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Due to many experimental reports of synchronous neural activity in the
brain, there is much interest in understanding synchronization in net-
works of neural oscillators and its potential for computing perceptual or-
ganization. Contrary to Hopfield and Herz (1995), we find that networks
of locally coupled integrate-and-fire oscillators can quickly synchronize.
Furthermore, we examine the time needed to synchronize such networks.
We observe that these networks synchronize at times proportional to the
logarithm of their size, and we give the parameters used to control the
rate of synchronization. Inspired by locally excitatory globally inhibitory
oscillator network (LEGION) dynamics with relaxation oscillators (Ter-
man & Wang, 1995), we find that global inhibition can play a similar role
of desynchronization in a network of integrate-and-fire oscillators. We
illustrate that a LEGION architecture with integrate-and-fire oscillators
can be similarly used to address image analysis.

1 Introduction

Different features of visual objects appear to be processed in different cor-
tical areas (Zeki, 1993). How these features are linked to form perceptually
coherent objects is known as the feature binding problem. Theoreticians have
proposed that correlations in the firing times of neurons may encode the
binding between these neurons (Milner, 1974; von der Malsburg, 1981). A
considerable amount of neurophysiological evidence supports this conjec-
ture of temporal correlation (for a review see Singer & Gray, 1995; also see
Livingstone, 1996).

Based on the experimental findings, many oscillator networks have been
proposed in which synchronous oscillations link features together (syn-
chrony implies the same frequency and phase). This particular form of tem-
poral correlation was called oscillatory correlation (Wang & Terman, 1995). In
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oscillatory correlation two issues need to be addressed. The first is the need
to achieve synchrony quickly in locally coupled networks. Our usage of the
word quickly refers to a time of a few periods. This is based on biological data,
which indicate that synchronous firings of neural groups begin two to three
periods after the onset of stimulus (Singer & Gray, 1995). Locally coupled
networks are emphasized because a network with all-to-all coupling does
not maintain pertinent geometrical and spatial information that is critical
for perceptual processing (for further explanations see Sporns, Tononi, &
Edelman, 1991; Wang, 1993). The second issue is how to desynchronize the
phases of different objects rapidly and robustly so that segmentation occurs.

In this article we study integrate-and-fire oscillators, possibly the sim-
plest model of neuronal dynamics. A single variable represents the mem-
brane potential. When this variable attains a certain threshold, it is said
to fire, and it is reset to zero. When the oscillator fires, it sends excitation
to its neighbors. Integrate-and-fire oscillators have frequently been studied
as models of neuronal behavior (Peskin, 1975; Mirollo & Strogatz, 1990).
Several authors have noted the ability of locally coupled networks to syn-
chronize (Mirollo & Strogatz, 1990; Corral, Perez, Diaz-Guilera, & Arenas,
1995; Hopfield & Herz, 1995). However, it is not known how quickly these
networks synchronize. In computational terms, the time complexity of syn-
chronization in these networks is unknown.

In one of the few studies systematically addressing locally coupled inte-
grate-and-fire oscillators, Hopfield and Herz (1995) reported that a two-
dimensional locally connected integrate-and-fire oscillator network (40 ×
40) with excitatory couplings exhibits global synchrony (all oscillators fire
in unison) on long timescales (about 100 periods). Due to its convergence
speed, global synchrony was considered to be too slow to underlie biological
information processing. When examining this phenomenon, we found that
synchrony in the same size network can actually be achieved quickly (in two
to three periods) through appropriate adjustment of parameters. Further
numerical investigations revealed a surprising scaling relation: the average
time to synchrony increases as the logarithm of the system size in both
one-dimensional (1D) and two-dimensional (2D) systems.

Given that locally coupled integrate-and-fire oscillators synchronize
quickly, we have already attained one of the aspects of oscillatory corre-
lation: fast synchronization. The other aspect of oscillatory correlation is
desynchronization. In order to desynchronize different groups of oscillators
while maintaining synchrony within each group, we use the locally excita-
tory globally inhibitory oscillator network (LEGION) architecture proposed
by Terman and Wang (1995). This architecture relies on a single inhibitory
unit, which is coupled to every oscillator, to desynchronize different groups
of oscillators. To illustrate the potential of this network, we provide results
on some image segmentation tasks.

We define a system of integrate-and-fire oscillators in section 2.1. We then
describe the behavior of two interacting integrate-and-fire oscillators in sec-
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tion 2.2. We display our data indicating that the time to synchrony scales
as the logarithm of the system size for 1D and 2D systems in section 3; we
also describe how the system parameters are related to the rate of synchro-
nization in this section. In section 4 we describe how we create a LEGION
network with integrate-and-fire oscillators that can desynchronize multiple
groups of oscillators while maintaining synchrony within each group us-
ing binary images. In section 5 we modify and extend this network so that
gray-level images can be processed. We demonstrate the potential of this
network by segmenting real images. Section 6 provides further discussions.

2 Model Description and Behavior

2.1 Model Definition. A network of integrate-and-fire oscillators is de-
fined as

ẋi = −xi + I0 +
∑

j∈N(i)

JijPj(t), i = 1, . . . ,n, (2.1)

where the sum is over the oscillators in a neighborhood, N(i), about oscil-
lator i. xi represents some voltage-like variable that we call the potential of
oscillator i. The parameter I0 controls the period of an uncoupled oscilla-
tor. The threshold of an oscillator is set to 1. When xi = 1 the oscillator is
said to fire; its potential is instantly reset to 0, and it sends excitation to its
neighbors.

The interaction between oscillators, Pj(t), is defined as

Pj(t) =
∑

m
δ(t− tm

j ), (2.2)

where tm
j represents the m firing times of oscillator j and δ(t) is the Dirac

delta function. When oscillator j fires at time t, oscillator i receives an in-
stantaneous pulse. This pulse increases xi by Jij. If xi is increased above the
threshold, it will fire. Note that information is transmitted between oscilla-
tors instantaneously, and thus the propagation speed is infinite.

