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Synchronization Rates in Classes of
Relaxation Oscillators
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Abstract—Relaxation oscillators arise frequently in physics, elec-
tronics, mathematics, and biology. Their mathematical definitions
possess a high degree of flexibility in the sense that through appro-
priate parameter choices relaxation oscillators can be made to ex-
hibit qualitatively different kinds of oscillations. We study numer-
ically four different classes of relaxation oscillators through their
synchronization rates in one-dimensional chains with a Heaviside
step function interaction and obtain the following results. Relax-
ation oscillators in the sinusoidal and relaxation regime both ex-
hibit an average time to synchrony, , where is the
chain length. Relaxation oscillators in the singular limit exhibit

, where is a numerically obtained value less than 0.5.
Relaxation oscillators in the singular limit with parameters modi-
fied so that they resemble spike oscillations exhibit log( )
in chains and log( ) in two-dimensional square net-
works of length . Finally, using a sigmoid interaction results in

2, for relaxation oscillators in the sinusoidal and relax-
ation regimes, indicating that the form of the coupling is a control-
ling factor in the synchronization rate.

Index Terms—Coupled oscillators, neural dynamics, relaxation
oscillators, synchronization rate, synchrony.

I. INTRODUCTION

THE STUDY of coupled oscillators reveals a rich diversity
of behaviors and has many ties to physical, chemical, and

biological phenomena [24], [49]. The study of how coupled os-
cillators achieve synchrony is important because of its relevance
to experimental observations of synchronous neural firing pat-
terns of various mammalian, insect, and reptilian species [27],
[33], [35], [38].

The phrase “relaxation oscillations” was coined by Van der
Pol in 1926 in his analysis of a triode circuit [44]. A relaxation
oscillation is described by two distinct time scales: a slow time
scale, which originally reflected the charging of a capacitor, and
a fast time scale, which described a quick discharge. In the equa-
tions that describe a relaxation oscillator, the two time scales
are typically based on a single parameter . As , the time
scales become more disparate.

Relaxation oscillations were immediately recognized as
having similarities to biological oscillations. Van der Pol and
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van der Mark may have been the first to use relaxation oscil-
lations to model biological phenomena, the heart beat [45].
In 1952, Hodgkin and Huxley gave a mathematical model of
the membrane potential and ionic conductances of a nerve
cell using a four variable system of differential equations [19]
and these were later simplified to a two variable system of
equations that is essentially a relaxation oscillator [16], [32].
Later, Mayeri [28] derived the Van der Pol relaxation oscillator
as a quantitative description of his experiments with the car-
diac ganglion cells of the lobster. Morris and Lecar [30] also
derived a two variable relaxation oscillator in their study of the
conductances and currents in the barnacle giant muscle fiber.
Due to these direct links to physiology, relaxation oscillators
have been frequently used as models of biological behavior
[17], [34], [39], [43], [47].

Synchrony in networks of locally coupled relaxation oscilla-
tors has been studied previously. Somers and Kopell [39] noted
that synchrony occurs more rapidly in relaxation oscillator
chains as decreases. They explained this quick synchro-
nization for small using “fast threshold modulation” and
conjectured that the average time to synchrony increases
linearly with , the number of oscillators in a chain. However,
it is not known whether this scaling relation is because the
oscillations are of relaxation type, or because of the particular
interaction used. We present numerical evidence indicating
that the linear scaling relation persists when using a Heaviside
coupling even when the relaxation oscillators are clearly in
the sinusoidal regime, and that relaxation oscillators in the
sinusoidal and relaxation regime coupled with a smoothly
varying sigmoid function exhibit , indicating that the
form of the interaction is a critical factor in the synchronization
rate. This complements Daido’s work [10], indicating that a
discontinuous interaction leads to partial perfect synchrony in
globally coupled phase oscillator networks with heterogeneous
frequencies, and is consistent with simulations and statements
made by Somers and Kopell [40] indicating that increasing the
steepness of the sigmoid coupling function aids synchroniza-
tion.

