
Noise Perturbation Improves Supervised Speech
Separation

Jitong Chen(B), Yuxuan Wang, and DeLiang Wang

The Ohio State University, Columbus, OH 43210, USA
{chenjit,wangyuxu,dwang}@cse.ohio-state.edu

Abstract. Speech separation can be treated as a mask estimation
problem where interference-dominant portions are masked in a time-
frequency representation of noisy speech. In supervised speech separa-
tion, a classifier is typically trained on a mixture set of speech and
noise. Improving the generalization of a classifier is challenging, espe-
cially when interfering noise is strong and nonstationary. Expansion of
a noise through proper perturbation during training exposes the classi-
fier to more noise variations, and hence may improve separation perfor-
mance. In this study, we examine the effects of three noise perturbations
at low signal-to-noise ratios (SNRs). We evaluate speech separation per-
formance in terms of hit minus false-alarm rate and short-time objective
intelligibility (STOI). The experimental results show that frequency per-
turbation performs the best among the three perturbations. In particular,
we find that frequency perturbation reduces the error of misclassifying a
noise pattern as a speech pattern.
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1 Introduction

Speech separation is a task of separating target speech from noise interference.
Monaural speech separation is proven to be very challenging as it only uses
single-microphone recordings, especially in low SNR conditions. One way of
dealing with this problem is to apply speech enhancement [6] on a noisy signal,
where certain assumptions are made regarding general statistics of the back-
ground noise. The speech enhancement approach is usually limited to relatively
stationary noises. Looking at the problem from another perspective, computa-
tional auditory scene analysis (CASA) exploits perceptual principles to speech
separation. In CASA, interference can be reduced by applying masking on a
time-frequency (T-F) representation of noisy speech. An ideal mask suppresses
noise-dominant T-F units and keeps the speech-dominant T-F units. Therefore,
speech separation can be treated as a mask estimation problem where supervised
learning is employed to construct the mapping from acoustic features to a mask.
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A binary decision on each T-F unit leads to an estimate of the ideal binary mask
(IBM), which is defined as follows.

IBM(t, f) =
{

1, if SNR(t, f) > LC
0, otherwise (1)

where t denotes time and f frequency. The IBM assigns the value 1 to a T-F
unit if its SNR exceeds a local criterion (LC), and 0 otherwise. Therefore, speech
separation is translated into a binary classification problem. IBM separation has
been shown to improve speech intelligibility in noise for both normal-hearing
and hearing-impaired listeners [9,13]. Alternatively, a soft decision on each T-F
unit leads to an estimate of the ideal ratio mask (IRM). The IRM is defined
below [10].

IRM(t, f) = (
10(SNR(t,f)/10)

10(SNR(t,f)/10) + 1
)β (2)

where β is a tunable parameter. A recent study has shown that β = 0.5 is a
good choice for the IRM [15]. In this case, mask estimation becomes a regression
problem where the target is the IRM. Ratio masking is shown to lead to slightly
better objective intelligibility results than binary masking [15]. In this study, we
use the IRM with β = 0.5 as the learning target.

In supervised speech separation, a training set is typically created by mixing
clean speech and noise. When we train and test on a nonstationary noise such
as a cafeteria noise, there can be considerable mismatch between training noise
segments and test noise segments, especially when the noise resource used for
training is restricted. In this study, we aim at expanding the noise resource using
noise perturbation to improve the generalization of supervised speech separation.
We treat noise expansion as a way to prevent a mask estimator from overfitting
the training data. A recent study has shown that speech perturbation improves
ASR [7]. However, our study perturbs noise instead of speech since we focus on
separating target speech from highly nonstationary noises where the mismatch
among noise segments is the major problem.

2 System Overview

To evaluate the effects of noise perturbation, we use a fixed system for mask
estimation and compare the quality of estimated masks as well as the resyn-
thesized speech that are derived from the masked T-F representations of noisy
speech. As mentioned in Sect. 1, we use the IRM as the learning target. The
IRM is computed from the 64-channel cochleagrams of premixed clean speech
and noise. A cochleagram is a T-F representation of a signal. We use a 20 ms
window and a 10 ms window shift to compute a cochleagram.