The coupling is between nearest neighbors; that is, an oscillator interacts
with two neighbors in 1D and four neighbors in 2D. The connection strength
from oscillator j to oscillator i is normalized as

Jij = α

Zi
, (2.3)

where Zi is the number of nearest neighbors that oscillator i has, for exam-
ple, Zi = 2 for an oscillator i at the corner of a 2D system. The constant α
is the coupling strength. The normalization ensures that all oscillators re-
ceive the same amount of stimulus and therefore have the same trajectory in
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phase space when synchronous (Wang, 1995). As Wang (1993, 1995) pointed
out, such weight normalization is critical for synchronization in less homo-
geneous situations, such as open boundary conditions; it has been used
in later studies (Hopfield & Herz, 1995; Traub, Whittington, Stanford, &
Jefferys, 1996). Note that there are only two parameters in system 2.1: the
coupling strengthα and I0. When oscillator i reaches its threshold, it will fire,
and its value will be reset to zero. Oscillator i then sends an instantaneous
impulse to neighboring oscillator j. If oscillator j is induced to fire, then its
value is reset in the following manner:

xj(t+) = xj(t−)+ Jji − 1. (2.4)

Since oscillator j fires, oscillator i immediately receives excitation and thus
xi(t+) = Jij. Because of this, the period of the synchronous system is shorter
than the period of a single uncoupled oscillator. The synchronous period of
the system is given by

log
(

I0 − α
I0 − 1

)
. (2.5)

Hopfield and Herz (1995) called this particular realization of a network of
integrate-and-fire oscillators Model A.

2.2 A Pair of Integrate-and-Fire Oscillators. We now describe the be-
havior of a pair of integrate-and-fire oscillators. This section contains a short
summary of some of the results that Mirollo and Strogatz (1990) derived.
The trajectory of a single uncoupled oscillator can be solved analytically—
x(φ) = f (φ) = I0(1 − exp(−γφ)), where γ = log(I0/(I0 − 1)), the period
of the oscillator, and φ can be thought of as a phase, or a local time vari-
able. Note that the function f (φ) increases monotonically ( f ′(φ) > 0) and
is concave down ( f ′′(φ) < 0). Mirollo and Strogatz (1990) showed that an
all-to-all connected system of integrate-and-fire oscillators with positive
pulsatile coupling as well as f ′(φ) > 0 and f ′′(φ) < 0, synchronizes. We
display the temporal evolution of a pair of integrate-and-fire oscillators in
Figure 1. The oscillators initially have different potentials, but the interac-
tion quickly adjusts their trajectories so that they eventually fire in unison.
When two or more oscillators fire at the same time, we call them synchronous.
The spikes shown in Figure 1 when an oscillator reaches the threshold are
for illustrative purposes only.

Using f (φ) and its inverse, g(x), one can calculate the return map (see
Figure 2A) for a pair of pulse coupled integrate-and-fire oscillators. A line
of slope 1 is also shown in Figure 2A for comparison. The horizontal axis
represents the initial phase difference between the two oscillators, and the
vertical axis represents the phase difference between the two oscillators af-
ter they have both fired once. There are three different regions in the return
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Figure 1: Diagram of a pair of integrate-and-fire oscillators with pulsatile cou-
pling. The solid curves represent the potentials of the two coupled oscillators
and the dashed lines represent the threshold. The initial potentials of the oscil-
lators are chosen randomly. The oscillator labeled x2 fires first, and the potential
of x1 increases at that time. Similarly, when x1 fires, the potential of x2 increases.
The phase shifts caused by the pulsatile interaction cause the oscillators to fire
synchronously by the second cycle.

Figure 2: (A) Return map for two pulse-coupled integrate-and-fire oscillators.
The phase difference between the oscillators before they have jumped (φ1, hori-
zontal axis) and after they have jumped (φ2, vertical axis). (B) Plot of the number
of cycles needed, CJ, before the two oscillators are synchronous as a function of
φ1. Both plots use I0 = 1.11 and α = 0.2.

map. The first region is in the range of initial conditions φ1 ∈ [0, φL], where
φL = 1 − g(1 − α). In this region, the oscillators are near enough so that
when one oscillator fires, the second oscillator is induced to fire as well.
We call this the jumping region, and it has a direct analog in a pair of relax-
ation oscillators (Somers & Kopell, 1993). Once the two oscillators are in the
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jumping region, they always fire at the same time, and it can be shown that
their phase difference always decreases. The second region is in the range
of initial conditions from [φL, φU], where φU = 1 − g( f (φL) − α). For these
initial conditions, when the first oscillator fires, the other oscillator receives
excitation, but is not induced to fire at the same time (as in the first firing of
x2 in Figure 1). Similarly, when the second oscillator fires, the relative phase
between the two oscillators again changes, but the two oscillators do not
fire in unison. In this region there is an unstable fixed point for which the
phase between the oscillators does not change. In the third region, the first
oscillator fires and the second oscillator receives excitation but does not fire
immediately. When the second oscillator fires, the first oscillator receives
excitation and is induced to fire a second time. We consider this third region
part of the jumping region. In summary, this return map contains a range
of initial conditions for which the two oscillators fire together and another
set of initial conditions for which it may take several cycles before both
oscillators begin firing together.

In Figure 2B we display the number of cycles needed before the two os-
cillators are in the jumping region. The horizontal axis in Figure 2B indicates
the initial phase separation between the two integrate-and-fire oscillators,
and the vertical axis indicates the number of cycles needed until the two
oscillators are in the jumping region. As expected, initial conditions near
the unstable fixed point require more cycles before synchrony occurs.

