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Abstract

Speech separation can be treated as a mask estimation problem, where interference-dominant portions are masked in a time-frequency
representation of noisy speech. In supervised speech separation, a classifier is typically trained on a mixture set of speech and noise. It
is important to efficiently utilize limited training data to make the classifier generalize well. When target speech is severely interfered by
a nonstationary noise, a classifier tends to mistake noise patterns for speech patterns. Expansion of a noise through proper perturbation
during training helps to expose the classifier to a broader variety of noisy conditions, and hence may lead to better separation performance.
This study examines three noise perturbations on supervised speech separation: noise rate, vocal tract length, and frequency perturbation at
low signal-to-noise ratios (SNRs). The speech separation performance is evaluated in terms of classification accuracy, hit minus false-alarm
rate and short-time objective intelligibility (STOI). The experimental results show that frequency perturbation is the best among the three
perturbations in terms of speech separation. In particular, the results show that frequency perturbation is effective in reducing the error of
misclassifying a noise pattern as a speech pattern.
© 2016 Elsevier B.V. All rights reserved.
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. Introduction

Speech separation is a task of separating target speech from
oise interference. The task has a wide range of applications
uch as hearing aid design and robust automatic speech recog-
ition (ASR). Monaural speech separation is proven to be
ery challenging as it only uses single-microphone record-
ngs, especially in low SNR conditions. One way of dealing
ith this problem is to apply speech enhancement (Ephraim

nd Malah, 1984; Erkelens et al., 2007; Jensen and Hen-
riks, 2012) on a noisy signal, where certain assumptions are
ade regarding general statistics of the background noise.
he speech enhancement approach is usually limited to rela-

ively stationary noises. Looking at the problem from another
erspective, computational auditory scene analysis (CASA)
Wang and Brown, 2006), which is inspired by psychoacoustic
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esearch in auditory scene analysis (ASA) (Bregman, 1990),
xploits perceptual principles to speech separation.

In CASA, interference can be reduced by applying mask-
ng on a time–frequency (T–F) representation of noisy speech.
n ideal mask suppresses noise-dominant T–F units and
eeps the speech-dominant T–F units. Therefore, speech sepa-
ation can be treated as a mask estimation problem where su-
ervised learning is employed to construct the mapping from
coustic features to a mask. A binary decision on each T–

unit leads to an estimate of the ideal binary mask (IBM),
hich is defined as follows.

BM(t, f ) =
{

1, if SNR(t, f ) > LC
0, otherwise

(1)

here t denotes time and f frequency. The IBM assigns the
alue 1 to a T–F unit if its SNR exceeds a local crite-
ion (LC), and 0 otherwise. Therefore, speech separation is
ranslated into a binary classification problem. Recent stud-
es show IBM separation improves speech intelligibility in
oise for both normal-hearing and hearing-impaired listeners
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Fig. 1. Diagram of the proposed system.
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(Ahmadi et al., 2013; Brungart et al., 2006; Li and Loizou,
2008; Wang et al., 2009). Alternatively, a soft decision on
each T–F unit leads to an estimate of the ideal ratio mask
(IRM). The IRM is defined below (Narayanan and Wang,
2013).

IRM(t, f ) =
(

10(SNR(t, f )/10)

10(SNR(t, f )/10) + 1

)β

(2)

where β is a tunable parameter. A recent study has shown that
β = 0.5 is a good choice for the IRM (Wang et al., 2014).
In this case, mask estimation becomes a regression problem
where the target is the IRM. Ratio masking is shown to lead
to slightly better objective intelligibility results than binary
masking (Wang et al., 2014). In this study, we use the IRM
with β = 0.5 as the learning target.

