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Synchronization and Desynchronization in a Network
of Locally Coupled Wilson—Cowan Oscillators

Shannon Campbell and DeLiang Wang, Member, IEEE

Abstract— A network of Wilson-Cowan (WC) oscillators is
constructed, and its emergent properties of synchronization and
. desynchronization are investigated by both computer simulation
and formal analysis. The network is a two-dimensional matrix,
where each oscillator is coupled only to its neighbors. We show
analytically that a chain of locally coupled oscillators (the piece-
wise linear approximation to the WC oscillator) synchronizes,
and present a technique to rapidly entrain finite numbers of
oscillators. The coupling strengths change on a fast time scale
based on a Hebbian rule. A global separator is introduced which
receives input from and sends feedback to each oscillator in the
matrix. The global separator is used to desynchronize different
oscillator groups. Unlike many other models, the properties of
this network emerge from local connections, that preserve spatial
relationships among components, and are critical for encoding
Gestalt principles of feature grouping. The ability to synchronize
and desynchronize oscillator groups within this network offers a
promising approach for pattern segmentation and figure/ground
segregation based on oscillatory correlation.

I. INTRODUCTION

HE ability to extract salient sensory features from a

perceived scene or sensory field, and group them into
coherent clusters, or objects, is a fundamental task of percep-
tion. These abilities are essential for figure/ground segrega-
tion, object segmentation, and pattern recognition. There are
two forms of sensory segmentation: peripheral segmentation,
which is based on the correlation of local qualities within
a pattern, and central segmentation, which is based on prior
knowledge about patterns. As the techniques for single object
recognition become more advanced, the need for efficient
segmentation of multiple objects grows, since both natural
scenes and manufacturing applications of computer vision are
rarely composed of a single object [34], [52].

Though it is known that different features, e.g., orientation,
color and direction of motion, are processed in different
cortical areas [71], it is unknown how those features are
integrated, or grouped, into the perception of a coherent
object. When there are multiple objects with many features,
the number of possible linkages between them grows combi-
natorially. How these features are correctly bound together
to form objects is known as the feature binding problem.
Theoretical considerations of brain functions suggest temporal
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correlations of neural activity as a representational framework
for perceptual grouping [44], [62], [2]. In the correlation theory
of von der Malsburg and Schneider [64], features are linked
through temporal cotrelations in the firing patterns of different
neurons. A natural implementation of temporal correlation is
the use of neural oscillators, whereby each oscillator represents
some feature (maybe just a picture element, or a pixel) of an
object. In this scheme, each segment (object) is represented
by a group of oscillators that are synchronized (phase-locked).
Different objects are represented by different groups whose
oscillations are desynchronized from each other. Following
Wang and Terman [69], [60], we refer to this form of temporal
corrclation as oscillatory correlation. Given that brain waves
are widespread in EEG recordings [38], and the ubiquitous
nature of the 40 Hz oscillations, it is possible for the brain to
use oscillatory correlation as a method of solving the binding
problem.

Recently, the theory of oscillatory correlation has received
direct support from neural recordings in the cat visual cortex
[171, [31] and other brain regions. We summarize the findings
relevant to this work as follows:

1) Neural oscillations are triggered by sensory stimulation,
i.e., they are stimulus driven.

Global phase locking of neural oscillations with zero
phase shift occurs when the stimulus is a coherent object,
e.g., a long visual bar, or strongly correlated, e.g., the
same location.

No phase locking occurs across different stimuli if they
are not related to one another, e.g., they do not have the
same direction or orientation.

These basic findings have been confirmed by later experiments
which demonstrate that phase locking can occur between the
striate cortex and the extrastriate cortex [19], and between the
two striate cortices of the two hemispheres [20]. Also, phase-
locking has been observed across the sensorimotor cortex in
awake monkeys [47], [51].

The experimental findings in the cat visual cortex have
created much interest in the theoretical community. Models
simulating the experimental results have been proposed [55],
[40], [32], 571, [13], [28], [65], [66], as well as models explor-
ing the ability of oscillatory correlation to solve the problems
of pattern segmentation and figure/ground segregation [58],
[6], [63], [46]. While some of these models demonstrate
synchronization with local couplings [40], [56], {65], [69], 60],
most rely on long-range connections to achieve entrainment,
since global connectivity can readily result in synchrony (see
[29] for specific conditions). It has been argued that local con-
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nections may play a fundamental role in pattern segmentation,
because global couplings lack topological mappings [58], [66].
Specifically, in a two-dimensional (2-D) array of oscillators,
where each oscillator represents an element in a sensory field,
all to all couplings indiscriminately connect multiple objects.
All pertinent geometrical information about each object, and
about the spatial relationships between objects is lost. Because
this spatial information is necessary for object recognition
and segmentation, it must be preserved as effectively and as
simply as possible. The use of local couplings is one method
of maintaining such spatial relationships.

In this paper, we study a network of locally coupled Wil-
son—Cowan (WC) oscillators [70]. In particular, we investigate
the properties of synchronization and desynchronization in
such networks. Each oscillator is a two-variable system of

ordinary differential equations, and represents an interacting -

population of excitatory and inhibitory neurons. The am-
plitudes of the variables symbolize the proportion of each
population of neurons that is active. We use these equations
because they represent neuronal groups, which may be the
basic processing units in the brain [18]. In our model, each
oscillator is analogous to a basic element in a sensory field,
and responds only to the presence of stimulus. The WC
equations have a large number of parameters, which allow
for a wide range of dynamics. These equations have been
used widely in modelling various brain processes [24], [5],
[40], [10], in creating oscillatory recall networks [68], and
in exploring the binding problem [35], [63], [66]. Because
of the neurophysiological importance of the WC equations,
several authors have examined their mathematical properties
[22], [39], [5], [23], [12]. Of particular relevance is a study
by Caims et al. [12], which indicates that synchronization is
possible with these equations. Despite extensive studies on
WC oscillators, it remains unclear to what extent a locally
coupled network can exhibit global synchrony, and whether
desynchronization can be achieved in different regions of the
network, useful in many contexts.