The derivative of the return map at the unstable fixed point is given by

(
1+ α

I0

{
α +

√
α2 + 4I0(I0 − 1)
2(I0 − 1)

})2

. (2.6)

This quantity gives one indication how repulsive the unstable fixed point
is; furthermore, the linearity of the second region in the return map of Fig-
ure 2A is obtained for a wide range of I0, and hence the derivative at the
fixed point. Therefore the derivative may indicate how fast the system ap-
proaches the stable synchronous solution. The fixed point is unstable for all
positive values of α and all values of I0 > 1. For I0 À 1 the fixed point is
still unstable but the derivative is near 1, indicating a relatively slow ap-
proach to synchrony. When I0 decreases the derivative increases, indicating
a faster approach to synchrony. We will compare equation 2.6 to the rate of
synchronization in networks of oscillators in section 3.

The rate of synchronization, particularly phase compression between
oscillators that have fired simultaneously, depends on the concavity of the
oscillator trajectory in a more direct way. With f (φ) concave down, the os-
cillators approach the threshold at a decreasing speed, and thus the time
difference between the two oscillators near the threshold can be quite large
while the difference in their potentials is quite small. On the other hand,
the time difference near the reset can be quite small while the potential



Synchrony and Desynchrony in Integrate-and-Fire Oscillators 1601

difference is quite large. When the two oscillators fire synchronously, their
potential difference is kept constant right before and after the firing while
their time difference decreases. This results in a phase compression between
the oscillators, the amount of which is determined by the concavity. This
analysis is similar to an earlier analysis by Somers and Kopell (1993) on a
pair of relaxation oscillators, where the concavity of nullclines plays an anal-
ogous role (see Terman & Wang, 1995, for a similar analysis for a network
of relaxation oscillators).

3 Synchrony in Integrate-and-Fire Oscillator Networks

We have observed that the average time to synchrony increases as the log-
arithm of the system size in both 1D and 2D noiseless systems for random
initial conditions. Our observations are based on many trials of oscillator
networks that were numerically integrated with an event-driven algorithm.
For all data shown, we used the following procedure:

1. The potentials are chosen from the range [0,1].

2. Find the oscillator nearest to the threshold. The amount of time it
needs to fire is calculated and all the oscillators are advanced using
this amount of time.

3. The oscillator at the threshold fires. The potential of this oscillator
is reset to zero, and the potentials of its neighboring oscillators are
increased using equation 2.3.

4. Check if any of the oscillators that have received excitation are above
the threshold. If any oscillators are above the threshold, they are reset
according to equation 2.4, and excitation is sent to their neighbors.
Repeat this step until no oscillators are above the threshold.

5. Return to step 2.

All trials with locally coupled networks of integrate-and-fire oscillators
have resulted in synchrony. Over 105 trials in which the initial conditions
were chosen randomly and uniformly in the range [0,1] have been recorded.
These networks were also tested with other, more correlated initial con-
ditions. Networks in which the initial conditions were spin waves also
achieved synchrony. The speed with which networks with spin wave–type
initial conditions attained synchrony was, on average, faster than that using
random initial conditions. For long-wavelength spin waves, the potentials
of the oscillators are near to each other, and one oscillator can cause many of
its neighbors to fire. Several large groups, or blocks, of oscillators form and
fire synchronously during the first cycle. For short wavelengths that are
integer multiples of the lattice size, the oscillators also synchronize more
quickly than with random initial conditions. Small blocks of synchronous
oscillators form, and since these blocks are formed based on repeating
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patterns of initial conditions, they also have a spatially repeating pattern.
This process repeats until synchrony occurs. This implies that incommensu-
rate wavelengths may take longer to synchronize because spatially repeat-
ing patterns of blocks do not form and their interactions with one another
would not be uniform. This intuition does appear to be correct; incommen-
surate wavelengths tend to have longer synchronization times. However, we
could not find any initial conditions whose resultant time to synchrony was
an order of magnitude larger than the average time to synchrony with ran-
dom initial conditions (over 104 incommensurate frequencies were tested).
Similar tests in 2D networks yield similar results. There are a few solu-
tions that are not synchronous—for example, initial conditions in which the
phase difference between neighboring pairs of oscillators is at the unstable
fixed point shown in Figure 2A. In numerical tests with these initial condi-
tions, floating-point errors eventually cause small perturbations away from
this unstable solution, and synchrony quickly results. Furthermore, in trials
with periodic boundary conditions (a ring topology), solutions with trav-
eling waves were never observed. Based on these extensive observations,
we conclude that locally coupled networks of integrate-and-fire oscillators
always synchronize. Although all of our data have been gathered using one
or two specific integrate-and-fire oscillators, we claim that our results gen-
eralize to the class of integrate-and-fire oscillators with positive coupling,
f ′(φ) > 0, and f ′′(φ) < 0.

3.1 One-Dimensional Systems. We display the temporal evolution of
a 1-D network in Figure 3. The figure shows the firing times of all the os-
cillators in a network of 400 oscillators. Time is shown along the vertical
axis, and the horizontal axis represents the index of the oscillators. Each
dot represents the firing time of one oscillator, and each line represents the
firing time of a block of oscillators. Near the bottom of the graph, there are
many single dots and small lines. These represent the fact that the oscillators
have random initial conditions and initially have distinct firing times. But
quickly, by the time t = 5, blocks of various sizes have formed. Just after
time t = 5, at the lower left of Figure 3, oscillators 1–20 fire simultaneously.
This block formed from three smaller blocks. Near t = 30 there is a single
solid line shown, indicating that all the oscillators fired at the same time.
Underneath this line are two separate blocks of oscillators. One might at
first wonder why these two large blocks have merged in just one cycle. This
represents the fact that the system has an instantaneous propagation speed.
When the oscillator at the left border of the right block receives excitation,
it is induced to fire. When this oscillator fires, it sends excitation to its right
neighbor, which is also induced to fire, and this process repeats throughout
the length of the right block. In the algorithm we use, the firing and reset
of an oscillator are instantaneous, as are the excitatory pulses sent to neigh-
boring oscillators. This results in an infinite propagation speed. Thus, no
matter how large a block is, it can merge with a neighboring block in one
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Figure 3: Diagram displaying the evolution of a 1D network of 400 integrate-
and-fire oscillators. The vertical axis represents time, and the horizontal axis
represents the position of the oscillator in the chain. Each dot represents the
firing time of a single oscillator, and each line represents that of a block of
oscillators. The parameters are α = 0.2, I0 = 1.11.

cycle. The most striking feature of Figure 3 is that it is impossible to find
an increase in the number of blocks. In fact, as shown in the appendix, the
number of synchronized blocks never increases.