Supervised speech separation is a data-driven method
where one expects a mask estimator to generalize from limited
training data. However, training data only partially captures
the true data distribution, thus a mask estimator can overfit
training data and do a poor job in unseen scenarios. In su-
pervised speech separation, a training set is typically created
by mixing clean speech and noise. When we train and test
on a nonstationary noise such as a cafeteria noise, there can
be considerable mismatch between training noise segments
and test noise segments, especially when the noise resource
used for training is restricted. Similar problems can be seen
in other supervised learning tasks such as image classification
where the mismatch of training images and test images poses
a great challenge. In image classification, a common prac-
tice is to transform training images using distortions such as
rotation, translation and scaling, in order to expand the train-
ing set and improve generalization of a classifier (Ciresan
et al., 2012; LeCun et al., 1998). We conjecture that super-
vised speech separation can also benefit from training data
augmentation.

In this study, we aim at expanding the noise resource us-
ing noise perturbation to improve supervised speech separa-
tion. We treat noise expansion as a way to prevent a mask
estimator from overfitting the training data. A recent study
has shown speech perturbation improves ASR (Kanda et al.,
2013). However, our study perturbs noise instead of speech
since we focus on separating target speech from highly non-
stationary noises where the mismatch among noise segments
is the major problem. To our knowledge, our study is the
first to introduce training data augmentation to the domain of
speech separation.

This paper is organized as follows. Section 2 describes
the system used for mask estimation. Noise perturbations are
covered in Section 3. We present experimental results in Sec-
tion 4. Section 5 concludes the paper. A preliminary version
of this paper is included in Chen et al. (2015). Compared to
the preliminary version, this paper has added a comparison
with an alternative supervised separation method (Virtanen
et al., 2013), detailed analysis of the three perturbation meth-
ods, and more evaluations in unvoiced and voiced intervals
of speech, unmatched noises, expanded training and the very
low SNR condition of −10 dB.
. System overview

To evaluate the effects of noise perturbation, we use a
xed system for mask estimation and compare the quality of
stimated masks as well as the resynthesized speech that are
erived from the masked T–F representations of noisy speech.
hile comparison between an estimated mask and an ideal
ask reveals the spectrotemporal distribution of estimation

rrors, resythesized speech can be directly compared to clean
peech. As mentioned in Section 1, we use the IRM as the
arget of supervised learning. The IRM is computed from the
4-channel cochleagrams of premixed clean speech and noise.
he cochleagram is a time-frequency representation of a sig-
al (Wang and Brown, 2006). We use a 20 ms window and a
0 ms window shift to compute cochleagram in this study.
e perform IRM estimation using a deep neural network

DNN) and a set of acoustic features. Recent studies have
hown that DNN is a strong classifier for ASR (Mohamed
t al., 2012) and speech separation (Wang and Wang, 2013;
u et al., 2014). As shown in Fig. 1, acoustic features are

xtracted from a mixture sampled at 16 kHz, and then sent
o a DNN for mask prediction.

We use classification accuracy, hit minus false-alarm
HIT−FA) rate and short-time objective intelligibility (STOI)
core (Taal et al., 2011) as three criteria for measuring the
uality of the estimated IRM. Since the first two criteria are
efined for binary masks, we calculate them by binarizing a
atio mask to a binary one. In this study, we follow Eqs. (3)
nd (1).

NR(t, f ) = 10log10

(
IRM(t, f )2

1 − IRM(t, f )2

)
(3)

uring the mask conversion, the LC is set to be 5 dB lower
han the SNR of a given mixture. The three criteria evaluate
he estimated IRM from three different perspectives. Clas-
ification accuracy computes the percentage of correctly la-
eled T–F units in a binary mask. In HIT−FA, HIT refers
o the percentage of correctly classified target-dominant T–F
nits and FA refers to the percentage of wrongly classified
nterference-dominant T–F units. HIT−FA rate is well cor-
elated with human speech intelligibility (Kim et al., 2009).
n addition, STOI is computed by comparing the short-time
nvelopes of clean speech and resynthesized speech obtained
rom IRM masking, and it is a standard objective metric of
peech intelligibility (Taal et al., 2011).
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Fig. 2. Illustration of noise rate perturbation.
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Fig. 3. (a) Mapping function for vocal tract length perturbation. The fre-
quencies below a cutoff are stretched if α > 1, and compressed if α <

1. (b) Illustration of vocal tract length perturbation. The medium and low
frequencies are compressed in this case.