The two main aspects of the theory of oscillatory correlation
are synchronization within an object, and desynchronization
between objects. In many models synchronization is achieved,
but the issue of desynchronization is not addressed. Objects
in these models oscillate independently ‘of one another. This
independence allows for the possibility of accidental syn-
chrony [36]. Accidental synchrony occurs when two or more
objects are incorrectly grouped together because they have
the same, or indistinguishable, phases. The probability that
two objects are wrongly grouped can be substantial, however,
when one considers that synchrony is rarely perfect. The
effects of noise and the length of time needed to achieve
synchrony require that a tolerance of phase differences be
allowed. In addition, note that as the number of objects
increases, the probability of erroneously correlating different
objects increases significantly. Several authors [58], [40],
[66] avoid the problem of accidental synchrony by averaging
over a number of trials. Though this greatly reduces the
chance of accidentally aligning the phases of two different
objects, it does so at the cost of substantially increasing the
computational time.
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There are few models that incorporate a method of desyn-
chronization. Terman and Wang [60] give a rigorous analysis
of desynchronization in coupled relaxation oscillators. Re-
laxation oscillators, however, have two time scales and are
based on models of single cell voltages, so the analysis of
Terman and Wang may not be applicable to the widely used
WC oscillators. In the simulations of von der Malsburg and
Buhmann [63], an approximation to the WC equations is
used, and a global inhibitor desynchronizes two segments,
each corresponding to a group of fully connected oscillators.
But their simulations involve a small system and no analysis
is made. It is also unknown how their results extend to
more than two objects. In the model of Schillen and Konig
[53], the phases of two different objects are anti-correlated
by desynchronizing connections between the objects. These
desynchronizing connections are short range, however, and
two objects can oscillate independently if separated by a large
enough distance. :

In our model desynchronization of multiple objects is ac-
complished with a global separator (GS), which receives input
from the entire network, and feeds back to all oscillators. These
global coiinections to and from GS make this architecture
resemble that of the comparator model [37]. The comparator
model uses long-range connections to and from a comparator,
a unit which commonly computes the average phase of all
oscillators, to achieve synchrony. This architecture, however,
phase locks every oscillator. Desynchronization then becomes
problematic. In direct contrast, our model uses long-range cou-
plings with GS to decisively separate objects, thus eliminating
the need to average over repeated trials. Long-range connec-
tions serve to adjust the relative phases betwéen oscillator
groups, wherever they may be on the network. The model
we present uses short range coupling to'achieve synchrony,
while giobal couplings with GS give rise to desynchronization.
This simple architecture may provide an efficient approach
to pattern segmentation and a computational foundation for
feature binding.

The model is described in the following section. In
Section II, it is proven that synchrony is the globally stable
solution for a chain of oscillators given sufficient coupling
strength, and a technique for fast entrainment is presented.
GS and the dynamics of desynchronization are described in
Section IV. Computer simulations of a 2-D network with five
objects are shown in Section V. In Section VI we discuss
possible extensions to our model. ‘

II. MODEL DEFINITION

The basic architecture of the model is shown in Fig. 1. GS
is connected to the entire network. The connections between
oscillators are local. An oscillator Jocated on a black square
can only be coupled with oscillators on adjacent diagonally
striped squares. The topology of the network is a rectangle,
not a torus. The coupling strengths are dynamically changed
on a fast time scale compared to the period of the oscillations .
(further discussion below). The dynamic couplings serve to
increase the coupling strength between units that are active,
to decrease the coupling strength between excited units and
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Global Separator

Fig. 1. Basic architecture of the model. The oscillators are arranged in a 2-D
grid, where each square on the grid represents an oscillator. The connections
between oscillators are local. Three representative situations are shown in
the figure, where an oscillator located at a black site is connected only to
oscillators on adjacent striped squares. Note that we do not use periodic
boundary conditions. The Global Separator (GS) is pictured at the top and
is coupled. with all oscillators in the network.

inactive units, and to decrease the connection strength between
two silent units, all rapidly and temporarily.

Each functional element on the grid is a simplified WC
oscillator defined as

& =—x; + H(azi — byi — o+ 0.+ ;i + p)

+ oSy (la)
Y =n(—yi + H(czi + dys — dy)) + oSy (1b)
H(v) =(1+exp(—v))~L (1c)

The parameters have the following meanings: a and d are the
values of self excitation in the z and units, respectively. b is
the strength of the coupling from the inhibitory unit, y, to the
excitatory unit, z. The corresponding coupling strength from z
to y is given by c. ¢, and ¢, are the thresholds. Fig. 2 shows
the connections for single oscillator. The x and y variables are
interpreted as the proportion of active excitatory and inhibitory
neurons, respectively. n modifies the rate of change of the y
unit. p is a noise term. The noise is assumed to be Gaussian
with statistical property

{p(t)) =0 A
{(p(W)p(t)) =2D8(t ~ ')

where D is the amplitude of the noise and §(t —t) is the Dirac
delta function. The <th oscillator receives a binary input I;. A

(2a)
(2b)
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Fig. 2. A diagram showing the connections that cach excitatory and in-
hibitory unit has within an-oscillator. Triangles represent excitatory connec-
tions, and circles represent inhibitory connections.

Trajectory and Nullclines

Fig. 3. The y nullcline (small dashes), = nullcline (large dashes), and
trajectory (solid) for a single oscillator are displayed. The parameters are
a=10.0,b="7.0,¢; =4.075,¢ =10.0,d = 10.2129, ¢, = 7.0,0 = 2.1,
p = T7.0,and D = 0.

value of I; = 1 corresponds to those parts of the sensory field
that are stimulated and drives the oscillator into a periodic
regime. Oscillators that do not receive input, namely I; =
0, remain silent. z represents the activity of GS and will be
specified in detail in Section IV. Though it may seem unusual
to denote the position of an oscillator in a 2-D array with only
one index, we do so to avoid using four indexes to label the
connections between oscillators. Fig. 3 displays the nullclines,
the curves along which the values of & or § are zero, and the
trajectory of a point near the limit cycle. The caption of Fig. 3
lists values for the parameters a, b, ¢, 0, p,d, ¢y, ¢y and D.
The interaction terms are given by

Szi = —KiZ; + Z Jijl‘j
J

Syi = ~Ki¥Y; + Z Ji5yj
J

(3a)

(3b)
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where the sum is over j € N(i), and N(i) is the set of
neighb/ors that element 7 has. We call this form of coupling
scalar diffusive coupling. This terminology originates from
Aronson et al. [4], who use the term “scalar coupling” to de-
note interactions in which the coupling strength is identical for
both the z and ¥ variables. We add in “diffusive” to specify the
form of coupling. The interaction term was initially included
in the sigmoid terms of (1) when we began experimenting with
this network. When the sigmoidal function is expanded in a
Taylor series in terms of the coupling strength, however, it can
be shown that the first-order term is proportional to the linear
coupling specified in (1). Thus, to simplify the mathematical
analysis we perform later in this paper, the interaction terms
are not presently included in the nonlinearities. The terms s;(¢)
and J;;(t) are specified below.