We perform IRM estimation using a deep neural network (DNN) and a set
of acoustic features. Recent studies have shown that DNN is a strong classifier
for ASR [1] and speech separation [16]. As shown in Fig. 1, acoustic features are
extracted from a mixture sampled at 16 kHz, and then sent to a DNN for mask
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Fig. 1. Diagram of the proposed system.

prediction. To incorporate temporal context and obtain smooth mask estima-
tion, we use 5 frames of features to estimate 5 frames of the IRM [15]. Therefore
the output layer of the DNN has 64 × 5 units. Since each frame of the mask
is estimated 5 times, we take the average of the 5 estimates. The acoustic fea-
tures we extract from mixtures are a 59-D complementary feature set (AMS +
RASTAPLP + MFCC) [14] combined with 64-D gammatone filterbank (GFB)
features. To derive GFB features, an input signal is passed to a 64-channel gam-
matone filterbank, the response signals are decimated to 100 Hz to form 64-D
GFB features.

We use hit minus false-alarm (HIT−FA) rate and short-time objective intel-
ligibility (STOI) score [11] as two criteria for measuring the quality of the esti-
mated IRM and the separated speech respectively. Since HIT−FA is defined for
binary masks, we calculate it by binarizing a ratio mask to a binary one, follow-
ing Eqs. 1 and 2. During the mask conversion, the LC is set to be 5 dB lower
than the SNR of a given mixture. Both HIT−FA and STOI are well correlated
with human speech intelligibity [8,11].

3 Noise Perturbation

The goal of noise perturbation is to expand noise segments to cover unseen
scenarios so that the overfitting problem is mitigated in supervised speech sep-
aration. A recent study has found that three perturbations on speech samples
improve ASR performance [7]. These perturbations were used to expand the
speech samples by spectral perturbation. The three perturbations are introduced
below. Unlike this study, we perturb noise samples instead of perturbing speech
samples, as we are dealing with highly nonstationary noises.

3.1 Noise Rate (NR) Perturbation

Speech rate perturbation, a way of speeding up or slowing down speech, is used to
expand training utterances during the training of an ASR system. In our study,
we extend the method to vary the rate of nonstationary noises. We increase or
decrease noise rate by factor γ. When a noise rate is being perturbed, the value
of γ is randomly selected from an interval [γmin, 2 − γmin]. The effect of NR
perturbation on a spectrogram is shown in Fig. 2a.

3.2 Vocal Tract Length (VTL) Perturbation

VTL perturbation has been used in ASR to cover the variation of vocal tract
length among speakers. A recent study suggests that VTL perturbation improves
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Fig. 2. (a) Illustration of noise rate perturbation. (b) Illustration of vocal tract length
perturbation. (c) Illustration of frequency perturbation.

ASR performance [5]. VTL perturbation essentially compresses or stretches the
medium and low frequency components of an input signal. We use VTL pertur-
bation as a method of perturbing a noise segment. Specifically, we follow the
algorithm in [5] to perturb noise signals:

f ′ =

⎧⎨
⎩

fα, if f ≤ Fhi
min(α,1)

α
S
2 − S

2 −Fhimin(α,1)
S
2 −Fhi

min(α,1)
α

(S
2 − f), otherwise

(3)

where f is the original frequency, f ′ is the mapped frequency, α is the wrapping
factor, S is the sampling rate, and Fhi controls the cutoff frequency. The effect
of VTL perturbation is visualized in Fig. 2b.

3.3 Frequency Perturbation

When frequency perturbation is applied, frequency bands of a spectrogram are
randomly shifted upward or downward. We use the method described in [7] to
randomly perturb noise samples. Frequency perturbation takes three steps. First,
we randomly assign a value to each T-F unit, which is drawn from a uniform
distribution.

r(f, t) ∼ U(−1, 1) (4)

Then we derive the perturbation factor δ(f, t) by averaging the assigned val-
ues of neighboring T-F units. This averaging step avoids large oscillations in
spectrogram.

δ(f, t) =
λ

(2p + 1)(2q + 1)

f+p∑
f ′=f−p

t+q∑
t′=t−q

r(f ′, t′) (5)

where p and q control the smoothness of the perturbation, and λ controls the
magnitude of the perturbation. These tunable parameters are decided experi-
mentally. Finally the spectrogram is perturbed as follows.