Fig. 4. Illustration of frequency perturbation.
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. Noise perturbation

The goal of noise perturbation is to expand noise segments
o cover unseen scenarios so that the overfitting problem is
itigated in supervised speech separation. A reasonable and

traightforward idea for noise expansion is to reverse each
oise signal in time. We have evaluated this idea and un-
ortunately adding reversed noises does not improve speech
eparation results. We conjecture that the spectrogram of a
oise segment may be a better domain to apply perturba-
ion. A recent study has found that three perturbations on
peech samples in the spectrogram domain improve ASR per-
ormance (Kanda et al., 2013). These perturbations were used
o expand the speech samples so that more speech patterns
re observed by a classifier. The three perturbations are in-
roduced below. Unlike this study, we perturb noise samples
nstead of perturbing speech samples, as we are dealing with
ighly nonstationary noises.

.1. Noise rate (NR) perturbation

Speech rate perturbation, a way of speeding up or slow
own speech, is used to expand training utterances during
he training of an ASR system. In our study, we extend the

ethod to vary the rate of nonstationary noises. We increase
r decrease noise rate by factor γ . When a noise rate is be-
ng perturbed, the value of γ is randomly selected from an
nterval [γmin, 2 − γmin]. The effect of NR perturbation on a
pectrogram is shown in Fig. 2.

.2. Vocal tract length (VTL) perturbation

VTL perturbation has been used in ASR to cover the vari-
tion of vocal tract length among speakers. A recent study
uggests that VTL perturbation improves ASR performance
Jaitly and Hinton, 2013). VTL perturbation essentially com-
resses or stretches the medium and low frequency com-
onents of an input signal. We use VTL perturbation as a
ethod of perturbing a noise segment. Specifically, we fol-

ow the algorithm in (Jaitly and Hinton, 2013) to perturb noise
ignals:

f ′ =

⎧⎪⎨
⎪⎩

f α, if f ≤ Fhi
min(α,1)

α

S

2
−

S
2 − Fhimin(α, 1)

S
2 − Fhi

min(α,1)

α

(
S

2
− f

)
, otherwise

(4)
here α is the wrapping factor, S is the sampling rate, and Fhi

ontrols the cutoff frequency. Fig. 3(a) shows how VTL per-
urbation compresses or stretches a portion of a spectrogram.
he effect of VTL perturbation is visualized in Fig. 3(b).

.3. Frequency perturbation

When frequency perturbation is applied, frequency bands
f a spectrogram are randomly shifted upward or downward.
e use the method described in (Kanda et al., 2013) to ran-

omly perturb noise samples. Frequency perturbation takes
hree steps. First, we randomly assign a value to each T–F
nit, which is drawn from a uniform distribution.

( f , t ) ∼ U (−1, 1) (5)

Then we derive the perturbation factor δ(f, t) by averaging
he assigned values of neighboring time-frequency units. This
veraging step avoids large oscillations in spectrogram.

( f , t ) = λ

(2p + 1)(2q + 1)

f +p∑
f ′= f −p

t+q∑
t ′=t−q

r( f ′, t ′) (6)

here p and q control the smoothness of the perturbation, and
controls the magnitude of the perturbation. These tunable

arameters are decided experimentally. Finally the spectro-
ram is perturbed as follows.

˜( f , t ) = S( f + δ( f , t ), t ) (7)

here S(f, t) represents the original spectrogram and S̃( f , t ) is
he perturbed spectrogram. Interpolation between neighboring
requencies is used when δ(f, t) is not an integer. The effect
f frequency perturbation is visualized in Fig. 4.
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4. Experimental results

4.1. Experimental setup

We use the IEEE corpus recorded by a male speaker
(IEEE, 1969) and six nonstationary noises from the DE-
MAND corpus (Thiemann et al., 2013) to create mixtures.
All signals are sampled at 16 kHz. Note that all recordings
of the DEMAND corpus are made with a 16-channel micro-
phone array, we use only one channel of the recordings since
this study is on monaural speech separation.