The comnections between the oscillators are allowed to
change on a fast time scale, as first suggested by von der
Malsburg [62], [64]. They obey the following Hebbian rule:
the connections between excited oscillators increase to a
maximum, the connections between excited and unstimulated
oscillators decrease to zero, and the connections between
unstimulated oscillators decrease to zero. This rule uses of
a pair of connection weights.. The permanent links Tigs de-
note existence of connections between ¢ and j, and reflect
the architecture of the network (locally connected 2-D grid,
see Fig. 1). The dynamic links J;;’s change on a fast time
scale compared to the period of oscillation, and represent the
efficacy of the permanent links. The idea of fast synaptic
modulation is introduced on the basis of its computational
advantages and neurobiological plausibility [62], [64]. The
permanent links are given by T;; = 1 if 4,7 are neighbors
and T;; = O otherwise. The dynamic links are computed as
follows:

Jij = Tih({zi)h((z;)) “)

where h({z;)) is a measure of the activity of oscillator i.
It is defined as h({(z;)) = O({z;) — ), where ¢ is some
threshold, and © is the Heaviside step function. Namely
h({x;)) = 1 if the temporal average of activity, {z;), is greater
than the threshold, or A{{z;)) = 0 if otherwise. With (4) in
place, only neighboring excited oscillators will be effectively
coupled. This is an implicit encoding of the Gestalt principle
of connectedness [50].

With scalar diffusive coupling, the Hebbian rule defined
above would destabilize the synchronous solution. To -un-
derstand how the instability arises, consider three excited
oscillators arranged in a row, and each with the same values
of activities, i.e., x1 = 22 = 3, and y1 = y3 = y3. Because
of the Hebbian coupling rule, the middle oscillator has the
following interaction term —roz2 + 21 + 23 = (2 — K2)z1,
while the first and third oscillators have the interaction terms
—K1Zy -+ Ty = (1 — m)xl and —K3Z3 + T = (1 — fig)l‘l
respectively. These interaction terms are different, and cause
the trajectories of the oscillators to be different. An exact
synchrony is not possible. An obvious solution is to change
#:(t) so that it equals the number of excited neighbors that
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oscillator ¢ is coupled with. We set

Kit) = Z Ji; () (5)

so that the interaction terms will be zero when the oscillators
are synchronized. All the oscillators will now have the same
trajectory and remain synchronous. The effect of (5) is similar
to the dynamic normalization introduced by Wang [65], [66].
The original form of dynamic normalization served to normal-
ize the connection strengths between oscillators. In this model
we do not normalize connection strengths, but instead alter
the multiplicative constant on the scalar diffusive coupling
term. Either formulation would have the same results with
these equations, but we choose to normalize the multiplicative
constant because it is more direct. The effect of dynamic
normalization is to maintain a balanced interaction term so
that coupled oscillators remain synchronous independent of
the number of connections that they have.

The architecture of this network allows us to implement
the basic aspects of oscillatory correlation, synchrony and
desynchrony. To illustrate, assume that the network receives
input as shown in Fig. 4. The black squares represent units that
receive stimulation, and these units then produce oscillatory
behavior. The dynamic couplings will disconnect excited units
from unexcited units, and group connected units together.
For the five objects pictured in.the input, there will be
five corresponding groups of oscillators. Connected oscillators
synchronize, and GS ensures that no two spatially separated
objects have the same phase.

III. SYNCHRONIZATION

Much work has been done with coupled phase oscillators
[41], [16], [59], [21], [23], [57] because the phase model is the
simplest description of a smooth limit cycle. Phase oscillators
are generally defined as

$i=wi+ Yy KiGl¢i - ¢;) ©)
J

where ¢; is the phase of the ¢th oscillator, w; is its. intrinsic
frequency. K;; is the coupling strength between the ith and
the jth oscillators, G and is a 27 periodic function. For phase
oscillators with local diffusive coupling, and identical intrinsic
frequencies, the in-phase solution is asymptotically stable
[14]. But the phase model does not exhibit the rich variety
of behaviors that other, more complex nonlinear oscillators,
have when locally coupled. For the so-called Brusselator,
a model of chemical oscillation, stable states can arise or
disappear, depending on initial conditions and the coupling
strength [7]. Moreover, if the ratio of the coupling strengths is
explored, period doubling bifurcations and chaos can develop
[54]. Neu [48] gives a general result describing synchrony
for locally coupled oscillators, but it is obtained by taking a
continuum limit, and requiring that some of the oscillators be
initially synchronized. Because the system of WC oscillators
that we use differs significantly from those mentioned above,
we examine the properties of the following approximation to
the WC oscillator in detail. We show that with a sufficiently
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Global Separator

Fig. 4. Input used for the network. Black squares denote oscillators that
receive input. Starting clockwise from the upper left-hand corner, we name
the objects as follows: a helicopter, a thick addition sign, a tree, a truck, and
a house.

large coupling strength synchfony occurs for a finite number
of oscillators, independent of their initial conditions.

Using basic matrix stability analysis, we show that a chain
of oscillators can achieve synchrony. The equations we analyze
are a bit different from those shown in (1). We do not include
parameter 1, D = 0, and we do not consider the effects of GS.
We have also dropped the S notation because the interaction
terms can be explicitly included. A diagram of the connections
between units, arranged in a chain, is given in Fig. 5. Note that
the two ends are not connected with one another. Thus we are
analyzing a chain, not a ring, of n oscillators. The equations
are

(72)
(7b)

& = —x1 + P(awl — by1 - ‘Pw) + Oé(il:z - CL‘1)

91 =—y1 + P(ex1 + dy1 — @y) + a(y2 — y1)

B; = —z; + P(azi ~ by; — z) + &(Tiy1 + Ti-1 — 22;)

(7¢)
9 = —Yi + P(cx; + dy; — oy) + a(yirr + ¥ic1 — 24:)

(7d)
Tp =—Zpn + P(azn — byn — 02) + a(Tn—1 — Tp) (7e)
Un = —Yn + Pctn + dyn — ©y) + &(Yn—1 — Un) (79
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where the sigmoid function H (v) has been approximated with

0 if v<—e
P(v) = {U/(Ze) +1/2 f-e<wv<e ®)
1 if v>e.