In Figure 4 we display data indicating that the time needed to synchro-
nize a chain of size n oscillators increases in proportion to log10(n). Time is
shown in units of periods. The averages are based on several hundred trials
with random initial conditions. The averages appear to lie on a straight line
for each of the three parameter pairs tested. Although only three data sets
are displayed, our tests with other parameters yield a change only in the
slope of the resulting line. The inset in this figure is shown to indicate the
standard deviation of the averages. The standard deviations for the other
data sets are similar in that they remain nearly constant after the chain length
becomes larger than 20. We tested various combinations of α and I0 in the
ranges α ∈ [0.0025, 0.96] and I0 ∈ [1.01, 20]; all tested parameters resulted
in a logarithmic relationship. In section 3.3 we discuss how these two pa-
rameters relate to the slopes of the lines shown in Figure 4. We note that
only several hundred trials were needed to compute the averages because
our simulations indicated that the distribution of the synchronization times
did not have a long tail (Campbell, 1997).
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Figure 4: Average time needed for a chain of n oscillators to synchronize as
a function of log10(n). Three symbols represent different parameters: squares:
α = 0.48, I0 = 10; plus signs: α = 0.025, I0 = 1.1; diamonds: α = 0.2, I0 = 1.11.
The data are based on approximately 300 trials with random initial conditions.
The inset displays the diamond data along with the standard deviation of the
averages.

A heuristic understanding for our numerical results is as follows. As is
done typically in 1D problems in statistical mechanics, we focus on the do-
main walls between adjacent clusters (blocks) of sites that are synchronized.
As shown in the appendix, the number of domain walls, or equivalently the
number of oscillator blocks, does not increase, so the only dynamically rel-
evant process for a domain wall between two clusters is its disappearance
when the two clusters become synchronized; the cluster that fires first sends
a pulse to its neighboring clusters, which then may also fire depending on
the difference in the dynamical variables of the two neighboring clusters.
Since each domain wall has a nonzero probability of disappearing per unit
time, one would expect that the walls disappear at a constant rate when av-
eraged over the ensemble of initial conditions. Such a nonvanishing mean
rate, r, for the removal of the domain walls automatically implies that the
number of domain walls decreases as exp(−rt) and the entire system be-
comes synchronized in a time proportional to the logarithm of the initial
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Figure 5: Average times for an L × L network of oscillators to synchronize are
plotted as a function of log10(2L−1). The solid diamonds are for the parameters
α = 0.2, I0 = 2.0, and the open diamonds are for α = 0.2, I0 = 1.11. Each average
is computed from approximately 100 trials with random initial conditions. The
inset indicates the standard deviation for the solid diamond data.

number of domain walls. For the initial conditions we have considered, the
number of domain walls is proportional to the size of the chain, and this
gives a heuristic explanation of our numerical results.

3.2 Two-Dimensional Systems of Oscillators. We display the average
synchronization time for a 2D system as a function of log10(2L − 1) in Fig-
ure 5, where the system size is L×L. Time is again shown in units of periods.
In this 2D system, each oscillator is coupled to its four nearest neighbors,
and the longest distance between any two oscillators (in terms of lattice
sites) is 2L− 1. The data indicate that the average time to synchrony scales
logarithmically with the system size. We have tested more parameters than
shown in Figure 5, and all tested parameters yield an identical scaling rela-
tion. The inset indicates the standard deviation for one set of data. Again,
other sets of data show similar patterns of the standard deviation.

All trials with 2D networks resulted in synchrony. We tested various size
spin waves in the two directions and obtained similar results to those in
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1D systems: synchrony was achieved regardless of the initial conditions.
Traveling waves, rotating waves, or other desynchronous solutions were
never observed, even with periodic boundary conditions.

Unlike in 1D systems, we do not analytically know whether the number
of synchronized oscillator blocks does not increase in 2D. The situation in 2D
is considerably more complex; for example, it is possible that an oscillator is
not recruited to fire the first time it receives a pulse from one of its neighbors
but can after more of its neighbors have jumped. In our simulations, we have
not found a case where the number of blocks increases, which suggests that
our heuristic interpretation for 1D may carry over to 2D. We note that even
if the number of blocks increases occasionally, logarithmic scaling may still
hold because what matters for synchronization speeds is how grouping
of oscillator blocks dominates breaking if the latter does occur. Note also
that for 2D systems, blocks have more interaction paths and thus are more
conducive to synchronization.

We found that synchrony in the same size network as simulated in Hop-
field and Herz (1995) can be achieved rapidly (in two to three periods) by
using different parameter values. We also tested integrate-and-fire oscilla-
tor networks with the same parameter values used in Hopfield and Herz
(1995). We confirmed their simulation results that a 40 × 40 network with
I0 = 10 and α = 0.96 resulted in an average time to synchrony of approx-
imately 100 periods. We also tested these parameters with different size
networks and found that, although it was very slow for a 40× 40 network,
the average time to synchrony still held a logarithmic relation with the sys-
tem size. In addition, we tested equivalent parameters in 1D systems and
again found the logarithmic scaling relation (see the squares in Figure 4).
Thus, the reason that Hopfield and Herz (1995) did not observe rapid global
synchrony is that the specific parameter values they used are not good for
fast synchrony.