S̃(f, t) = S(f + δ(f, t), t) (6)

where S(f, t) represents the original spectrogram and S̃(f, t) is the perturbed
spectrogram. Interpolation between neighboring frequencies is used when δ(f, t)
is not an integer. The effect of frequency perturbation is visualized in Fig. 2c.
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4 Experimental Results

4.1 Experimental Setup

We use the IEEE corpus recorded by a male speaker [4] and six nonstation-
ary noises from the DEMAND corpus [12] to create mixtures. All signals are
sampled at 16 KHz. Note that all recordings of the DEMAND corpus are made
with a 16-channel microphone array, we use only one channel of the recordings
since this study is on monaural speech separation. We choose six nonstationary
noises (each is five-minute long) from the DEMAND corpus, each representing
distinct environment: SCAFE noise (recorded in the terrace of a cafe at a pub-
lic square), DLIVING noise (recorded inside a living room), OMEETING noise
(recorded in a meeting room), PCAFETER noise (recorded in a busy office cafe-
teria), NPARK noise (recorded in a well visited city park) and TMETRO noise
(recorded in a subway).

To create a mixture, we mix one IEEE sentence and one noise type at −5 dB
SNR. This low SNR is selected with the goal of improving speech intelligibility
in mind where there is not much to improve at higher SNRs [3]. The training
set uses 600 IEEE sentences and randomly selected segments from the first two
minutes of a noise, while the test set uses another 120 IEEE sentences and ran-
domly selected segments from the second two minutes of a noises. Therefore, the
test set has different sentences and different noise segments from the training set.
We create 50 mixtures for each training sentence by mixing it with 50 randomly
selected segments from a given noise, which results in a training set containing
600 × 50 mixtures. The test set includes 120 mixtures. We train and test using
the same noise type and SNR condition.

To perturb a noise segment, we first apply short-time Fourier transform
(STFT) to derive noise spectrogram, where a frame length of 20 ms and a frame
shift of 10 ms are used. Then we perturb the spectrogram and derive a new noise
segment. The parameters of perturbations are selected by using a development
set. To evaluate the three noise perturbations, we create five different training
sets, each consists of 600 × 50 mixtures. We train a mask estimator for each
training set and evaluate on a fixed test set (i.e. the 120 mixtures created from
the original noises). The five training sets are described as follows.

1. Original Noise: All mixtures are created using original noises.
2. NR Perturbation: Half of the mixtures are created from NR perturbed noises,

and the other half are from original noises.
3. VTL Perturbation: Half of the mixtures are created from VTL perturbed

noises, and the other half are from original noises.
4. Frequency Perturbation: Half of the mixtures are created from frequency

perturbed noises, and the other half are from original noises.
5. Combined: Half of the mixtures are created from applying three perturbations

altogether, and the other half are from original noises.

As already mentioned, we extract a set of four complementary features (AMS +
RASTAPLP + MFCC + GFB) from mixtures. Delta features are appended to
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Table 1. HIT−FA rate (in %) for six noises at −5 dB, where FA is shown in paren-
theses.

Perturbation

Noise

SCAFE DLIVING OMEETING PCAFETER NPARK TMETRO Average

Original Noise 55 (37) 70 (23) 65 (28) 50 (40) 69 (22) 63 (32) 62 (30)

NR perturbation 64 (24) 77 (15) 72 (18) 60 (26) 77 (12) 72 (21) 70 (19)

VTL Perturbation 64 (24) 76 (16) 71 (19) 60 (27) 78 (10) 72 (21) 70 (20)

Frequency Perturbation 69 (17) 77 (14) 74 (15) 63 (21) 79 (9) 74 (18) 73 (16)

Combined 67 (21) 77 (15) 73 (16) 61 (25) 78 (10) 74 (18) 72 (18)

Table 2. STOI (in %) of separated speech for six noises at −5 dB, where STOI of
unprocessed mixtures is shown in parentheses.

