. All other neighboring oscillators are loosely synchronous.

In region V of Fig. 4, a pair of oscillators typically
exhibits antiphase behavior of high frequency. This
behavior can also be seen in networks of oscillators.
In Fig. 9 we display an example of antiphase behavior
in a chain of 15 oscillators. The oscillators are ran-
domly placed on the LLB of the limit cycle so that
the time difference between every pair of oscillators
is in region V with t > trMm/2. In this simulation
oscillators quickly achieve nearly antiphase relations
with their neighbors and the period of each oscillator
approaches 27.

For small values of the coupling strength, with
initial in region IV of Fig. 4, a pair of oscillators
can exhibit desynchronous solutions. These con-
ditions can also cause desynchronous solutions in
one-dimensional networks. In Fig. 10 we display an
example of desynchronous behavior of arising from
region IV in a chain of 15 oscillators. The initial

conditions are chosen so that the time difference be-
tween every pair of oscillators is randomly distributed
in regions I-IV. In Fig. 10 several oscillators initially
begin with desynchronous relationships, but become
loosely synchronous through interactions with their
neighbors. Oscillators 12 and 13, however, remain in
a desynchronous relationship, and exhibit the same
period of oscillation as the loosely synchronous so-
lutions. This behavior corresponds to fractured syn-
chrony as described in [34]. The correspondence,
however, is not exact. Time delays were not studied
in [34]. A one-dimensional ring of relaxation oscil-
lators in their system exhibited two distinct groups
of oscillators. Each group achieved perfect synchrony
and was approximately antiphase with the other
group. In our simulation, two groups of oscillators
exist in a one-dimensional chain of oscillators. Each
group exhibits loose synchrony, and an approximately
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antiphase relationship exists between the two oscilla-
tors on the single border between the two groups.

For time delays and initial conditions in region V of
Fig. 4, there is no clear relation between pairs of os-
cillators and networks of oscillators. In pairs of oscil-
lators region V consists mostly of antiphase relations.
For networks of oscillators loosely synchronous, an-
tiphase, and other solutions arise dependent on the ini-
tial conditions and the coupling strength. For the rest
of the paper we will focus in the initial conditions and
time delays which lead to loose synchrony between
neighboring oscillators.

4.2. The maximum time difference

Although simulations indicate that neighboring
oscillators are loosely synchronous, loose synchrony
does not indicate the degree of global synchrony in
an entire network. Obviously, a measure of global
synchrony is important, and there are many ways of
determining synchrony in an oscillatory system, see
[25] for examples. We could convert positions of os-
cillators on the limit cycle into phase variables, ¢;,
but due to the large amplitude variations during the
hops and jumps, defining a phase is problematic. One
could also base a measure on Euclidean distance, and
find the average separation between oscillators. How-
ever, during the jumps, much distance is covered in
a short time. A measure based on Euclidean distance
can vary during a single cycle. We instead examine
the maximum time difference between any two oscil-
lators in the network. The maximum time difference
is defined as follows. Let t;‘ denote the time at which
the ith oscillator, O;, jumps up during the kth period.
Let Tt’; = ltl.k - t]’fl and

T* =max(T}) G.j=1,....N). (16)

Thus, Y is the maximum time difference between
any two oscillators during the kth period. Each period
of an oscillator can be delineated by the time it jumps
up. The initial conditions we use, with the time differ-
ence between every pair of oscillators in regions I-111
of Fig. 4, allow for this simple definition of the period
(see Fig. 7). This measure offers direct comparison

with other pertinent quantities such as the period of
oscillation, and the amount of time spent on the ac-
tive and silent phases. Also, the maximum time differ-
ence becomes a constant when the oscillator network
achieves stability.