The DEMAND corpus has six categories of noises. We
choose one noise from each category to represent distinct en-
vironments. The six nonstationary noises, each is five-minute
long, are described as follows.

1. The “Street” category:
The SCAFE noise, recorded in the terrace of a cafe at a
public square.

2. The “Domestic” category:
The DLIVING noise, recorded inside a living room.

3. The “Office” category:
The OMEETING noise, recorded in a meeting room.

4. The “Public” category:
The PCAFETER noise, recorded in a busy office cafeteria.

5. The “Nature” category:
The NPARK noise, recorded in a well visited city park.

6. The “Transportation” category:
The TMETRO noise, recorded in a subway.

To create a mixture, we mix one IEEE sentence and one
noise type at −5 dB SNR. This low SNR is selected with the
goal of improving speech intelligibility in mind where there
is not much to improve at higher SNRs (Healy et al., 2013).
The training set uses 600 IEEE sentences and randomly se-
lected segments from the first two minutes of a noise, while
the test set uses another 120 IEEE sentences and randomly
selected segments from the second two minutes of a noises.
Therefore, the test set has different sentences and different
noise segments from the training set. We create 50 mixtures
for each training sentence by mixing it with 50 randomly se-
lected segments from a given noise, which results in a training
set containing 600 × 50 mixtures. The test set includes 120
mixtures. We train and test using the same noise type and
SNR condition.

To perturb a noise segment, we first apply short-time
Fourier transform (STFT) to derive noise spectrogram, where
a frame length of 20 ms and a frame shift of 10 ms are used.
Then we perturb the spectrogram and derive a new noise seg-
ment. To evaluate the three noise perturbations, we create five
different training sets, each consists of 600 × 50 mixtures. We
train a mask estimator for each training set and evaluate on a
fixed test set (i.e. the 120 mixtures created from the original
noises). The five training sets are described as follows.

1. Original Noise: All mixtures are created using original
noises.
2. NR Perturbation: Half of the mixtures are created from
NR perturbed noises, and the other half are from original
noises.

3. VTL Perturbation: Half of the mixtures are created from
VTL perturbed noises, and the other half are from original
noises.

4. Frequency Perturbation: Half of the mixtures are created
from frequency perturbed noises, and the other half are
from original noises.

5. Combined: Half of the mixtures are created from applying
three perturbations altogether, and the other half are from
original noises.

The acoustic features we extract from mixtures are a
omplementary feature set (AMS + RASTAPLP + MFCC)
Wang et al., 2013) combined with gammatone filterbank
GFB) features. To compute 15-D AMS, we derive 15 modu-
ation spectrum amplitudes from the decimated envelope of an
nput signal (Kim et al., 2009). 13-D RASTAPLP is derived
y applying linear prediction analysis on the RASTA-filtered
ark-scale power spectrum of an input signal (Hermansky
nd Morgan, 1994). We follow a standard procedure to com-
ute 31-D MFCC. To derive GFB features, an input signal
s passed to a 64-channel gammatone filterbank, the response
ignals are decimated to 100 Hz to form 64-D GFB features.
fter appending delta features, we end up with a feature set
f 123 × 2 dimensions.

A four-hidden-layer DNN is employed to learn the map-
ing from acoustic features to the IRM. Each hidden layer
f the DNN has 1024 rectified linear units (Nair and Hinton,
010). To incorporate temporal context and obtain smooth
ask estimation, we use 5 frames of features to estimate 5

rames of the IRM (Wang et al., 2014). As we use a 246-D
eature set and the 64-channel IRM, the input layer of the
NN has 246 × 5 units and the output layer has 64 × 5

igmoidal units. Since each frame of the mask is estimated 5
imes, we take the average of the 5 estimates. We use mean
quared error as the cost function. Hidden-layer dropout (Dahl
t al., 2013) and adaptive stochastic gradient descent (Ada-
rad) (Duchi et al., 2011) with a mini-batch size of 1024 are
sed to train the DNN. We set the dropout ratio to 0.2 and the
nitial learning rate of AdaGrad to 0.003. We train the DNN
or 80 epochs and select the best epoch by cross validation.