The constants a,b,c,d,p;, and ¢, are positive values,
log(e) = 1, and « is the coupling strength. We now state
our major analytical result as the following theorem.

Theorem: For the system of coupled oscillators defined in
(7) and (8), the coupling strength o can be chosen such that
synchrony is asymptotically stable.

Proof: First, let a® + b% >c? + d?, and let us define the

following notations:

i

(Ti — Tit1, ¥ — Yit1),

i = (@i — zip1)? + (% — i)’ ®
cos (8) = (”—%x;l) and sin (6;) = (y—_r“—l)
(10)
fi = P(az; — by; — ¢z) — P(aziy1 — byit1 — @z)
(11a)
gi = P(cxi + dy; — ¢y) — P(cxiz1 + dyizs — @y).
(11b)

Note that 7; is a two element vector, and 7; is the positive
square root of r7. The time derivative of the distance between
two oscillators can be written as
1d,
2dt "
We will use the “dot” above a variable to denote its first order
time derivative. According to (7) we can write

(12)

=TF; - Ti = TiT4.

ri¥s = —(1 + 20)7? + (r; cos (8;) fi + risin (6;)g;)

+ OC(F@' CTio1+ 7T -Fi+1). (13)

In the above equation 1 < ¢ < n — 1, and let the values of
the undefined variables r9 = 7, = 0. The functions f; and
g; are bounded by

-1<fi<l, -1<g <L (14

Thus, the second term on the right-hand side (RHS) of (13)
is bounded by

—V/2r; < 7;c08 (0:)fi + risin(6;)g; < V2r;. (15)
The last term on the RHS of (13) is bounded by
—ary(ri—y +riy1) i Tic1 + T - Tig1)
<ari(ri-1 + rig1)- (16)

Using (15) and (16), an upper bound and a lower bound on
(13) can be written as
—(1+2a)77 — V21 — ary(ricy + rig1) < v
< —(1+2a0)r? +V2r; + ari(ri-1 +rip1) A7

which now places a finite bound on r; as a function of « and
n. If a = 0, and we divide both sides by r;, then (17) becomes

= VE<H <~ + V2 as)
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which implies that # < 0 if r; <+/2. Consequently, the
bounds will reach an equilibrium such that 7., the maximum
distance between any two connected oscillators, is less than,
or equal to v/2. Thus, without any coupling whatsoever, there
is a finite bound on rmax. Because the interaction terms are
designed to give rise to synchrony, one would expect that they
would have the effect of reducing rmax. We now show that we
can control the size of ry.x by an appropriate choice of a. We
divide (17) by r; and examine only the upper bound, which
we rewrite as matrix equation (19) shown at the bottom of the
page, where ¢ = (q1,¢2,* ", qn-1)" and kis a (n — 1)x 1
column vector of all “1’s”. Let A be the matrix in (19). We
will use the convention of denoting vectors with lower case
bold letters, and matrices with upper case bold letters. The
superscript “t” denotes the transpose. The eigenvalues of A
are all negative, thus (19) approaches an equilibrium value at
an exponential rate. The equilibrium values of the elements in
g, which we denote with ¢°¢, are defined by

2 .
¢ = Y24y (20)
et
We multiply each side of (20) by k to obtain
n—1 \/— n—1
2 -
doat === (AN @D
i=1 i,j=1
For oo > 1 we can approximate A with B, where
-2 1
1 -2 1
B= (22)
1 -2 1

The inverse of this matrix follows a regular pattern and we
can explicitly write

n—1
=3 BNy =+ H 0 - +in-1)?
ij=1
+ 4 (n—1)>% (23)
Because the elements of A~ change continuously and mono-
tonically with « (see [8]), and also because A remains in-
vertible in the range 0< o < 0o, we can use (23) as an upper
bound on the sum of all the elements in A7}, ie.,

n—1 n—1
=) (A<= > (B 7Yy
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We use (23) and (24) to bound (21) as

s V21 11
(87

dogi< 2T 12

-1
2. 5 (n—1)+

1 2 1 3
S(n—1%+ Z(n-17).
25)

It can be shown that the elements of matrix A™* are all
negative. Given that the elements of k are all “1’s”, (20)
implies that all the elements of g°? are greater than zero. With
this we can write the following inequality:

n—1
08 <Y g - (26)
=1
where 2% is the maximum of the ¢;%’s. (26) and (25) give
the following inequality:

211 11 z
<%[—+—~n—

€q
max

L -1,

1 9
1)+—(7’L—1) +1_
’ 27

2 12

Assume that both systems of r and g start with the same initial
conditions, i.e., 7(0) = g(0). Given that + < Ar + v/2k and
q = Ag + +/2k, it is known that 7(t) < q(t) for t > 0 [27].
Thus, after some time, (19) will reach equilibrium, and we can

use (27) and that Tmax < gmax t0 Write '

V2Tl 11

Tmax < —— 5+t

5 m(n—l)+

1 2 L 3
S(n— 1)+ (0= 1)
28)

(28) shows that for fixed n, rmax 1S bounded by a quantity that
is inversely proportional to «. In essence, we can decrease
Tmax DY increasing «. We use this control to further constrain
the apper bound of (15), because once ., is smaller than
a certain value

2e

Y= (29)

the maximal values for f; and g¢; are no longer equal to 1.
According to (8) and (11), if f; = 1 then one oscillator is at
a location on the plane such that axz; — by; — @, > e, and the
other oscillator must satisfy aze — byas — @, < —e. In other
words, the oscillators lie on opposite sides of the piece-wise
linear function P(v), and do not lie on the intermediate sloped
line. v is the minimum distance between two oscillators such
that f; = 1. If the distance between two oscillators is less than
7, then the two oscillators lie on the same, or adjacent, pieces
of function P(v) and thus f; < 1. There is also a corresponding
value r, for the function g;, but ¢ < r, due to the constraint
a? + 62>+ d? previously mentioned. If 7. <7y then

(24)
i,j=1 i,5=1
—1/a—2 1
1 ~1ja—2 1

1

q+V2k (19)
—1/a—2 1

1 —1/a—2
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automatically rmax <74 which implies that g; < 1. Thus we
want to choose a such that
( a + b2)1/2 [
V2e 2

1
+ - 1)3].