Terman and Wang [43] proved that networks of locally cou-
pled identical relaxation oscillators with a Heaviside type inter-
action, and as , can achieve synchrony at an exponential
rate independent of the number of oscillators or the dimension
of the network. However, this rate of synchronization is possible
only when the oscillators are initially on a specific portion of the
limit cycle. We study the case in which the initial conditions of
the oscillators are randomly and uniformly distributed in a box
that bounds the limit cycle and observe different results, i.e.,

and the observed values of are less than 0.5.
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Campbell et al. [7] gave heuristic arguments and numerical
evidence that chains of identical spike oscillators achieve syn-
chrony at times proportional to the logarithm of the system size.
They also presented simulations indicating that
for locally coupled two-dimensional (2-D) square networks of
length . We examine relaxation oscillators whose parameters
have been adjusted so that they behave qualitatively as spike os-
cillators and find similar synchronization rates in both 1-D and
2-D networks.

A relaxation oscillator is highly flexible and its parame-
ters can be adjusted so that the type of oscillation it exhibits
smoothly varies from sinusoidal to spike oscillations. We
briefly define four different classes of oscillations that relax-
ation oscillators can manifest. For relaxation oscillators
exhibit sinusoidal oscillations; they can have an almost circular
limit cycle and a sinusoidal waveform. We refer to this case
as a relaxation oscillator in the sinusoidal regime. As de-
creases, the waveform takes on a square-wave appearance. The
oscillator spends most of its period on the two branches of the

nullcline and quickly switches from one branch to another.
These are relaxation oscillations and we refer to oscillators in
this parameter regime simply as relaxation oscillators in the re-
laxation regime. The third type of oscillation occurs with
and the time spent switching between the two branches is zero.
We refer to this as a relaxation oscillator “in the singular limit”
[5], [25]. The fourth type of oscillation is also in the singular
limit, but with parameters modified so that the oscillator spends
a vanishingly small portion of its period on the right branch.
We refer to this as a relaxation oscillator in the spiking regime.

While these four classes of oscillations have been created
based on the intuition that they have meaningful distinctions,
to our knowledge, no objective measure of difference has previ-
ously been applied. In this paper, we examine how the average
time to synchrony varies with chain length and find three dif-
ferent synchronization rates.

The form of the coupling is also an important factor in the
synchronization rate. We explore two different types of cou-
pling, the Heaviside step function and a smooth sigmoid, and
find that they yield two different synchronization rates
and , respectively, for relaxation oscillators in the si-
nusoidal and relaxation regime.

This paper is organized as follows. In Section II, we detail
how to modify the parameters of the defining equations of
a Terman–Wang oscillator [43] to achieve the four different
classes of relaxation oscillators discussed above. In Section III,
we describe some basic properties of pairs of relaxation os-
cillators as well as some properties of relaxation oscillators
in the singular limit. In Section IV, we discuss chains of re-
laxation oscillators. In Section V, we present results for the
rate of synchronization in the spiking regime. In Section VI,
we compare spike oscillators with relaxation oscillators in
the spiking regime. In Section VII, we show our data for the
synchronization rate in the singular limit. In Section VIII, we
present results for the synchronization rates in the relaxation
and sinusoidal regime with Heaviside and sigmoid coupling. In
Section IX, we give results in 2-D networks in the singular limit
and in the spiking regime. Discussions are given in Section X.

Fig. 1. (a) Limit cycle (thick curve) for system (1) with " = 1:0. The x- and
y nullclines are the thinner solid and dashed curves, respectively. (b) Temporal
evolution of the x variable and y variable. The parameters are � = 3,  = 42,
and � = 10.

II. DIFFERENT CLASSES OF RELAXATION OSCILLATORS

We examine a Terman–Wang relaxation oscillator [43] which
is simplified from the Morris–Lecar model of neural behavior
[30]

(1a)

(1b)

Fig. 1(a) displays the limit cycle for (1), using , and it does
appear qualitatively sinusoidal, as does the temporal evolution
of both variables in Fig. 1(b). As decreases, the system changes
smoothly from sinusoidal oscillations to relaxation oscillations.
In Fig. 2(a)–(c), we display limit cycles and temporal evolution
of the variables for progressively smaller values of ( ,

, ). As becomes smaller, the limit cycle moves
closer to the cubic nullcline, . An oscillator travels
along one branch of the cubic until it reaches the knee (a local
extremum) at which point its velocity is dominated by motion
along the direction and it quickly “jumps” to the other branch
of the cubic, where it resumes its relatively slower travel along
that branch.