4.3. LEGION with time delay coupling

We first describe LEGION and then, based on nu-
merical simulations, describe how the dynamics of
LEGION changes when time delays are included in
the interaction between oscillators. The architecture of
LEGION is a two-dimensional array of locally coupled
relaxation oscillators. In addition, each of the oscilla-
tors is coupled with a unit called a Global Inhibitor
(GI). Desynchronization is accomplished by Gl. Oscil-
lators receiving stimulus become oscillatory and those
that do not remain inactive. The connections weights
between oscillators are dynamic. The connections be-
tween stimulated neighboring oscillators increase to a
constant, while connections with unstimulated oscilla-
tors decrease to zero. Thus, only stimulated neighbor-
ing oscillators are connected. Let us assume that all
the oscillators are on the silent phase of the limit cycle.
When one oscillator jumps up to the active phase, GI
becomes active on the fast time scale and sends inhi-
bition to all oscillators. This inhibition serves to lower
the x-nullcline of every oscillator. The x-nullclines of
unexcited oscillators are lowered so that they intersect
their y-nuliclines and the oscillators are attracted to
the newly created fixed points. The inhibition from GI,
however, is not enough to prevent oscillators receiv-
ing excitation from jumping up to the active phase.
Thus the oscillator that has jumped up to the active
phase, can recruit its stimulated neighboring oscilla-
tors. These oscillators jump up to the active phase and
recruit their stimulated neighbors and so on. Since
each jump decreases the distance between coupled os-
cillators, a group of stimulated neighboring oscilla-
tors quickly synchronizes. Following [36], we refer to
a group of stimulated and connected oscillators as a
block. A block will jump up to the active phase, while
other blocks continue to travel along the silent phase,
approaching the attracting fixed points. This mech-
anism is called selective gating [36]. When a block
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Fig. 11. An example of LEGION dynamics with time delays in the coupling between oscillators. The temporal activity is displayed
for 60 oscillators and GI. The activity of GI is displayed beneath the oscillators. The following parameter values are used: y = 6,
A=395a=21t=1,«=500, 8 =1000, 68 =-0.5, and £ = 0.025.

of oscillators jumps down, GI quickly releases its in-
hibition to the network on a fast time scale. The x-
nullclines of all oscillators will then rise so that the at-
tracting fixed points disappear. Other blocks can then
jump up to the active phase and the aforementioned
process repeats.

Assuming a block of oscillators is perfectly syn-
chronous, the number of blocks that can be desynchro-
nized is related to the ratio of the time an oscillator

block spends on the active and silent phases [36]. If
however, a block of oscillators is not perfectly syn-
chronous, the amount of time a block spends in the
active phase increases. The amount of time a block
spends in the active phase is thus an important mea-
sure for the network.

In Fig. 11 we present the output of a network equiv-
alent to LEGION, with the inclusion of time delays be-
tween oscillators. Even though all oscillators receive
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Fig. 12. The histograms of Y* for one-dimensional networks. The histograms T are based on simulations whose initial conditions
were restricted to LLB of the limit cycle so that the time difference between any two oscillators were in regions I-1I1 of Fig. 4. The
horizontal axis represents the maximum difference attained, and the vertical axis represent the number of times it was attained. The
data were taken after the system had evolved for 11 cycles. The average time needed to achieve stability was approximately three
cycles. (A) and (B) are the results for 50 and 100 oscillators, respectively. The data for T* in (A) and (B) are based on 2250 and
2160 simulations, respectively. The parameters used are given in the caption of Fig. 7.

stimulation, we set both the connection weights be-
tween oscillators 20 and 21, and between those of os-
cillators 40 and 41, to zero in order to create three
groups of oscillators. The network is able to group and
segregate the three blocks, but the individual blocks
no longer attain perfect synchrony; loose synchrony
is achieved within each block. Neighboring oscilla-
tors are loosely synchronous according to (15). Be-
cause perfect synchrony is no longer achieved, the
amount of time that a block of oscillators spends on
the active phase is no longer simply determined by
that of a single oscillator. The additional amount of
time a block spends on the active phase, in comparison
with the time a perfectly synchronous block spends
on the active phase, is given by the maximum time
difference within a block of oscillators. If the maxi-
mum time difference for a block is near 7y g, then
the other blocks on the silent phase of the limit cycle
become stuck at the attracting fixed points and fur-
ther segregating them becomes problematic. If, how-
ever, the maximum time difference is still relatively
small in comparison with 71 g, then other blocks of
oscillators can be separated, and the number of dis-
tinct blocks LEGION can segregate does not decrease
drastically.

S. Maximum time difference in oscillator networks
5.1. One- and two-dimensional networks

We examine the maximum time difference for one-
dimensional networks of oscillators. Since the times
at which the oscillators jump up are intrinsically de-
termined by the initial conditions of the network, we
cannot determine analytically the value that % will
take. Of course, in a chain of N oscillators, the max-
imum possible value of T* is given by (N — 1)7, but
in simulations, we rarely see values of even half of
this. We are thus led to examine the distribution of T
over a number of trials.