If the inequality in (30) is satisfied, then 7,,x is less than 7
and, using (8) and (11), the functions f; and g; will have the
following bounds:

a> (n—1)+ (n—l)2 '

(30)

i) — bsin (6;))

<hi< %(acos (8;) — bsin (6;)) (3la)
;_Zi(ccos (6;) + dsin (6;))
< g: < gh(coos(6) +dsin(6))  (31b)
which simplify to
SV <fi < Va2 8 (32a)
2rd< ggg @+ d2. (32b)

In (13) the terms involving f; and g¢; are multiplicative.
Hence, [r; cos (6;)f; + risin (6;)g;] is the function that must
be examined. If 7yax < 75 We can use (32) to write

ricos (0;) fi + risin (0;)g; < 5—\/(12 +02+c2+d2 (33)
For convenience, let
M= i\/a2 + b2 + ¢ + d2.
2e

Using (34) and (16) an upper bound of (13) can be written as

(34

rifi < —(1+20)r2 + Mr? 4 ari(riiy +ri41)  (35)
which simplifies to
Fi € —(1+20)mi + Mri + a(ricy +71i1). (36)
Letting 8 = M— 1 and
8~ 2« o
a B —2a a
W o B —2a (?e
c'v 8- 2a o
a 8 — 2«
(3D
we rewrite (36) as
r<Wr (38)
Using the same logic which leads to (19), let
p=Wp. 39

and assume that the initial conditions for both systems are
identical, i.e., p(0) = r(0), then r(t) < p(t) for t> 0. If all
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the eigenvalues of W are negative, then the matrix is stable.
If the matrix is stable all the elements of p approach zero,
which forces all the elements of 7 to approach zero. We now
examine the eigenvalues of W to find under what conditions
they become negative. The eigenvalues of W are given by

e = (8 — 20) — 2a.cos (k%) (40)

where kK = 1,2,--- ,n— 1 and n > 3. The condition for all
eigenvalues to be negative can be written as

B
> 4sin® (1/2n)’

For n >> 1 this becomes

(41)

ﬂn

a>— (42)
In summary, synchrony will be asymptotica]ly stable for the
chain of coupled oscillators defined in (7) if o is chosen
such that the inequalities in (30) and (41) are satisfied. This
concludes the proof.

The reported time for a human subject to identify a single
object is estimated to be less than 100 ms. [9]. If oscillatory
correlation is used by the brain, synchrony must be achieved
before identification takes place. Experimental evidence from
the cat visual cortex shows that synchrony is achieved quickly,
within 25-50 ms., or 1-2 cycles in 40 Hz oscillations [30].
These experimental results emphasize the importance of fast
synchrony. From practical considerations synchrony must also
be achieved quickly to deal with a rapidly changing envi-
ronment. In this model we can control the rate of synchrony
by increasing the coupling strength. But that would lead to
unreasonably large values for a.. This problem can be avoided
by careful adjustment of the nuliclines, and we now describe
a method by which a chain of several hundred WC oscillators,
as defined in (1), but arranged as a one dimensional chain, can
be entrained within the first cycle.

Note that the method of entrainment described below takes
place after the dynamic weights have attained their proper
values. We neglect the initial transient dynamics of the network
because they do not affect the properties of the system after
an initial period. Our method of fast synchrony requires that
there exist one region in the phase plane where the z and
y nullclines of the oscillator are very near to one another.
More specifically, in the system of (1), the parameters were
chosen so that this occurs in the upper left-hand corner, as
seen in Fig. 3. The oscillators travel slowly through this region
because, close to the nullclines, the values of & and 9 are
near zero. Note that this need not be true in general, but it is
true in the smoothly varying WC equations that we use. The
z and y nullclines are so near each other that only a small
perturbation is needed to push the y nullcline to the left, and
cause it to intersect the « nullcline (we will use the coupling
term to create this perturbation). When the nullclines intersect,
two new fixed points are created. One of these fixed points is
attracting, and will stop periodic motion. We neglect the case
when the nullclines just touch, as the single bifurcation point
exists only momentarily, and does not significantly affect the
dynamics.
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Fig. 5. A diagram showing the interactions between the excitatory and
inhibitory units in a chain of oscillators. See the caption of Fig. 2 for the
meaning of the notations.

Let us examine the case of two coupled oscillators in detail.
Specifically, we examine two oscillators that are near to one
another and approaching the upper left-hand corner of the unit
square from the right, i.e., rotating counterclockwise. Fig. 6
displays an enlarged picture of this region. The interaction
term will cause the = and y nullclines of the leading oscillator
to intersect, effectively trapping it at the newly created fixed
point. In Fig. 6 the leading oscillator (black filled circle) is
shown trapped at the attracting fixed point, which is the top
intersection of the  nullcline and the y nullcline. The other
oscillator is represented by an unfilled circle, and its movement
along the limit cycle is not impeded. As the oscillators come
closer the interaction term decreases, and the y nullcline of the
leading oscillator moves to the right. When the oscillators are
close enough, the x and y nullclines of the leading oscillator
will separate, releasing the leading oscillator from the fixed
point and allowing its motion along the limit cycle to continue.
We have ignored the motion of the z nullcline because it
moves up and down only a small amount during this process.
Since the z nullcline is almost completely vertical in this
region, moving it by a small amount has a negligible effect. In
summary, our method of fast synchrony requires that there be
a region where the nullclines are very near to one another, and
that the interaction terms be organized to alter the behavior of
an oscillator in this region appropriately as described above.