We now describe how trajectories for coupled relaxation os-
cillators are analytically computed in the singular limit, .
In this regime, the motion of an oscillator is determined by a
single variable and knowledge of which branch the oscillator is
on (see [43]). The fast system of (1) is obtained by setting ,
which results in

(2a)

(2b)
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Fig. 2. Three different limit cycles for system (1) and the temporal plots of
their x- and y-variables are shown for three different values of ". (a) " = 0:33.
(b) " = 0:1. (c) " = 0:01. The x- and y nullclines are the thinner solid and
dashed curves, respectively. The parameters are � = 3,  = 42, and � = 10.

The slow system for (1) is derived by introducing a slow time
scale and then setting . The evolution of an oscil-
lator on the left branch in the slow time scale is

(3a)

(3b)

where describes the left branch of (1). Because
and , we approximate (3b) with

(4)

For the right branch, these same steps result in

(5)

The set of (2)–(5) describe a relaxation oscillator in the singular
limit.

The equations describing along the left and right
branches in the slow time scale are readily solved analytically
and many interesting quantities can be computed. For example,
we compute the total period of oscillation, , the time needed
to traverse both branches. The time it takes to travel along the
right branch from the position of the left knee to
the position of the right knee is given by

(6)

The time needed to travel along the left branch, , from
to , is given by

(7)

and .
The parameters and control the height of the smoothly

varying portions of the nullcline. We fix the values and
and use , , and to control the velocity of an oscillator

on either branch. Through reduction of the time an oscillator
spends on the right branch in comparison to the time it spends
on the left branch, we can make the relaxation oscillator mimic
a spike oscillator.

We define the branch ratio, , as the time an oscillator
spends on the right branch divided by the time it spends on the
left branch

(8)

is an analog to the duty cycle. For small , the oscillation
contains an infinitesimal firing time, or voltage spike. We denote
relaxation oscillators with as in the spiking regime.

III. PAIRS OF RELAXATION OSCILLATORS

We describe briefly how pairs of relaxation oscillators syn-
chronize and discuss other known solutions. We use a pair of
coupled relaxation oscillators given by

(9a)

(9b)

(9c)

(9d)

(9e)

The parameter is the coupling strength and is positive. The
interaction term is a sigmoid, mimicking excitatory chemical
synapses. Increasing elevates the nullcline .
This is a property seen in descriptions of neural behavior [16],
[19], [30], [48]. When the parameter , the interaction
approximates a Heaviside step function. The threshold of the
interaction term is placed between the left and right branches
of the nullcline, thus, the interaction term is either on or off
depending on whether or not an oscillator is on the right or left
branch.

When the leading oscillator jumps up from the left branch to
the right branch, it is said to “fire.” At this time, the interaction
term becomes nonzero and excitation is sent to the second os-
cillator. If the second oscillator is positioned on the left branch
slightly above the left knee, then the excitation will raise the
nullcline of the second oscillator and induce it to fire. As the
oscillators travel along the right branch, the Euclidean distance
between them decreases. An equivalent dynamic occurs when
the oscillators jump down. This cycle repeats and the Euclidean
distance between the oscillators decreases exponentially to zero.
If the leading oscillator does not induce the second oscillator to
jump immediately, then other trajectories occur, many of which
also lead to a synchronous solution [39], [43].
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Fig. 3. Plot of the nullclines and the synchronous limit cycle of a pair of
relaxation oscillators as defined in (9). The dotted cubics are the excited and
unexcited x nullclines, and the dash-dot curve is the y nullcline. The thick solid
curve is the synchronous limit cycle for a pair of oscillators and is the result
of numerical calculation. The parameters are � = 2, � = �0:5, � = 5000,
� = 8,  = 12, " = 0:005, and � = 1000. Upper left branch (ULB), lower
left branch (LLB), upper right branch (URB), lower right branch (LRB), LK
is the y position of the left knee, RK is the y position of the right knee, and
� is the coupling strength.

Synchrony can be defined in many ways. In this paper, we
use two different measures of synchrony. In the singular limit,
the firing time is precisely defined and a network is considered
synchronous when the entire chain of oscillators first jumps up
or down simultaneously. When , we sum over the Eu-
clidean distances squared between all pairs of oscillators and
divide by the number of pairs to create a measure of the average
distance squared between oscillators, . The oscillators are
synchronous when is less than a threshold value. We tested
several other measures of synchrony (data not shown) and found
no significant difference in our results.