In Figs. 12(A) and (B) we display histograms of T*
for networks of size 50 and 100 oscillators. The oscil-
lators are placed on LLB so that the initial time dif-
ference between every pair of oscillators is randomly
distributed in regions I-III of Fig. 4. The largest value
T'! can have is 21 in the units of Figs. 12(A) and (B).
After the network has achieved stability, most of the
trials have values of T% (k > 1) that are less than
21. A small percentage (4%) of the trials resulted in
T* increasing significantly larger than Y, in some
cases alsmost doubling. Other histograms generated
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Fig. 13. The histograms of Y* for two-dimensional networks. These histograms are based on simulations with initial conditions as
described in the caption of Fig. 12. The data were taken during the 11th cycle. The average time needed to achieve stability was
approximately three cycles. (A) and (B) are the results for 5 x 5 and 10 x 10 oscillator networks, respectively. The data for T* in (A)
and (B) are based on 2530 and 1320 simulations, respectively. The parameter values used are the same as in the caption of Fig. 7.

with different parameter values display similar distri-
butions. By similar we mean that there is a marked
tendency for a majority of the trials to remain within
the maximum time difference of the initial bounds, or
T* < 1! In addition, there is a small but notice-
able peak on the tail of the distribution in Figs. 12(A)
and (B). This suggests that there are a few initial con-
ditions which result in large values of the maximum
time difference, but we do not know what initial con-
figurations cause this.

We also find in other simulations that the distribu-
tion T* is sensitive to initial conditions. For initial
conditions such that 10% of the oscillators are ran-
domly distributed on URB, the distribution T* be-
comes much broader and the average maximum time
difference almost doubles (data not shown).

We now discuss our simulations of two-dimensional
networks, in which oscillators are coupled with their
four nearest neighbors. The initial conditions are as
before, with every oscillator randomly positioned on
LLB so that the initial time difference between every
pair of oscillators is in regions I-III of Fig. 4. Our sim-
ulations indicate that after the network achieves stabil-
ity, neighboring oscillators have time differences that
are less than or equal to the time delay. In other words,
the network achieves loose synchrony. As before, the
behavior of the maximum time difference is unknown.
In Figs. 13(A) and (B) we display histograms of Tk

for networks of size 5x 5 and 10 x 10, respectively. Be-
cause the coupling is between the four nearest neigh-
bors, the maximum possible difference is given by
(2L — D)7, where L is the length of one side of a
square. As in the histograms for chains of oscillators,
the histograms are skewed towards smaller values of
the maximum time difference.

We note that, although the network sizes are not
large, the above simulations are computationally ex-
pensive. Each of the histograms shown in Figs. 12
and 13 require a large number of data points. To
collect the data we made use of several hundred
high-performance workstations, located in various
computer laboratories in The Ohio State University,
Department of Computer and Information Science.

5.2. Bounding the maximum time difference

As noted previously, T* can increase as the net-
work evolves. Numerical simulations indicate that in
most cases T decreases as k increases, but for some
initial conditions T* increases with k. We want to
know if there is some range of initial conditions along
LLB such that ¥ does not increase with time. This
would be useful in determining the amount of time a
block oscillators spends in the active phase, and thus
would play an important role in determining network
parameters. If there were such a constraint, then one
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Fig. 14. A plot of the evolution of the maximum time difference for 1980 trials. The trials are arranged in order from largest to
smallest to emphasize that most of the trials resulted in a decrease in Y*. The thick line is a plot of Y2 — 7! and 73 — 12 is
indicated by the thin line. The network is almost stable by the third cycle and the change in Y — Y2 is not nearly as great as for
T2 — 7! The dotted line displays Y7 — Y5, The parameters used are the same as in the caption of Fig. 7 with the exceptions that

A=7and v =0.04T.

could always begin the oscillators within this range
and know for certain that Y* will not increase as the
systern evolves, in spite of coupling delays between
neighboring oscillators.