The distance between the- oscillators can be controlled
precisely in this manner. It depends solely on the original
separation of nullclines, and the size of «. To be more precise,
for the parameters specified in the caption of Fig. 3, a y
interaction term greater than 0.0003 will cause the nullclines
to intersect. Thus, the distance between the oscillators in the y
direction, (y2 —y1), will have to be less than (0.0003 /o) before
periodic motion resumes. Because the oscillators are almost
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Fig. 6. An enlarged diagram of the upper left-hand corner of Fig. 3 that
displays the nullclines of two interacting oscillators. The two dashed curves are
the nullclines for the leading oscillator, and the black filled circle represents the
position of the leading oscillator. The interaction term causes the y nullcline
(short dashed curve) of the leading oscillator to be perturbed to the left so
that it intersects the z nullcline (long dashed curve). This creates an attracting
fixed point and a saddle fixed point. The interaction term does not impede the
motion of the trailing oscillator (open circle), which will approximately follow
the path given by the solid curve. The leading oscillator will be trapped at the
attracting fixed point until the distance between the oscillators is very small.

directly above one another, x5 = z1, and the distance between
the oscillators can be approximated by (0.0003/c). This
distance is orders of magnitude smaller than the size of the
limit cycle, so we can safely call the oscillators separated by
this distance synchronized. This phase adjustment, however,
only occurs in the upper left-hand corner of the limit cycle.
One must ensure that both oscillators are in this region and
not on opposite sides of the limit cycle. We increase the value
of a to make sure the oscillators approach each other before
moving to the limit cycle. This behavior can be explained by
examining only the interaction terms in (1) and ignoring the
oscillatory terms. We find that the scalar diffusive coupling
terms converge asymptotically to a single stable point. Thus,
if o is sufficiently large, the interaction terms will dominate
over the oscillatory terms, and cause the oscillators approach
each other. As the oscillators come together, the interaction
terms decrease, and the oscillatory terms start to contribute to
the dynamics. So, with a sufficiently large «, the oscillators
will be loosely synchronized before oscillatory motion starts.
The oscillators will then approach the upper left-hand corner
of the limit cycle. If the distance between the two oscillators is
larger than (0.0003/a), then the interaction term will cause the
nuliclines of the leading oscillator. to intersect. An attracting
point will be created and the leading oscillator will be trapped
at this point until the second oscillator moves to within a
distance of (0.0003/¢). In summary, « is used to loosely group
the oscillators together. The oscillators then travel along the
limit cycle to the upper left-hand corer, where they become
tightly synchronized.

By controlling o and the position of the nullclines, we
can reduce the distance between the two oscillators to an
arbitrarily small value. Using these same techniques, we can
control the overall entrainment of a chain of oscillators. Fig. 7
shows the z activities of 34 oscillators plotted on the same-
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Fig. 7. 'This graph displays the combined z values of 34 oscillators with .

respect to time. An accurate synchrony is achieved within the first cycle. The
random initial conditions used were restricted to the range of the limit cycle,
ie., 0.0 <z <0.5and 0.0 < y < 1.0. Parameters @ = 14 and ¢ = 0.

graph. The oscillators are those defined in (1), but they are
arranged in a chain, and are not connected to GS. The strong
interaction terms cause the oscillators to approach each other
rapidly, creating a thick conglomeration of curves, instead
of 34 completely random curves. These loosely synchronized
- oscillators will then approach the upper left-hand corner of
the limit cycle, where they become tightly synchronized. By
the next peak, one can see that only a single thin curve is
exhibited, as all the oscillators are at virtually the same x
value at the same time. We make no claims that an infinite
number of oscillators can be entrained using this method.
Large chain lengths (n > 500) could require excessively large
coupling strengths. We are interested in finite systems and have
tested this method with chain lengths up to several hundred
oscillators. We conjecture that the behavior for a matrix of 256
% 256 locally coupled oscillators would be similar in terms
of their synchronization.

The method described above can group many oscillators to
within a small distance of one another, and therefore within a
small distance of the in-phase solution. Because we have not
shown that the actual WC oscillators synchronize, a variational
analysis [45] is appropriate. In this analysis all the variables
are perturbed by a small amount from a known solution, in this
case, the synchronous solution. The perturbations are assumed
to be sufficiently small so that their first-order approximations
are valid. The properties of the resulting system -of linear
equations can then be examined. We assume the existence of
a smooth stable limit cycle, and do not consider the effects of
noise or GS. Our analysis has shown that the in-phase solution
is locally stable. We omit the details of this straightforward
procedure of the analysis.

Our- model, as it stands, is not consistent with Dale’s
law, which states that neurons have only a single type of
connection, either inhibitory or excitatory, to other neurons.
As seen in Fig. 5, the y variables, which represent inhibitory
populations of neurons, have both excitatory and inhibitory
connections to other variables. Our model, however, can

be readily made to conform to Dale’s law by introducing

inhibitory interneurons. For example, inhibitory interneurons
can be introduced in place of excitatory connections between
neighboring y units, so that the connections from units are in-
hibitory. We have not incorporated these interneurons because
they would add complexity to the model without changing its
overall behavior.

In summary, we have shown that the piece-wise linear form

of the WC oscillator will synchronize if the coupling strength
meets a certain criteria, and we have presented a method
for rapid synchrony. In our simulations, we have used both
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the piece-wise linear approximation of the oscillator (7) and
the actual WC oscillators (1), and observed that any positive
coupling strength will give rise to synchrony, even if it does
not satisfy the conditions previously specified. Therefore we
conclude that synchrony can be achieved in populations of
WC oscillators with local connections.

IV. DESYNCHRONIZATION

As discussed previously, a method of desynchronization is
necessary for minimizing the possibility of accidental syn-
chreny. Several models [53], [63] have methods of desyn-
chronization, but it is not clear how these models perform
with more than two objects. In Hansel and Sompolinsky [33],
noise in a chaotic system is used to desynchronize objects, but
noise can also lead to synchronizing objects. Hence this is not
a reliable method of distinguishing mulitiple objects.

To reliably desynchronize multiple objects, independent
oscillations in an oscillator network cannot be permitted. Thus
we globally connect GS to and from every oscillator in the
network so that no two oscillators act fully independently.
These long-range connections serve to adjust phase relation-
ships between oscillator groups representing different objects.
GS has a minimum value of zero and is defined as

z=6(l—-2)Tr—vz (43)

Tr is a binary value, which is turned on (set to one) if any
oscillator lies within a small region near the origin; it is defined
as v .