Perturbation

Noise

SCAFE DLIVING OMEETING PCAFETER NPARK TMETRO Average

Original Noise 73.7 (64.1) 87.5 (79.3) 80.0 (67.8) 71.4 (62.5) 80.2 (67.7) 85.9 (77.5) 79.8 (69.8)

NR perturbation 76.5 (64.1) 89.2 (79.3) 82.5 (67.8) 74.1 (62.5) 83.2 (67.7) 87.4 (77.5) 82.1 (69.8)

VTL Perturbation 76.1 (64.1) 88.7 (79.3) 82.2 (67.8) 74.0 (62.5) 83.6 (67.7) 87.2 (77.5) 82.0 (69.8)

Frequency Perturbation 78.2 (64.1) 89.1 (79.3) 83.3 (67.8) 75.1 (62.5) 84.1 (67.7) 87.8 (77.5) 82.9 (69.8)

Combined 77.0 (64.1) 88.6 (79.3) 82.7 (67.8) 74.7 (62.5) 83.8 (67.7) 87.6 (77.5) 82.4 (69.8)

the feature set. A four-hidden-layer DNN is employed to learn the mapping from
acoustic features to the IRM. Each hidden layer of the DNN has 1024 rectified
linear units [1]. Dropout [1] and adaptive stochastic gradient descent [2] are used
to train the DNN.

4.2 Evaluation Results and Comparisons

We evaluate the three perturbations with the five large training sets described
in Sect. 4.1. The effects of noise perturbations on speech separation are shown
in Tables 1 and 2, in terms of HIT−FA rate and STOI score respectively. The
results indicate that all three perturbations lead to better speech separation
than the baseline where only the original noises are used. Frequency perturba-
tion performs better than the other two perturbations. Compared to only using
the original noises, the frequency perturbed training set on average increases
HIT−FA rate and STOI score by 11 % and 3 %, respectively. This indicates
that noise perturbation is an effective technique for improving speech separa-
tion results. Combining three perturbations, however, does not lead to further
improvement over frequency perturbation.

A closer look at Table 1 reveals that the contribution of frequency perturba-
tion lies mainly in the large reduction in FA rate. This means that the problem of
misclassifying noise-dominant T-F units as speech-dominant is mitigated. This
effect can be illustrated by visualizing the masks estimated from the different
training sets and the ground truth mask in Fig. 3a (e.g. around frame 150). When
the mask estimator is trained with the original noises, it mistakenly retains the
regions where target speech is not present, which can be seen by comparing
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Fig. 3. (a) Mask comparison, the top shows a mask estimate using original noise,
the middle shows a mask esimate using perturbed noise, the bottom shows the IRM.
(b) The effect of frequency perturbation, the average STOI scores (in %) for six noises
are shown for unprocessed speech, separated speech using original noise, and separated
speech using frequency perturbed noise.

the top and bottom plots of Fig. 3a. Applying frequency perturbation to noises
essentially exposes the mask estimator to more noise patterns and results in a
more accurate mask estimator, which is shown in the middle plot of Fig. 3a.
While HIT−FA rate evaluate the estimated binary masks, STOI directly com-
pares clean speech and the resynthesized speech. As shown in Table 2, frequency
perturbation yields higher average STOI scores than using original noises with
no perturbation and NR and VTL perturbations.

Finally, to evaluate the effectiveness of frequency perturbation at a higher
SNR, we carry out additional experiments at 0 dB input SNRs, where we use
the same parameter values as for −5 dB SNR. Figure 3b shows frequency per-
turbation improves speech separation in terms of STOI in each SNR condition.
Also, we find that frequency perturbation remains the most effective among the
three perturbations at 0 dB SNR.

5 Concluding Remarks

In this study, we have explored the effects of noise perturbation on supervised
monaural speech separation at low SNR levels. Noise perturbation is used to
expand training noise to improve generalization of a classifier. We have evalu-
ated three noise perturbations with six nonstationary noises recorded from daily
life for speech separation. The three are noise rate, VTL, and frequency per-
turbations. With perturbed noises, the quality of the estimated ratio mask is
improved as the classifier has been exposed to more scenarios of noise interfer-
ence. In contrast, a mask estimator learned from a training set that only uses
original noises tends to make more false alarm errors (i.e. higher FA rate). The
experimental results show that frequency perturbation, which randomly perturbs
the noise spectrogram along frequency, almost uniformly gives the best speech
separation results among the three perturbations examined in terms of HIT−FA
rate and STOI score.
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