.2. Parameters of noise perturbation

In this section, three sets of experiments are carried out
o explore the parameters used in the three perturbations to
et the best performance. To facilitate parameter selection,
e create five smaller training sets, following the same con-
guration in Section 4.1 except that we use 480 IEEE clean
entences to create 480 × 20 training mixtures. Another 120
EEE sentences (different than the test ones in Section 4.1)
re used to create 120 test mixtures only for the purpose
f choosing parameter values (i.e. a development set). The
peech separation performance is evaluated in term of STOI
core.
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Fig. 5. The effect of the minimum noise rate γ min for NR perturbation.
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In NR perturbation, the only adjustable parameter is the
ate γ . We can slow down a noise by setting γ < 1, or speed
t up using γ > 1. To capture various noise rates, we ran-
omly draw γ from an interval [γmin, 2 − γmin]. We evaluate
arious intervals in term of speech separation performance.
s shown in Fig. 5, the interval [0.1, 1.9] (i.e. γmin = 0.1)
ives the best performance for six noises.

In VTL perturbation, there are two parameters: Fhi con-
rols cutoff frequency and α the warping factor. Fhi is set
o 4800 to roughly cover the frequency range of speech for-

ants. We randomly draw α from an interval [αmin, 2 − αmin]
o systematically stretch or shrink the frequencies below the
utoff frequency. Fig. 6 shows the effects of different inter-
als on speech separation performance. The interval of [0.3,
.7] (i.e. αmin = 0.3) leads to the best result for the majority
f the noise types.

In frequency perturbation, a 161-band spectrogram derived
rom a noise segment is perturbed using the algorithm de-
cribed in Section 3.3. We set p = 50 and q = 100 to avoid
ramatic perturbation along time and frequency axes. We ex-
eriment with different perturbation intensity λ. As shown in
ig. 7, λ = 1000 achieves the best performance for the ma-

ority of the noise types.

.3. Evaluation results and comparisons

Before we evaluate the three perturbations, it is worth
tressing that we are trying to apply noise perturbations to
mprove the performance of a strong baseline separation sys-
em, making further improvements harder. As described in
ection 2, this baseline system trains a DNN to estimate the
RM. To demonstrate this, we compare our baseline system
ith a recently proposed supervised algorithm based on non-
egative matrix factorization (NMF) (Mohammadiha et al.,
013; Ozerov et al., 2012). This algorithm is called active-set
ewton algorithm (ASNA), which we denote as ASNA-NMF

Virtanen et al., 2013). We select ASNA-NMF as it outper-
orms many variants of supervised NMF algorithms (Virtanen
t al., 2013). We set ASNA-NMF to use 1000 speech bases,
00 noise bases and 5 frames of magnitude spectra. For a fair
omparison, we train ASNA-NMF on the first two minutes
f a noise and 600 IEEE sentences, and test on the second
wo minutes of the noise and another 120 IEEE sentences.
able 1 shows the separation results of the baseline system
nd ASNA-NMF in terms of STOI. The DNN-based baseline
roduces significantly better results than ASNA-MNF for six
oises at −5 dB SNR. On average, DNN-based ratio masking
mproves STOI by 10%, while ASNA-NMF improves STOI
y 4%.

We evaluate the three perturbations with the parameter val-
es selected in Section 4.2 and the five large training sets de-
cribed in Section 4.1. The effects of noise perturbations on
peech separation are shown in Tables 2–Table 4, in terms of
lassification accuracy, HIT−FA rate and STOI score respec-
ively. The results indicate that all three perturbations lead
o better speech separation than the baseline where only the
riginal noises are used. Frequency perturbation performs bet-
er than the other two perturbations. Compared to only using
he original noises, the frequency perturbed training set on
verage increases classification accuracy, HIT−FA rate and
TOI score by 8%, 11% and 3%, respectively. This indi-
ates that noise perturbation is an effective technique for
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Fig. 6. The effect of the minimum wrapping factor αmin for VTL perturbation.