Specifically, we explore whether there exists some
range of initial conditions, which we call §2, such that
if N oscillators are randomly distributed within 2,
then,

r'> 7k (17)

Let £2 be a range of initial conditions on the LLB
defined as 2 = [2p, £27], so that 27 — £2p is the
time it takes to traverse 2. If 27 — 25 < 1, then
the time difference between every pair of oscillators
in the network satisfies I"(y;(0), y;(0)) < 7 and the
interaction term does not cause any oscillators to jump

up or down. Since the interaction does not change the
time difference between any oscillators, the maximum
time difference does not change, or T! = T5 We
conjecture a large range

£2¢c = [0, 1], (18)
where
2 T
tps = log (ﬂ}’_") ) (19)
2

The value of ¢, originates from analysis of two os-
cillators. It is the time difference resulting in perfect
synchronization for a pair of oscillators. Simulations
of oscillator networks, with random initial conditions
in the range £2¢, support this conjecture. In Fig. 14
we plot values of T2 — T'! (thick solid line) for 1980
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trials of a chain of 75 oscillators randomly positioned
so that the initial time difference between every pair
of oscillators is within §2¢. The values of Y2 — 7!
have been plotted in order from largest to smallest for
simplicity. By far, the majority of trials yield a neg-
ative result for 72 — 7!, indicating that the value of
T* decreases from the first to second period. Approx-
imately 4% of the trials did, however, yield positive
values for T2 — 7!, The largest positive change and
a value of 0.1905. The numerical method used was
an adaptive Runge—Kutta method modified from [27]
for time delay differential equations. The resulting av-
erage step size of the method was 0.1305. Errors in
computing the T* are on the order of the average step
size. The small percentage of trials that resulted in
small positive values of Y> — T'! are very likely to
have resulted from numerical inaccuracy. In Fig. 14,
T3 — Y2 s given by the thin solid line. Note that there
is less of a change from the second to third cycle be-
cause the network achieves stability quickly. The av-
erage number of cycles needed to achieve stability is
4, so the values of Y7 — 7 should be near zero. In
Fig. 14 the dotted line represents ¥/ — Y%, and al-
though near zero, it has noticeable deviations. The de-
viations from zero are again on the order of the average
step size. This provides further evidence that numeri-
cal errors cause the deviations seen in both ¥/ — Y©
and T2 — 7). We have tested this result with net-
works of 25, 50, and 100 oscillators as well, and dis-
play only one graph because the others are extremely
similar and little additional information is revealed.
We have also tested this algorithm with a fourth order
Runge—Kutta algorithm with fixed step size. Similar
results were obtained. Approximately 5% of the trials
resulted in small positive increases in Y2 — Y'!. Us-
ing this numerical algorithm, the maximum increase
was 15h with step-size & = 0.005. We attribute these
small increases to the fact that our conjecture is based
on the singular limit ¢ — 0, while in simulations, the
value used was ¢ = 0.025.

In summary, our extensive simulations support our
conjecture that £2¢ is a range of initial conditions
which satisfies condition (17). Further examination of
this conjecture also lends support. For ranges larger
than £2¢, a significant percentage of trials result in

T2 — 1! > 1. For ranges smaller than $2¢ there are
specific initial conditions in which (17) is violated.
But these conditions do not cause an increase when
the range becomes as large as £2¢. We note that pa-
rameters can be chosen so that the range $2¢ is a sig-
nificant percentage of the period.

6. Concluding remarks

We have presented analysis describing the dynam-
ics of a pair of relaxation oscillators with time delay
coupling. We have proven that loosely synchronous
solutions exist dependent on the initial conditions, the
time delay, and the strength of the coupling. We have
provided explicit statements regarding appropriate ini-
tial conditions, time delays, and coupling strengths
which result in loose synchrony. Analysis and numer-
ical simulations indicate that there is a critical time
delay Trm/2, beyond which antiphase solutions of pe-
riod less than 7 commonly arise. Although the anal-
ysis for multiple oscillators has not been carried out,
numerical simulations indicate that locally coupled
networks of oscillators also display similar behaviors
as seen in a pair of oscillators. In particular, loose syn-
chrony exists between neighboring oscillators.

The behaviors analyzed and simulated in this paper
are in terms of a specific set of relaxations oscillators.
However, the behaviors we examined should also exist
in other relaxation oscillators. In preliminary investi-
gations of locally coupled networks of Morris~Lecar
oscillators [23], Bonhoeffer—van der Pol oscillators
[7], and other relaxation type oscillators, we find that
loose synchrony is quickly attained for time delays
less than the time spent on the fastest branch of the
system. Both the Morris-Lecar and Bonhoeffer—van
der Pol are related to the class of excitable-oscillatory
systems including the Hodgkin—Huxley model of neu-
ronal activity [10], and some of the behaviors seen
here may carry over to this more complex model.