The interaction term alters the limit cycle of the oscillators.
When both oscillators jump up from the lower left knee simul-
taneously, the interaction term raises the nullclines of both
oscillators and they must travel an extra distance in the di-
rection. This same additional distance must be traversed when
both oscillators jump to the left branch, which is then lowered
by an amount . These altered nullclines are referred to as the
upper and lower left (or right) branches. In Fig. 3, we display
the synchronous limit cycle of system (9).

The alteration of the limit cycle lengthens the period of the
synchronous solution, . The time needed to traverse the upper
right branch is

(10)

and the time needed to travel from to , along the
lower left branch, is

(11)

The synchronous period is , and the branch
ratio becomes .

Under certain conditions, a pair of relaxation oscillators can
have stable antiphase solutions [23]. In [6], the minimum cou-
pling strength for a pair of coupled Terman–Wang oscillators is
derived such that if the coupling strength is below this minimum
value, then both antiphase and synchronous solutions occur de-
pendent on the initial conditions. The antiphase solution has a

different limit cycle and a different period than the synchronous
solution.

We now define the compression ratio , which is a qualita-
tive measure of how the time difference between two oscillators
decreases during a period. The time difference is analogous to
a phase difference and is defined when two oscillators are on
the same branch. Specifically, is the ratio of the initial time
difference to the time difference after the two oscillators have
jumped up and down together. This ratio is computed using the
maximal distance between the oscillators for an initial jump
from the left branch, . While this specific case rarely occurs
when using random initial conditions, it is an estimate of the
compression per cycle. for system (9) is

(12)

where the values of are given by

(13)

It can be shown that (12) has its maximum value (fastest syn-
chronization) when , i.e., when the amount of time an
oscillator spends on the left branch is equal to the amount of
time it spends on the right branch.

IV. CHAINS OF RELAXATION OSCILLATORS

We define a chain of relaxation oscillators as follows

(14a)

(14b)

(14c)

The coupling strengths are normalized using

(15)

matrix represents nearest neighbor coupling

if

if (16)

and is the number of nearest neighbors that oscillator has.
Both and vary between 1 and . except for
and , where . This normalization ensures that all
oscillators have the same trajectory in phase space when syn-
chronous regardless of how many neighbors they have [46].

We briefly describe how to simulate networks of oscillators
in the singular limit. In Section III, we showed how the period
could be exactly calculated by determining the time spent trav-
eling each branch. Similarly, given an initial position, the time
it takes an oscillator to travel to a local extremum of the cubic
and jump can be computed analytically [see (4) and (5)]. For
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a system of two or more oscillators, we identify the oscillator
that will next jump and at what time it will jump. All oscillators
are updated to this time. The interactions between the oscillator
that jumped and its neighbors are modified, and this step repeats
until no jump occurs. The oscillator to next jump is determined
and the above procedure begins again. This algorithm is called
the singular limit method, is described in [25], and is used in
all our simulations in the singular limit. It allows us to simulate
large numbers of oscillators efficiently. In the non-
singular limit, we use a Runge–Kutta integration method and
present data from smaller chain lengths .

Similar to pairs of relaxation oscillators, in chains of relax-
ation oscillators, the coupling strength needs to be greater than a
specific value, otherwise both desynchronous and synchronous
solutions are possible depending on initial conditions. This min-
imum coupling strength for Terman–Wang oscillator chains is
derived in [5]. We focus on the properties of synchronization,
and for all results in this paper, we use a coupling strength larger
than the minimum coupling strength.

Also, we believe that in one-dimensional (1-D) networks of
identical relaxation oscillators (14), traveling waves can only
arise if the topology of the network is a ring. Traveling waves in
rings are detailed in [5] and basically require that the oscillators
have a specific order and specific temporal relationships so that
they lead one another around the limit cycle. The time difference
between the oscillators is limited by the amount of time spent
on the right branch (because at least two or more oscillators
must be on the right branch at all times to maintain the traveling
wave). As the time spent on the right branch becomes small,
a traveling wave must consist of a large number of oscillators
evenly positioned on the limit cycle, and thus, the conditions
for creating a traveling wave become a small volume of phase
space. Also, traveling waves are thought to occur only in ring
topologies, in which the ordering can be preserved. At the chain
ends, it seems unlikely that the wave is able to reflect, or in other
words, reverse the ordering of all oscillators in the chain.