As we examine 2D systems, a natural question is how the rate of synchro-
nization varies as the dimension of the system changes. We first define the
rate of synchronization as follows. The data indicate that 〈TS〉 ∼ 1

rS
log(n),

where 1
rS

corresponds to the slope of a line from Figures 4 and 5. We refer to
rS as the rate of synchronization. In tests where the value ofα is held constant
but the dimension of the system changes from 1 to 2, we find that the rate of
synchrony halves. When the individual coupling strengths between oscilla-
tors are maintained—α doubles as the system dimension increases from 1 to
2—we find that the rate of synchronization remains approximately the same
between 1D and 2D systems. This indicates that the rate of synchronization
is controlled by the individual connection weights between oscillators and
not the total connection weights to each oscillator.

3.3 Rate of Synchronization. We now describe how the rate of synchro-
nization is related to the system parameters. It is reasonable to expect that
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the overall scale is set by the behavior of a pair of oscillators; the derivative
of the return map given by equation 2.6 describes the rate at which the two
oscillators are repelled from the unstable fixed point after one iteration. In
continuous time (measured in units of the period of an oscillator), the rate
can be approximated by an exponential (1 + rS)

2 ≈ exp(2rS) and thus rS,
defined by

rS = αS

I0

αS +
√
α2

S + 4I0(I0 − 1)

2(I0 − 1)

 , (3.1)

can be used to set the rate scale to measure synchrony. In equation 3.1, αS
represents the single connection strength between a pair of oscillators in
the network, as opposed to the total connection strength, which is given
by α. In Figure 6 we show a scatter plot of actual rates of synchronization
computed from numerical simulations with respect to rS given by equa-
tion 3.1. The figure shows good proportionality between the equation and
the measured rates of synchrony (the majority of points lie along a straight
line). Note that the rates of synchrony for this figure range from 0 to 1,
which implies that we tested a wide range of parameters. Rates of syn-
chrony near 0 yield extremely slow synchronization rates, and a rate of
synchrony near 1 means that 10 cycles are enough to synchronize a chain
of 1010 oscillators.

Several data points in Figure 6 exhibit a significant deviation from the
straight line. The majority of these points that are not along the line result
from values of the coupling strength that are greater than 0.8. This is as ex-
pected because as α nears 1, the period of the oscillator system approaches
0; the oscillators fire frequently but change their relative phase only slowly.
As α nears 1, the time to synchrony becomes infinite. At α = 1 system
equation 2.1 is meaningless because the oscillators are constantly firing and
resetting. Our data reflect this understanding because as the coupling be-
comes greater than 0.8, approximation 3.1 becomes worse. Our data also
indicate that this approximation is not good for values of I0 < 1.05. Note
that our argument for using rS to set the rate scale is valid if the fixed point
is in the middle of the second region (see Figure 2A). As I0 becomes smaller
than 1.05, the derivative gets very large, and the second region becomes
very narrow, and so the phase difference gets into the jumping region (the
first region or the third region) rapidly. Since the phase difference does not
spend enough time in the vicinity of the fixed point, we think that the rate
of deviation from the fixed point no longer sets the scale reliably. In this
case, rapid synchronization is mainly accounted for by the behavior in the
jumping region (the first and the third region).

3.4 Heterogeneity. We have studied the behavior of the system with het-
erogeneity in the intrinsic frequencies. When the variations are bounded—
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Figure 6: Scatter plot of the predicted rate of synchrony from equation 3.1
against the measured value. The measured rates of synchrony were obtained
from oscillator chains by randomly choosing n (from 150 to 1000), the coupling
strength (from 0 to 1), and I0 (from 1 to 100), and calculating the average time
to synchrony using 100 trials with random initial conditions. The figure shows
the results with approximately 575 different parameter choices.

for example, within 5%—synchrony is still achieved in both 1D and 2D
systems. When the distribution of frequencies is gaussian, the network can
achieve synchrony only if the variance is small and the system size is mod-
est (say, 100 in a 1D chain). The oscillators do not follow the same path
in phase space since their speeds depend on the frequency; nevertheless,
with a sufficiently small difference in frequencies, when the fastest oscilla-
tor jumps, it can induce the rest of the network to fire simultaneously. For
long chains or larger variances of intrinsic frequencies, the chain evolves to
clusters of synchronous oscillators. The border between clusters contains
neighboring oscillators whose intrinsic frequence difference is too large for
them to fire together; this occurs due to the tails in the gaussian distri-
bution. We have not studied the effects of heterogeneity systematically. In
particular, the effect on the rate of synchronization has not been investi-
gated.
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4 Desynchrony

The locally coupled networks of integrate-and-fire oscillators have been
shown to have the property that synchrony is quickly achieved. But a system
that only achieves synchrony is not very useful for information processing,
since such a system is dissipative and almost all information is lost. In order
to perform computations, some other mechanisms must exist that can store
or represent information. In oscillatory correlation, the different phases of
oscillators encode binding and segregation information.

In order to create a network of integrate-and-fire oscillators for oscillatory
correlation, we need a mechanism that desynchronizes different oscillator
groups. Such a mechanism would need to be long range since the phases of
different oscillator groups need to be desynchronous regardless of their po-
sitions in the network. Our construction employs a global inhibitor, and the
architecture of our network is identical to the LEGION networks proposed
by Terman and Wang (1995). The main difference is that the basic unit in our
network is an integrate-and-fire oscillator rather than a relaxation oscillator.
Figure 7A displays a diagram of the LEGION architecture.

We now define a LEGION network that uses integrate-and-fire oscillators
as its basic units. The activity of each oscillator in the network is described by

ẋi = −xi + Ii +
∑

j∈N(i)

JijPj(t)− G(t), (4.1)

where N(i) represents the four nearest neighbors of oscillator i. The param-
eter, Ii, is now dependent on the input image; we refer to this parameter
as the stimulus given to oscillator i. In this section we discuss binary im-
ages. The respective stimulus for each oscillator is either Ii > 1 or Ii = 0. If
Ii > 1 we call oscillator i stimulated. If an oscillator does not receive stim-
ulus, Ii = 0, its potential decays exponentially toward zero. As before, the
threshold for each oscillator is 1. The interaction term, Pj(t), is the same as in
equation 2.2. Only neighboring oscillators that both receive stimulus have
a nonzero coupling strength. The connection strengths are normalized so
that all stimulated oscillators receive the same sum of connections and thus
have the same frequency. However, we use a slightly modified version of
equation 2.3 to reflect that the input to oscillator i is now normalized by
the number of stimulated neighbors coupled with i. All of the above can
be neurally implemented by dynamic normalization of neural connections
(Wang, 1995).