Fig. 7. The effect of the perturbation intensity λ for frequency perturbation.
Table 1
Comparison of DNN-based ratio masking (the baseline) with ASNA-NMF in terms of STOI (in %) for six noises at −5 dB.

Method Noise

SCAFE DLIVING OMEETING PCAFETER NPARK TMETRO Average

Unprocessed 64.1 79.3 67.8 62.5 67.7 77.5 69.8
ASNA-NMF 67.5 82.4 73.4 66.0 72.5 81.2 73.8
DNN-IRM 73.7 87.5 80.0 71.4 80.2 85.9 79.8
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Table 2
Classification accuracy (in %) for six noises at −5 dB.

Perturbation Noise

SCAFE DLIVING OMEETING PCAFETER NPARK TMETRO Average

Original noise 73.0 84.0 80.0 70.3 82.7 80.3 78.4
NR perturbation 80.2 88.5 85.3 77.9 88.5 85.1 84.2
VTL perturbation 80.1 87.7 84.9 77.8 89.2 85.5 84.2
Frequency perturbation 84.4 88.6 86.7 80.6 90.0 86.7 86.2
Combined 81.8 88.0 86.1 78.9 89.6 86.6 85.2

Table 3
HIT−FA rate (in %) for six noises at −5 dB, where FA is shown in parentheses.

Perturbation Noise

SCAFE DLIVING OMEETING PCAFETER NPARK TMETRO Average

Original noise 55 (37) 70 (23) 65 (28) 50 (40) 69 (22) 63 (32) 62 (30)
NR perturbation 64 (24) 77 (15) 72 (18) 60 (26) 77 (12) 72 (21) 70 (19)
VTL perturbation 64 (24) 76 (16) 71 (19) 60 (27) 78 (10) 72 (21) 70 (20)
Frequency perturbation 69 (17) 77 (14) 74 (15) 63 (21) 79 (9) 74 (18) 73 (16)
Combined 67 (21) 77 (15) 73 (16) 61 (25) 78 (10) 74 (18) 72 (18)

Table 4
STOI (in %) of separated speech for six noises at −5 dB, where STOI of unprocessed mixtures is shown in parentheses.

Perturbation Noise

SCAFE DLIVING OMEETING PCAFETER NPARK TMETRO Average

Original noise 73.7 (64.1) 87.5 (79.3) 80.0 (67.8) 71.4 (62.5) 80.2 (67.7) 85.9 (77.5) 79.8 (69.8)
NR perturbation 76.5 (64.1) 89.2 (79.3) 82.5 (67.8) 74.1 (62.5) 83.2 (67.7) 87.4 (77.5) 82.1 (69.8)
VTL perturbation 76.1 (64.1) 88.7 (79.3) 82.2 (67.8) 74.0 (62.5) 83.6 (67.7) 87.2 (77.5) 82.0 (69.8)
Frequency perturbation 78.2 (64.1) 89.1 (79.3) 83.3 (67.8) 75.1 (62.5) 84.1 (67.7) 87.8 (77.5) 82.9 (69.8)
Combined 77.0 (64.1) 88.6 (79.3) 82.7 (67.8) 74.7 (62.5) 83.8 (67.7) 87.6 (77.5) 82.4 (69.8)
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Fig. 8. Average STOI (in %) of separated speech for six noises at −5 dB
with respect to the number of training mixtures.