Tr = {1 if (v +yi) > p

. . 1<i<N.
0 if otherwise

(44)
The positive parameters § and v control the rate of growth
and decay of z. We call this area near the origin the triggering
region because when an oscillator enters this region, T'r =1,
and the value of GS starts to increase. p controls the size of the
tn'ggefing region. As seen in (1), the value of GS is fed into
the « unit of every oscillator. This manipulation has the simple
effect of raising or lowering the « nullcline of every oscillator.
Fig. 8 displays the triggering region and its position relative
to the nullclines. Just to the right of the triggering region
there is another slow region, because the x and y nullclines
are relatively close. All oscillators rotate counterclockwise, so
an oscillator will enter the triggering region, and then pass
through the slow region between the nullclines.

GS can only take on positive values, enabling it to raise
nullclines or return them to their original positions. An os-
cillator in the triggering region will cause the z nullcline of
every oscillator to rise, and will produce a marked increase
the speed of those oscillators in the slow area. Because the
triggering region and the slow region are adjacent, any two
oscillators with nearby phases will be separated when the
trailing oscillator enters the triggering region. The movement
of the z nullclines will affect oscillators elsewhere on the limit
cycle, but the change in their speed of motion will be negligible
compared to the increase in speed received by an oscillator in
the slow area. "

Fig. 9 displays the ability of GS to separate two oscillators.
The first two plots display the x activity of two oscillators
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Fig. 8. A close look of the triggering region (black filled triangle), the «
nullcline (short dashed curve), and the y nullcline (Jong dashed curve). The
value g = 0.048 was used in the simulations, but other nearby values result
in desynchronization also. The other parameters were § = 2.9 and v = 2.0.

S 2\ A
|
S T

Fig. 9. The activities of two oscillators and the global separator are plotted
with respect to time. The two oscillators are desynchronized during the second
cycle. The shape of the first oscillator is significantly altered because its speed
is increased by GS. All parameters are the same as those previously listed in
Figs. 3 and 8.

Time

in time. The third plot is the activity of GS with respect to
time. The oscillators are almost in phase in the first cycle,
but a major shift occurs during the second cycle. This occurs
when oscillator 2, which trails oscillator 1, enters the triggering
region and thus excites GS, which then increases the speed of
oscillator 1. The sharp change in the characteristic shape of
oscillator 1 during the second cycle demonstrates the increase
in speed induced by GS while oscillator 1 was within the
slow region. Afterward, GS continues to cause minor phase
shifts during every cycle. These small phase shifts slowly
decrease as the relative phase difference increases. Eventually,
an equilibrium is attained. The equilibrium, however, does not
ensure an antiphase relationship between the two oscillators,
but suffices to clearly distinguish their phases.

Naturally, the desynchronization of objects by this method
acts in direct opposition to the necessity of achieving syn-
chrony within groups of oscillators. We resolve this problem
by increasing the coupling strength. Increased coupling main-
tains synchrony within groﬁps of connected oscillators, but
does not alter the performance of GS because it does not
change the shape of the limit cycle.

V. SIMULATION RESULTS

We now discuss the simulation results of this model using
the input displayed in Fig. 4. Fig. 10(a)—(f) displays network
activity at specific time steps during numerical integration.
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Fig. 10. Each picture represents network activity at a time step in the
numerical simulation. The size of the circle is proportional to the = activity
of the comesponding oscillator. (a) The oscillators have random positions
on the phase plane at the first time step. (b)—(f) Successive time steps that
correspond to the maximal activities for each group of oscillators. o = 10.0.
in this simulation. The other parameters are as specified in the captions of
Figs. 3 and 8. The random initial conditions used were restricted to the range
of the limit cycle, namely, 0.0 < z <.0.5 and 0.0 < y < 1.0.

Fig 10(a) represents the initial activity of the network. The
sizes of the circles are directly proportional to the z values
of the corresponding oscillators. The random sizes of the
circles in Fig. 10(a) represent the random initial conditions
of the oscillators. Fig. 10(b) is a later time step when the
object that resembles a house is at its highest activation.
Fig. 10(c) displays the time step after Fig. 10(b) when the
object resembling a helicopter is maximally active. Fig. 10(d)
corresponds to the time step after Fig. 10(c) when the highest
activation for the tree-like object is attained. This object was
specifically selected to emphasize that any connected region
will synchronize, whether it is concave or convex. Fig. 10(e)
shows a later time step when the truck shaped object is
maximally activated. The object resembling a thick addition
symbol is also weakly activated at this time step. Finally,
Fig. 10(f) shows the time step when the thick addition sign
is at its highest activation. The objects clearly “pop out” once
every cycle. ‘

In Fig. 11, we display the activities of GS and the z
activities of all stimulated oscillators for the first few cycles.
The first five plots display the combined z activities of all

A
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Fig. 11. The plot labeled “GS” displays the activity of the global separator
with respect to time. The other five plots display the combined z activities
of all the oscillators stimulated by the corresponding object. Each of the five
oscillator groups is synchronized within the first cycle, and by the second
cycle is desynchronized from the other oscillator groups.
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oscillators that are stimulated by the five objects. Each of the
properties we have described in previous sections are shown in
this graph. Initially the interaction terms dominate and cause
the oscillators to loosely synchronize. Loose synchrony is seen
on the graph by observing that each of plots quickly merge
into a thick line. By the second peak, the oscillators have been
synchronized to such a degree that only a thin single curve is
exhibited. Desynchronization most noticeably occurs during
the fourth activation of GS. The phase difference between
the oscillator groups representing the house and the addition
sign is significantly altered at this time. This shift in phase
is signaled by the change in the characteristic shape of the
oscillator group representing the addition sign. The activity of
GS is displayed on the last frame of Fig. 11. GS is activated
when any oscillator, or oscillator group passes through the
triggering region. When the oscillators are well separated, GS
will be active five times per cycle, signaling successive “pop
outs” of the five objects. Only the first three cycles are depicted
in this graph, but as we have tested, synchrony within the
oscillator groups, as well as desynchrony between the groups
is maintained afterwards without degradation.