The global inhibitor, G(t), sends an instantaneous inhibitory pulse to the
entire network when any oscillator in the network fires. It is defined as

G(t) = 0δ(t− tm
j ), ∀j,m, (4.2)

where tm
j represent the m firing times of the jth oscillator. The constant 0

is less than the smallest coupling strength between neighboring oscillators.
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Figure 7: (A) Diagram of the network architecture. Each oscillator has local
excitatory connections. The global inhibitor is coupled with every oscillator in
the network. (B) Input image. The black squares represent those oscillators that
receive stimulus, and the oscillators corresponding to the white squares receive
no stimulus. (C) Temporal activities of all units comprising each of the four
objects in (B). The parameters are Ii = 1.05 for oscillators receiving stimulus,
α = 0.2, and 0 = 0.01.
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When an oscillator fires, the global inhibitor serves to lower the potential of
all oscillators, but because this impulse is not as large as the excitatory signal
between neighboring oscillators, it does not destroy the synchronizing effect
of the local couplings (see Terman & Wang, 1995). In this fashion, a connected
region of oscillators receiving input synchronizes as the system evolves in
time. This region of oscillators has no direct excitatory connections with
other spatially separate regions of oscillators. It will, however, interact with
other groups through the global inhibitor. This interaction inhibits other
blocks of oscillators from firing at the same time.

We now demonstrate the ability of this network to perform oscillatory
correlation. In Figure 7B we display an input image with four objects and in
Figure 7C the network response. The four graphs in Figure 7C display the
combined potentials of all the oscillators comprising each of the four ob-
jects. The oscillators have random initial conditions varying uniformly from
0 to 1. Initially many oscillators fire; the effect of the global inhibitor can be
seen in the jitter, or lack of smoothness, in the potentials of the oscillators
during this time. As the system evolves, clusters of oscillators begin to form,
and the curves become smoother because the global inhibitor does not send
inhibitory impulses as often. By the third cycle, each group of oscillators
comprising a distinct object is almost perfectly synchronous, and the dif-
ferent oscillator groups have distinct phases. Oscillators that do not receive
excitation (not shown) experience an exponential decay toward zero and
are periodically perturbed by the small inhibitory signals from the global
inhibitor.

In this network, there is an unlimited number of oscillator groups that
can be segmented. In other words, the segmentation capacity is infinite.
Imagine two groups of oscillators that have nearly the same phase. When
the first group fires, the potential of the second group of oscillators decreases
by 0. Thus, the second group needs to traverse the distance 0 before it can
fire. This implies that there is a finite amount of time between the firings
of two consecutive groups. This also implies that as the number of groups
increases, the period of the system increases. Simulations support the above
statements, and we have segmented more than 100 groups of oscillators.

5 Image Segmentation

In the previous section, we segmented four black objects on a white back-
ground in a 20×20 image. Since our study suggests that there is a logarithmic
scaling relation between the time to synchrony and the network size, we ex-
pect to be able to use this same network to perform image processing tasks
with much larger images quickly.

In order to segment gray-level images, we alter how the connection
weights and values of Ii are chosen. The alterations are variations of the
methods proposed in Wang and Terman (1997). Let the intensity of pixel i
be denoted by pi. If |pi−pj| is less than a given threshold, then the two pixels
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are said to satisfy the pixel difference test. Two oscillators have a nonzero
coupling strength only if they are neighbors (we now use the eight nearest
neighbors of i) and if their corresponding pixel values satisfy the pixel dif-
ference test. The weights of the connection strengths are determined using
equation 2.3, except that Zi now represents the number of neighboring pix-
els of i that pass the pixel difference test. The stimulus Ii for each oscillator
is chosen in the following manner. We examine a region Q(i) centered on
pixel i. Q(i) is a neighborhood about oscillator i that contains more pixels
than N(i). If half of the pixels in Q(i) satisfy the pixel difference test, then
pixel i is likely within a homogeneous region, and we set the stimulus, Ii, to
a value IL, which is greater than 1. Such an oscillator is called a leader (Wang
& Terman, 1997) and is able to oscillate by itself. If Q(i) contains no pixels
that satisfy the pixel difference test, the corresponding oscillator receives no
stimulus and does not oscillate. Otherwise oscillator i is given a stimulus IN,
which is less than but near 1 and is said to be a near-threshold oscillator. A
near-threshold oscillator is able to fire only through interactions with other
oscillators. In this fashion, only regions of sufficient size and with smoothly
varying intensities will contain leaders. These leaders will oscillate and can
induce neighboring oscillators that are near threshold to oscillate. Regions
with high-intensity variations will not exhibit oscillatory activity and are
referred to as the background.

The rules for the connection weights and oscillator stimuli described
above have been implemented in an integrate-and-fire oscillator network,
and we display the segmentation results for two real images in Figure 8.
Figure 8A displays an aerial photograph. In Figure 8B we display the seg-
mentation results of our network. Each group of synchronous oscillators
is represented by a single gray-level intensity. Inactive oscillators compris-
ing the background are colored black. There are 29 regions segmented, al-
though it is not easy to discern every different gray level. We also segment
a computerized tomography (CT) image of a slice of a human head. The
original gray-level image is shown in Figure 8C. The bright areas indicate
bone structure. Our segmentation result is shown in Figure 8D and contains
25 segments. The different bone structures are segmented, except for two
of the smaller bones that do not contain many pixels. Regions of soft tissue
are also segmented.