e
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v

mproving speech separation results. Combining three pertur-
ations, however, does not lead to further improvement over
requency perturbation. We conjecture that frequency pertur-
ation alone provides sufficient noise variations for general-
zation purposes. To verify this, we expand training by mixing
ach clean sentence with more noise segments. For the train-
ng sets using perturbed noises, we fix the number of mixtures
reated from original noises to 600 × 25, but vary the num-
er of mixtures created from perturbed noises. Fig. 8 shows
he average STOI results as the number is set to 600 × 25,
00 × 50, and 600 × 150. As the size of the training set
ncreases, the combined method and frequency perturbation
each almost the same peak performance. We also observe
hat the speech separation performance does not benefit from

larger training set when no perturbation is used.
A closer look at Table 3 reveals that the contribution of

requency perturbation lies mainly in the large reduction in
A rate. This means that the problem of misclassifying noise-
ominant T–F units as speech-dominant is mitigated. This
ffect can be illustrated by visualizing the masks estimated
rom the different training sets and the ground truth mask
n Fig. 9 (e.g. around frame 150). When the mask estimator
s trained with the original noises, it mistakenly retains the
egions where target speech is not present, which can be seen
y comparing the top and bottom plots of Fig. 9. Applying
requency perturbation to noises essentially exposes the mask
stimator to more noise patterns and results in a more accurate
ask estimator, which is shown in the middle plot of Fig. 9.
In addition, we show HIT−FA rate for voiced and un-

oiced intervals in Tables 5 and 6 respectively. We find that
requency perturbation is effective for both voiced and un-
oiced intervals.
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Table 5
HIT−FA rate (in %) during voiced intervals, where FA is shown in parentheses.

Perturbation Noise

SCAFE DLIVING OMEETING PCAFETER NPARK TMETRO Average

Original noise 50 (44) 70 (26) 62 (33) 48 (45) 71 (24) 55 (42) 59 (36)
NR perturbation 60 (32) 75 (21) 69 (24) 57 (33) 79 (15) 63 (33) 67 (26)
VTL perturbation 62 (30) 75 (21) 70 (24) 60 (31) 80 (13) 65 (31) 69 (25)
Frequency perturbation 66 (24) 76 (20) 72 (21) 62 (27) 80 (13) 67 (29) 70 (22)
Combined 65 (27) 76 (20) 72 (21) 61 (30) 80 (13) 68 (28) 70 (23)

Table 6
HIT−FA rate (in %) during unvoiced intervals, where FA is shown in parentheses.

Perturbation Noise

SCAFE DLIVING OMEETING PCAFETER NPARK TMETRO Average

Original noise 48 (33) 61 (22) 59 (25) 41 (36) 57 (20) 61 (27) 54 (27)
NR perturbation 54 (20) 70 (11) 64 (15) 48 (22) 62 (9) 68 (16) 61 (16)
VTL perturbation 52 (21) 68 (13) 64 (15) 45 (24) 62 (8) 68 (16) 60 (16)
Frequency perturbation 59 (12) 68 (11) 66 (11) 48 (18) 62 (6) 70 (13) 62 (12)
Combined 55 (18) 68 (12) 64 (13) 46 (22) 62 (8) 69 (14) 61 (14)

50 100 150 200 250

20

40

60

50 100 150 200 250

20

40

60

Frame

C
ha

nn
el

50 100 150 200 250

20

40

60

Fig. 9. Mask comparisons. The top shows a ratio mask obtained from train-
ing on original noises, the middle shows a mask obtained from training on
frequency perturbed noise, and the bottom shows the IRM.
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Fig. 10. The effect of frequency perturbation in three SNR conditions. The
average STOI scores (in %) across six noises are shown for unprocessed
speech, separated speech by training on original noises, and separated speech
by training on frequency perturbed noises.
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While classification accuracy and HIT−FA rate evaluate
the estimated binary masks, STOI directly compares clean
speech and the resynthesized speech. As shown in Table 4,
frequency perturbation yields higher average STOI scores than
using original noises with no perturbation and NR and VTL
perturbations.