To characterize the degree of snychrony in the net-
work as a whole, we have introduced a measure of
synchrony, the maximum time difference between any
two oscillators in the network. The maximum time dif-
ference of a network depends on the initial conditions
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of the oscillators. In order to study the maximum time
difference, we have given histograms of this measure
using random initial conditions for several networks.
Our results indicate that the maximum time differ-
ence typically decreases as the system evolves, and
rarely reaches its maximum possible value, (N — 1)t.
This observation holds even for small networks, where
the initial time difference between oscillators can be
greater than (N — 1)r. But our results indicate that
some initial conditions exist which cause relatively
large increases in the maximum time difference. In
an effort to bound the maximum time difference we
have postulated a range of initial conditions in which
the maximum time difference does not increase. This
range arises naturally from the analysis of a pair of
oscillators and our extensive numerical experiments
support this conjecture.

Below a certain connection strength, a pair of oscil-
lators can exhibit neutrally stable desynchronous so-
lutions. This result is in agreement with the results of
[15]. With this result we found an analogous behav-
ior to that of fractured synchrony described in [34].
Above the critical time delay, a pair of oscillators typ-
ically displays antiphase behavior with a frequency
that can be significantly higher than the frequency of
the synchronous solution. In networks of oscillators,
with T > trM/2, antiphase, loosely synchronous, and
other more complex behaviors are seen in numerical
simulations.

We have tested a network equivalent to LEGION
with time delays in the coupling between neighboring
oscillators, and found that groups of oscillators can
be desynchronized. However, the number of groups
that can be segmented by LEGION decreases when
time delays are introduced. This is because oscillator
groups are no longer perfectly synchronous. The abil-
ity of LEGION to segment oscillator groups is related
to the maximum time difference within each group.
With our knowledge of a range of initial conditions in
which the maximum time difference does not increase,
we can choose appropriate parameters and initial con-
ditions so that the properties of oscillatory correlation
in LEGION are maintained.

Because relaxation oscillators capture some basic
neuronal properties and time delays are inevitable in

neuronal signal transmission, our results should have
implications to understanding oscillations in the ner-
vous system. Our study suggests that in the presence of
time delays local connections alone may be incapable
of supporting precise synchronization over large neu-
ronal populations. This may explain why synchrony
is not seen across distances of more than 7 mm in the
cat visual cortex, where lateral connections within the
cortex are assumed to give rise to the observed syn-
chronization [32]. Also, measurements of synchrony
in neural activities indicate that synchrony is not per-
fect [32]. This imperfect synchronization might indi-
cate the existence of loose synchrony because lateral
connections always have time delays.
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Appendix A

For regions II and III in Fig. 4, we show, in the sin-
gular limit, that as system (3) evolves, the time differ-
ence between the oscillators decreases. In region IV,
we find that the time difference between the oscillators
decreases only if the coupling strength is above a cer-
tain value, which we derive. Calculating how the time
difference between the oscillators changes involves
both ‘jump-up’ and ‘jump-down’ cases. The jump-up
case is analyzed here, while the jump-down case is
analyzed in Appendix B. Analysis in both appendices
is for time delays 0 < © < trMm/2.

A.l. Region II

In region II, O jumps up, and the initial position
of 05 is such that when it receives excitation at time
7 later, it jumps up directly to URB. This activity is
displayed in Fig. 5(B). This region is bounded by 7 <
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to < 11 + 1, where we use #y to denote the initial time
difference between the two oscillators. Assuming that
O1 jumps up at time ¢ = 0, and using (8) and (9), the
positions of O and O; at time t are given by

yi(r)=(LLKy — A —y)e " +r+y
=cie " +Ar+y, (A1)
y2(t) =200 — A+ y)e "  +A1—y. (A.2)

We rewrite y2(0) in terms of #g, yielding

(LLKy — A+ y)e® = 2 = (32(0) — A + y).
(A3)

Using (A.3), we rewrite (A.2) as
yar) = 2T+ A —y. (A4)

To find the time difference between the oscillators after
they have jumped up to the active phase, 7, we use
(9) to write

(@ =@ —r—ye " +r+y. (A.5)
Substituting (A.1) and (A.4) into (A.5) yields
e —2y =cre T, (A.6)