Our demonstration here is not meant to be a claim that we produce
better segmentation results with these images. Rather, our objective is to
illustrate the utility of integrate-and-fire oscillator networks for such tasks.
The distinctive feature of such networks for image segmentation includes its
neurobiological basis and its parallel and distributed nature of computation.

6 Discussion

We have investigated the time complexity of synchronization, in particular
the scaling relation between the time to synchrony and the system size, in
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Figure 8: (A) Aerial image with 128×128 pixels. (B) Segmentation results for (A).
The network produced 29 different synchronized groups. Each synchronized
group is represented by a single gray level. Black pixels represent oscillators that
do not oscillate. The threshold for the pixel difference test is 19, Qi is a region of
size 7 × 7, with IL = 1.025, IN = 0.99, α = 0.2, and 0 = 0.01. (C) 128 × 128 CT
image of a slice of a human head. (D) Segmentation results for (C). The network
produced 25 different groups of synchronized oscillators. The threshold for the
pixel difference test is 15, Qi is a region of size 9× 9, and the other parameters
are as listed above.

locally coupled networks of integrate-and-fire oscillators. Our data strongly
suggest that 1D and 2D systems of identical oscillators synchronize at times
proportional to the logarithm of the system size. We have also given an
approximation relating the rate of synchronization to the system param-
eters. Remarkable rates of synchronization can be achieved. For example,
one can choose parameters so that a chain of 106 oscillators can synchro-
nize in approximately six cycles. This is opposite to the conclusion reached
by Hopfield and Herz (1995), who discount global synchrony in such net-
works as too slow to be useful in biological computations, and instead use
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networks capable of fast local synchrony to perform computations. In local
synchrony, small clusters of oscillators fire at the same time, and the entire
network may consist of many such clusters.

We also used integrate-and-fire oscillators to create an oscillator network
that performs oscillatory correlation. We found that using the LEGION ar-
chitecture (Terman & Wang, 1995), we were able to create a global inhibitor
that serves the purpose of desynchronizing different groups of oscillators
while maintaining synchrony within each group of oscillators. Our seg-
mentation network is different in several ways from that proposed for im-
age segmentation by Hopfield and Herz (1995). One difference is in terms
of encoding. In our network, relations among pixels are encoded into cou-
pling strengths between neighboring oscillators. In contrast, in the Hopfield
and Herz network, pixel relations are encoded into initial phases of oscil-
lators. Another difference is that the Hopfield and Herz network does not
actively desynchronize oscillator groups. Two regions with the same gray
level fire at the same time in their network. Our network actively desyn-
chronizes groups of oscillators so that no two groups can fire at the same
time. The process of desynchronization eliminates one possible source of
mistakes during segregation: accidental synchrony, which refers to syn-
chrony between oscillator blocks that have no intrinsic relations (Hummel
& Biederman, 1992).

A major difference in image segmentation between our network and that
studied by Terman and Wang (1995) is the capacity of segmentation, or the
number of different objects that can be desynchronized. Their network has
a distinct limit on the number of groups that can be desynchronized. This
limit is directly related to the ratio between the amount of time a relax-
ation oscillator spends in the silent (low-activity) phase of the limit cycle
in comparison to that spent in the active (high-activity) phase of the limit
cycle (Wang & Terman, 1997). However, with integrate-and-fire oscillators
this ratio is essentially infinite, because the firing of a spike takes place in-
stantaneously and such an oscillator does not have a finite active phase
as does a relaxation oscillator. In our integrate-and-fire network, when a
group of oscillators fires, the amplitudes of all other groups are instantly
decreased by some amount. In essence, this increases the period as the num-
ber of groups increases. Since there is no consequence of lengthening the
period, there is no limitation on the number of groups that can be desyn-
chronized. Thus the concept of segmentation capacity is not relevant in our
network, or one may regard our network as having an infinite capacity of
segmentation.

One important topic in networks of neural oscillators is the inclusion of
time delays in the connections between oscillators. Like numerous other
studies on integrate-and-fire oscillators, our model does not include con-
duction delays. However, several studies have examined time delays in
networks of integrate-and-fire oscillators. Ernst, Pawelzik, and Geisel (1995)
showed that a time delay in the excitatory connections between two oscil-
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lators leads to a difference in their firing times: no synchrony. We have
confirmed this result in our simulations. Our preliminary results in locally
coupled integrate-and-fire oscillators with time delays further indicate that
although the system may not reach perfect synchrony, the firing times of
neighboring oscillators are highly correlated. In a related study on relax-
ation oscillator networks with similar coupling structure, Campbell and
Wang (1998) showed that loose synchrony, instead of perfect synchrony, oc-
curs whereby neighboring oscillators converge to a phase difference within
the conduction delay. Interestingly, if the coupling is changed from excita-
tory to inhibitory, two coupled integrate-and-fire oscillators can be perfectly
synchronous (van Vreeswijk, Abbott, & Ermentrout, 1994; Ernst et al., 1995).
Synchronization in inbibitory networks of integrate-and-fire oscillators with
all-to-all couplings and conduction delays is discussed in Ernst et al. (1995)
and Gerstner, van Hemmen, and Cowan, (1996).

Understanding the scaling relation between the time to synchrony and
the network size is a complex and intriguing issue. Diffusively coupled
phase oscillators synchronize at times proportional to the length of the sys-
tem squared (Niebur, Schuster, Kammen, & Koch, 1991) and relaxation os-
cillators with a Heaviside coupling are conjectured to synchronize at times
proportional to the length of the system (Somers & Kopell, 1993). We believe
that it is important to understand how the type of oscillator and the type of
interaction between oscillators are related to various scaling relations.

Appendix

As used in the text, we introduce in 1D systems a domain wall between any
two adjacent synchronized oscillator blocks. In this appendix, we prove the
following theorem.

Theorem. In a one-dimensional network of integrate-and-fire oscillators, as de-
fined in equations 2.1 through 2.4, the number of domain walls or, equivalently, the
number of synchronized oscillator blocks does not increase.