We can reliably separate up to at least nine objects (results
not shown). Separating the phases of more objects becomes
increasingly difficult for this system. The finite time required
for an oscillator to travel through the triggering region, and
the finite area affected by GS, constrain the number of objects
that can be separated. This limitation seems consistent with
the well-known psychological result that humans have a fun-
damental bound on the number of objects that can be held in
their attentional span [43].

Even though noise was not used in the simulations presented
here, we have tested the network with various amounts of
noise. As expected, the system is robust for small amounts of
noise, but cannot tolerate very large quantities. This is because
noise by itself can cause the nuliclines to intersect and thus
interfere with the mechanism we use to synchronize oscillators.

\

The amount of noise the system can tolerate increases with
the size of the coupling strength.

We used the numerical ordinary differential equation (ODE)
solvers found in [49] to conduct the above simulations. An
adaptive Runga—Kutta method was used for most of the
simulations reported. The Bulrisch-Stoer method was later
used to confirm the numerical results. The network had the
same dynamics with either of the integration methods. So it is
very unlikely that numerical errors played any significant role
in our simulation results.

VI. DISCUSSION

Our analysis of the WC oscillator network demonstrates
that it contains the basic features necessary to achieve os-
cillatory correlation. This includes: dynamic couplings, short-
range excitatory connections to synchronize oscillators, and
long-range excitatory connections to desynchronize groups of
oscillators. With this simple architecture, we have used the
theory of oscillatory correlation, together with the Gestalt
principle of connectedness to illustrate sensory segmentation.
The model retains information of spatial relationships through
local coupling, and does not suffer from the problems of
accidental synchrony through the use of a global separator
to segregate objects.

Although we have not attempted to simulate the experi-
mental findings of Gray et al. [31], the network is neurally
plausible. The WC equations represent the activities of neu-
ral groups, and local excitatory connections are consistent
with lateral connections widely seen in the brain [38]. The
global separator may be viewed as part of an attentional
mechanism. Experiments conducted by Treisman and Gelade
[61] suggest that if an object has several features, a correct
conjunction of those features relies on attention. Thus, if
feature binding is achieved through oscillatory correlation, the
attentive mechanism may serve to synchronize features into
a coherent object, as well as segment different objects. In
performing desynchronization, GS may accomplish a task that
is fundamental to attention. GS also has structural similarities
to a proposed neural attentional mechanism. Crick [15] sug-
gested that the reticular complex of the thalamus may control
attention, in part because it has connections both to and from
many regions of the cortex. Thus, the reticular complex of the
thalamus may have influence over widely separated sensory
processing regions. With its wide range couplings, GS may
have structural, as well as functional, relations to the proposed
attentional mechanisms.

We have shown that synchrony can occur in locally coupled
oscillators if the coupling is sufficiently large. This is proven
using the piece-wise linear approximation to the WC oscil-
lators. Numerically we observe that synchrony occurs, with
local coupling, in the actual WC oscillators (1), as well as our
approximation to them (7), with any positive coupling strength.
This implies that synchrony in such oscillator networks is pos-
sible with local connections only. We have also demonstrated
a method that can synchronize large numbers of oscillators
within the first cycle. The method is based only on the position
of the nullclines, and a property of the coupling. This technique
is not specific to WC oscillators, or even scalar diffusive



552

coupling. It should be applicable to other types of oscillators
as well. We also present a mechanism for desynchronization,
which can segment up to nine spatially separate objects. Our
mechanism requires only a basic control of speed through a
single region of the limit cycle, so it too can be transferred to
other oscillator models (see also [60] and [69]).

Our method of fast synchronization requires a region in
which two nullclines are very near to each other. Because
of this, noise that alters the position of these nullclines with
respect to one another may destroy fast synchrony, or stop the
periodic motion of some oscillators completely. The former
case can occur with the form of noise defined in (2), which is
added into the sigmoid term as in (1). The latter case can occur
when the dynamic coupling is imperfect, e.g., if a constant
noise term is added to (5). A robust system should exhibit
properties of synchrony and desynchrony in the presence of
noisy input, with oscillators that contain internal noise, and
also with connections that can introduce some form of noise.
In this respect, out study suggests that the WC oscillators
with scalar diffusive coupling may not be able to support as
robust synchronization and desynchronization as the relaxation
oscillators networks studied in [60] and [69].

The matrix analysis we have done for a chain of oscilla-
tors can be extended to analyze higher-dimensional oscillator
lattices. We conjecture that synchrony can also be achieved
in more than two dimensions, with only a positive coupling
strength. This is based on simulations that we have done with
2-D grids that exhibit the same phase locking behavior as we
have seen in one-dimensional chains. Also, this analysis can
be done with lateral connections farther than nearest-neighbor
connections. In fact, numerical simulations (data not shown)
in one and two dimensions show that longer range connections
can even facilitate synchronization. We speculate that analysis
with longer-range connections would indicate a decrease in
the connection strength required to achieve synchrony.

Aside from explaining what may occur in the brain, oscilla-
tory correlation offers a unique approach to the engineering of
pattern segmentation, figure/ground segregation, and feature
binding. Due to the nature of the oscillations, only a single
object is active at any given time, and multiple objects are
sequentially activated. The model can be used as a framework
upon which more sophisticated methods of segmentation can
be built. For example, the network can be extended to handle
gray level input also. Dynamic couplings between excited
neighboring oscillators could then be based on the contrast in
the gray level of the stimulus. Regions with smoothly changing
input would be grouped together, and segmented from regions
with boundaries of sharp changes in gray level.

A unique advantage of using oscillatory correlation for
perceptual organization is that the architecture is inherently
parallel. Each oscillator operates simultaneously with all the
others, and computations are based only on connections and
oscillations, both of which are particularly feasible for VLSI
(very large scale integration) chip implementation (for an
actual chip implementation exploring phase locking see [3]). It
also provides an elegant representation for real time process-
ing. Given the enormous amount of information processing
required by sensory processing, a parallel architecture and the
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potential for VLSI implementation are both very desirable
qualities.

Perceptual tasks involving neural oscillations have also been
observed in audition [26], [42], (see [67] for a model), and.
olfaction [25]. Oscillations have also been explored in asso-
ciative recall networks [11], [68], [1]. With its computational
properties plus the support of biological evidence, this model
may offer a general approach to pattern segmentation and
figure/ground segregation.
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