To evaluate the effectiveness of frequency perturbation at
other SNRs, we carry out additional experiments at -10 dB
and 0 dB input SNRs, where we use the same parameter val-
ues as for −5 dB SNR. Fig. 10 shows frequency perturbation
improves speech separation in terms of STOI in each SNR
condition. Also, we find that frequency perturbation remains
the most effective among the three perturbations at −10 dB
and 0 dB SNR.
All the above evaluations are conducted on unseen seg-
ents of the same nonstationary noises, corresponding to

nvironment-specific speech separation (Hu and Loizou,
010). Although not the focus of the present study, it is in-
eresting to see how our mask estimator performs when eval-
ated on completely new noises. To get an idea, we evaluate
wo models trained with and without frequency perturbation.

e use the same setting described in Section 4.1 except that
e train on SCAFE noise and test on the other five noises.
he results are shown in Table 7. As expected, the two mod-
ls do not perform as well as in the matched noise case.
ut they still significantly improve STOI over unprocessed
ixtures. Table 7 also shows that the model with frequency

erturbation generalizes better to new noises than the model
ithout perturbation.
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Table 7
STOI (in %) of separated speech for five unmatched noises at −5 dB, where STOI of unprocessed mixtures is shown in
parentheses.

Training Noise Test Noise

DLIVING OMEETING PCAFETER NPARK TMETRO

Matched noise (original noise) 87.5 (79.3) 80.0 (67.8) 71.4 (62.5) 80.2 (67.7) 85.9 (77.5)
Matched noise (perturbation) 89.1 (79.3) 83.3 (67.8) 75.1 (62.5) 84.1 (67.7) 87.8 (77.5)
SCAFE (original noise) 84.8 (79.3) 70.7 (67.8) 70.2 (62.5) 72.1 (67.7) 84.7 (77.5)
SCAFE (perturbation) 86.2 (79.3) 73.2 (67.8) 74.0 (62.5) 80.0 (67.7) 86.6 (77.5)
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Finally, to evaluate the effect of frequency perturbation on
ulti-condition training, we test on SCAFE noise using an-

ther two models trained on the other five noises at −5 dB
NR. The first model is trained with 600 × 30 × 5 mixtures
reated using the five original noises, where each sentence
s mixed with each noise type 30 times. The second model
s trained with the same number of mixtures where one half
re created using original noises and the other half are cre-
ted using perturbed noises. The STOI of unprocessed mix-
ures, separated speech using the first model and separated
peech using the second model are 64.1%, 75.5% and 78.4%,
espectively. This indicates that frequency perturbation also
mproves generalization in multi-condition training.

. Concluding remarks

In this study, we have explored the effects of noise pertur-
ation on supervised monaural speech separation at low SNR
evels. As a training set is usually created from limited speech
nd noise resources, a classifier likely overfits the training set
nd makes poor predictions on a test set, especially when
ackground noise is highly nonstationary. We suggest to ex-
and limited noise resources by noise perturbation.

We have evaluated three noise perturbations with six
onstationary noises recorded from daily life for speech sep-
ration. The three are noise rate, VTL, and frequency pertur-
ations. When a DNN is trained on a data set which utilizes
erturbed noises, the quality of the estimated ratio mask is im-
roved as the classifier has been exposed to more scenarios
f noise interference. In contrast, a mask estimator learned
rom a training set that only uses original noises tends to
ake more false alarm errors (i.e. higher FA rate), which

s detrimental to speech intelligibility (Yu et al., 2014). The
xperimental results show that frequency perturbation, which
andomly perturbs the noise spectrogram along frequency, al-
ost uniformly gives the best speech separation results among

he three perturbations examined in this study in terms of
lassification accuracy, HIT−FA rate and STOI score.

Finally, this study adds another technique to deal with the
eneralization problem in supervised speech separation. Pre-
ious studies use model adaptation (Han and Wang, 2013) and
xtensive training (Wang and Wang, 2013) to deal with the
ismatch of SNR conditions, noises and speakers between

raining and testing. Our study aims at situations with limited
raining noises, and provides an effective data augmentation

ethod that improves generalization in nonstationary environ-
ents. The idea of signal perturbation may also be applicable
o augmenting speech signals for improved generalization to
ifferent kinds of speech data, such as different speaking rates
nd styles.
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