Proof. Given the definitions of f and g, we have the following two facts:

1. Given f ′(φ) > 0 and f ′′(φ) < 0, the potential difference between two
oscillators shrinks monotonically when their phases advance, assum-
ing that no pulse is generated or received by either oscillator.

2. Given g′(x) > 0 and g′′(x) > 0, it follows that g(x + α/2) − g(x) >
g(y+ α/2)− g(y) if x > y, and x+ α/2 ≤ 1.

Consider a synchronized block of oscillators. The theorem is proved if
we can prove that either no new domain wall is created within this block,
or when a new domain wall is created, another existing domain wall dis-
appears. The latter case corresponds to a shift of a domain wall. In order to
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create a domain wall within the block, the block size must be greater than 1.
Let us first consider the case of the block size greater than 2. In this case,
there is at least one interior oscillator. Let the block fire at t = 0. Immedi-
ately afterward at t = 0+, all the interior oscillators receive two pulses due
to local excitation, whereas the two exterior (boundary) oscillators receive
one pulse. Thus, we have

α/2 ≤ xi ≤ α if i is an interior oscillator (A.1a)

0 ≤ xi ≤ α/2 if i is an exterior oscillator (A.1b)

When the oscillators in the block fire again, there are two possible situations:

1. The first oscillator (leading) to fire again is an interior one, at t = t1.
When the leading oscillator fires, all interior oscillators are in the jump-
ing region due to equation A.1a and fact 1. Thus no domain wall is
created in the interior of the block. Let us consider the possibility of
creating a domain wall between an exterior and an interior oscilla-
tor. Without loss of generality, consider the right exterior oscillator,
denoted as B. For B to break away from the block, it must not re-
ceive a pulse from its right neighbor, denoted as C, in the time period
t ∈ (0, t1), for otherwise B is in the jumping region at t = t1 because
of equation A.1b. For this case to occur, 1− α/2 < xC(t1) < 1 because
xC(0+) > α/2 due to the firing of B at t = 0. At t = t+1 , B receives a
pulse from the block and 1 − α/2 < xB(t+1 ) < 1 due to equation A.1b
and fact 1. Thus, the firing of either one will synchronize B and C, and
the domain wall between B and C shifts one site to the left.

The only other case to be considered is that B is at the end of the 1D
chain and does not have a right neighbor. In this case, due to weight
normalization defined in equation 2.3 in the text, at t = 0+, B satisfies
0 ≤ xB ≤ α. Again due to equation 2.3, B cannot break away from the
block.

2. The leading oscillator to fire again is an exterior one. Without loss of
generality, let B be the leading oscillator. If B is at the right end of the
chain, B satisfies 0 ≤ xB ≤ α at t = 0+ as discussed above, and when
it fires again all the interior oscillators are in the jumping region. The
same analysis given in the first situation implies the theorem. Now
consider the case that B has a right neighbor. Let B fire at t = t1. Because
of equation A.1, B must receive a pulse from its right neighbor, C, in
order to become the leading oscillator. If B receives just one pulse from
C at or before t = t1, then when B fires, all the interior oscillators of
the block are in the jumping region. This is because, in order for B to
break away, the most favorable time for B to receive a pulse from C is
when t = t1 (see fact 2). Even in this case, the interior oscillators are
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in the jumping region because of equation A.1. The same argument
given in the first situation also ensures that the other exterior oscillator
either remains in the block at t = t1 or joins the block to its left (a shift
of the domain wall). Thus, the proof is completed if we can prove
that B cannot receive more than one pulse from C during t ∈ (0, t1).
If t1 ≥ g(1 − α/2) − g(α/2), then all the interior oscillators are in the
jumping region due to equation A.1a, and the theorem is established
by the above argument. Thus, the proof is completed if the following
proposition is true.

Proposition. In the period T = (0, g(1 − α/2) − g(α/2)), C cannot fire more
than once.

Proof. Using proof by contradiction. Assume that C can fire at least twice
during T. Without loss of generality, we examine the possibility of C firing
twice. The best scenario for C to produce two pulses is when C generates a
pulse shortly after the block fires, at t = 0++. Since C is not in the same block,
after C fires and resets at t = 0++, xC(0++) ≤ α/2. If C receives just one pulse
from its right neighbor during T, C cannot produce two pulses by a similar
argument. Thus, in order for C to fire twice, it must receive two pulses from
its right neighbor, denoted by D during t ∈ (0+, g(1− α/2)− g(α/2)). Note
that D cannot receive a pulse from C during this time period. There are two
possible cases to consider for D:

1. D is not in the same block as C. The same argument leads to the
requirement that D’s right neighbor, denoted by E, must receive two
pulses from E’s right neighbor.

2. D is in the same block as C. Let us call this block the D block. If E
is not in the D block, then at t = 0++, xD(0++) ≤ α/2. The same
argument again leads to the same requirement that E must receive two
pulses from its right neighbor. If E is in the D block, then D becomes
an interior oscillator, bounded by equation A.1a at t = 0++. Before
t = g(1 − α/2) − g(α/2), no interior oscillator of the D block can be
a leading oscillator of the block because of fact 2. The only possible
way for D to jump before t = g(1− α/2)− g(α/2) is to have the right
exterior oscillator, B′, of the D block to be the leading oscillator of the
block. But at t = 0++, B′ is bounded by xB′ ≤ α/2, and it cannot jump
before t = g(1− α/2)− g(α/2) without receiving two pulses from its
right neighbor. Thus we are back to the same requirement.

The analysis indicates a pattern of cyclic requirement. It is straightfor-
ward to show that the oscillator at the right end of the entire chain cannot
produce two pulses during T. Thus, the cyclic requirement cannot be satis-
fied, and the proposition is proved.
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The proposition completes the proof of the theorem for the case of the
block size greater than 2. If the block size equals 2, we note that both oscil-
lators in the block satisfy equation A.1b at t = 0+. It is easy to show that the
theorem holds for this case as well. Thus, we complete the proof.
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