We use (A.6) to write #; as a function of the initial
time difference, g,

-7

cie

= log I:Czeto_r —2y

] = g(%). (A7)

This equation arises when the order of the oscillators
has been switched, i.e. Oy leads O). Only in this
case can the time difference between the oscillators
become larger than 7. It can be shown that initial con-
ditions in region II always map into the anaologous
region on the URB, called region IIg. The equation
for determining the time difference between the oscil-
lators after the jump-down to the silent phase is given
in (B.4). Using both (A.7) and (B.4) we can explicitly
write the time difference between the oscillators after
they return to the silent phase, t2, as a function of the
initial time difference, 1,

= f(g(t))
b cge T (cpe0™T — 2y)
=08 cie7e™2t + 2y (cpe’0™T —2y)

] . (A8

After some tedious algebra it can be shown that
to > t, for all values of #p > 0 in region II.

A.2. Region Il

We now examine region III, which is defined by
T1+T<ty<11+7TRM— T, (A.9)

where TRy is given in (12) and 1 is given in (13). In
this region, O1 jumps up attime ¢+ = 0 and O3 receives
excitation at a time t later. O, is far up enough on
LLB such that it hops to ULB before jumping up to
URB. Typical trajectories for a pair of oscillators in
this region are displayed in Fig. 5(C). In this case we
calculate the positions of the oscillators as follows:

yl(t() - 1) = (LLK), — A - y)e”_t() +A+y
=cie" "+ A+,
»2(to — 1) =LLKy +a.

(A.10)
(A.11)

To find the time difference between the oscillators on
the active phase, 71, we use (9) to write

c1e”" 0 = (LLKy +a — A —y)e”" = cse™".
(A.12)

We use (A.12) to write #; as a function of the initial
time difference, 1y,

n=t—1—71s, (A.13)

where

75 = log (C—l> , (A.14)
s

In this case it can be shown that the values of ¢; can
be in both region IIgx and IIIg. We do not examine
region Il as these time differences can be shown to
always map to region II, and then the time difference
between the oscillators always decreases as discussed
previously. We now examine the time difference be-
tween the oscillators when they map from region II to
region IlIg. Using (A.13) and (B.9) we write the time
difference between the oscillators after they have both
returned to the silent phase, f;, as

th =t —T] —T5 — T2 — T4. (A.15)
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The values of 7, and 14 arise from the analysis of the
jump-down and are given in (B.1) and (B.10), respec-
tively. We examine what values of #p result in a value
of 71 that is in region IllIg, or

t1>1+1, (A.16)
h—71—1T5s>T+T, (A17)
th>T1+15+12+T. (A.18)

If 15 is positive, then (A.15) shows that the time differ-
ence between the oscillators after a single period has
decreased. However, if 1, is negative, we must test if
it is possible for |#2| > 7. We examine the following
inequality:

p=t—1—15— T2 — T4 > —Io, (A.19)

2t > 11 + 15 + 12 + 14. (A.20)

Using (A.20) and the minimum value of #p, from
(A.18), results in

20+ 15+n2+1)>0+175+ 102+ 1",
T+ 15+ 12+ 27 > 14,

(A21)
(A.22)

Since 11 > 14, (A.22) is always true, and therefore
|t2] < ty. Thus, the oscillators in region III always
experience a decrease in the absolute value of their
time difference after jumping up and down.

A.3. Region 1V

The last case we examine on LLB is for initial
conditions such that O jumps up to URB and down
to LLB, while O, remains on the silent phase (see
Fig. 5(D)). This region is defined by the following
bounds:

T+ TRM+T <t <TLLB—T, (A.23)

where Ty p is given in (11). The leading oscillator,
O1, jumps up at time ¢ = 0, and the positions of the
oscillators after O, traverses LRB are

yi(trMm) = LRK,,

y2(TRM) =20 TTRM 4 ) — .

(A.24)
(A.25)

To find the time difference between the oscillators
when they are both on the silent phase, #,, we use (8)
to write

LRK, = e TRM™2 ) — . (A.26)

We use (A.26) to write #> as a function of fy,

) =1ty — T6 — TRM (A.27)

with

76 = log (5‘1) . (A.28)
€2

If 1, is positive, then a decrease in the time difference
between the oscillators occurs. However, if t; is nega-
tive, then O, leads O, and we must check if |;| > 19.
‘We examine the following equation:

(A.29)
(A.30)

T6 + TRM — fo < %0,
76 + TRM
> .

Using the minimum value of 7y in region IV, the con-
straint (A.30) becomes

o >

2(r1 + TRM + T) > T6 + TRM (A.31)
or

Tg < 271 + TRM + 27, (A.32)

2

c (_6) €12 (A.33)
(5] 2 C3

cg =(c2+ ) > EzCLC“e_Zr. (A.34)

c1

We rewrite (A.34) as a restriction on the coupling
strength

€203C4 _,
a>_ |——e " —co.
Cl

The above condition puts a limiting value on the min-
imum value of «. Below this value for the connection
weight it is possible for |©2| > fp and neutrally stable
desynchronous solutions can result.

There is a part of region V that juts between region
1V and region IIL In region V, it is possible for an-
tiphase solutions to arise dependent on the initial con-
ditions, the time delay, and the coupling strength. We

(A.35)
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examine whether a pair of oscillators with initial con-
ditions in region IV will automatically map to region
III, without entering region V. To test this we make
the following statement:

(A.36)
(A37)

D=T+TRM — % <71 +TRM — T,
T6—T1+7T <.

Using (A.37) with the smallest value that ¢y can take
in region IV, we write

T6—T1+1T <7+ TRM+ T, (A.38)

T6 — TRM < 2Ti, (A.39)

a> [D3 (A.40)
c1

If condition (A.40) is satisfied then the oscillators
whose initial conditions are in region IV will not map
into region V. We note that if condition (A.35) is sat-
isfied, then automatically, (A.40) is satisfied. Thus for
coupling strengths that result in loose synchrony, a
pair of oscillators in region IV will never map to re-
gion V. Also, we note that it is not possible for O,
to make two traversals of LRB because the maximum
possible y-value for Oz is LRK, + «.

If constraints (A.35) and the constraint derived in
Appendix B, (B.14), are satisfied then the oscillators
whose initial time difference is in regions II-IV of
Fig. 4, will eventually have a time difference of less
than or equal to the time delay, i.e. they will be loosely
synchronous.

Appendix B

We calculate how the time difference between the
oscillators changes as they jump-down from the active
phase to the silent phase. We label the two regions IIg
and IlIg because of their correspondence to regions
II and III of Fig. 4. No other trajectories are possible
since we have assumed that the fastest branch of the
system is LRB.

B.1. Region IIg

We assume that O jumps down first, at time ¢ =
0, then O ceases to receive excitation at time 7 and

jumps down to LLB (Fig. 5(E)). The time difference
between the oscillators in region IIr is bounded by
T <t <1+ 1, where

7 = log (Z—j) (B.1)

The positions of the oscillators immediately after the
jump-down are given by

yi(r)=cge T +1—vy, (B.2)
y2(t) =c7€" T+ A+ y. (B.3)

The time difference between the oscillators after they

are both on the silent phase, 1, is given by
cge '

e

] = f(). (B.4)

It can be shown that the oscillators whose initial con-
ditions are in region IIr always map to region II of
Fig. 4.

B.2. Region Il

The second case to examine is the region
+T<h<T2+TRM — T, (B.5)

where TryM is defined in (12). In this region, Oy jumps
down, and the initial separation between the oscillators
is such that O hops to LRB before jumping down to
LLB. Trajectories for a pair of oscillators in this region
are shown in Fig. S(F). The positions of the oscillators
when they are both on LLB are given by

yitti — ) =(LRKy +a—~2+y)? " +i-y
=cge? N+ A —y, (B.6)
y2(t1 — 12) = LRK,. B.7)

To find the time difference between the oscillators
when they are both on the silent phase, £, we use (8)
to write

cge? M = e (B.8)
resulting in

hh=H—1— 1, (B.9)
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where

(&
74 = log (a) .

Other trajectories can arise during the jump-down, but
not with the assumptions that LRB is the fastest branch
in the system. This assumption implies that the fol-
lowing condition must be true:

(B.10)

TRM < T9, (B.11)

where

79 = log <C—8) . (B.12)
c6

From condition (B.11) we derive the following
bound on the coupling strength:

c| c4to
—_ <<

, B.13

() )+ ( )

a < C_IEZ___C_3C4_ (B.14)
c3 — (1
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