Because the coupling strength used in all simulations pre-
sented in this paper is above the limit required for one known
type of antiphase solution (described in [5]), and because we
doubt that traveling waves can exist in chains, we believe that
synchrony is the only solution available for system (15). How-
ever, we can not rule out the possibility of other nonsynchronous
solutions. In our simulations, we did not observe any other final
state of the system besides synchrony.

V. SYNCHRONIZATION IN CHAINS OF RELAXATION

OSCILLATORS IN THE SPIKING REGIME

Fig. 4 displays as a function of for chain
lengths that vary from 2 to , with . Our
results are consistent with an average time to synchrony that
increases as the logarithm of the system size. This same syn-
chronization rate was observed in simulations of spike oscillator
chains with pulsatile coupling [7]. Only several hundred trials
are needed to compute the averages because the distribution of
the synchronization times does not have a long tail (an example
distribution is shown in Fig. 11 and discussed in Section VII).

Fig. 4. Average time to synchrony divided by the period of the synchronous
solution, hT i=� , as a function of log (n) for chains of relaxation oscillators
in the spiking regime, (B = 8:4 � 10 ). The error bars are shown and
indicate the standard deviation. The parameters are � = 2079,  = 2082, and
� = 3:5. the averages are based on 500 trials, except for the last two points
representing 50 000 and 10 oscillators, which are based on 100 and 10 trials,
respectively. The initial conditions for each trial were uniformly and randomly
distributed in the box that bounds the limit cycle.

However, the data in Fig. 4 could also result from a power-law
relationship, , with , which may be likely con-
sidering that relaxation oscillator chains in the singular limit
(Section VII) exhibit this scaling relationship. We cannot de-
termine from our numerical results which scaling relationship
more accurately describes relaxation oscillators in the spiking
regime.

VI. COMPARISON OF RELAXATION OSCILLATORS IN THE

SPIKING REGIME WITH SPIKE OSCILLATORS

A. Comparison of Oscillator Pairs

Relaxation oscillators are typically thought to have much
in common with spike oscillators. Both oscillators are used to
model neuronal behavior and both are frequently examined with
a discontinuous interaction. We make qualitative comparisons
of oscillator dynamics for a pair of Terman–Wang relaxation
oscillators and a pair of spike oscillators used in [7].

A network of spike oscillators is defined as

(17)

The parameter and the threshold control the period of an un-
coupled oscillator. The threshold of an oscillator is 1. When

the oscillator is said to “fire;” its value is instantly reset
to 0 and it sends excitation to its neighbors. represents the

firing times of oscillator and is the Dirac Delta func-
tion. The coupling term, , is the same as defined in (15).
When oscillator fires at time , oscillator receives an in-
stantaneous pulse, which increases by . If increases
above threshold, then it fires and its value is reset as follows,

. Since oscillator fires, immedi-
ately oscillator receives excitation and, thus, .
This particular realization of a network of spike oscillators was
called “Model A” in [20].

When one relaxation oscillator fires, it can induce its neighbor
to immediately fire, a dynamic that also occurs in spike oscilla-
tors. However, in relaxation oscillators, the interaction is of fi-
nite duration, unlike the instantaneous interaction between spike
oscillators. Further, in relaxation oscillators one oscillator can
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Fig. 5. (a) Return map for a pair of relaxation oscillators. The horizontal
axis represents the initial time difference, t , between the oscillators on the
lower left branch and the vertical axis represents the time difference between
the oscillators when they are next on the lower left branch, t . (b) Plot of the
number of periods needed before both oscillators are in the jumping region C ,
as a function of the initial time difference between the two oscillators t . The
parameters are � = 2079,  = 2082, and � = 3:5.

receive excitation for a short time, which alters the branch the
oscillator is on, but when excitation ceases, the position of the
oscillator can be identical to what it would have been without
excitation, unlike spike oscillators with pulsatile coupling. Also,
the interaction increases the synchronous period for relaxation
oscillators, while decreasing it for spike oscillators.

We calculate a return map [Fig. 5(a)] for a pair of relaxation
oscillators initially placed on the lower left branch. The initial
time difference between the two oscillators is represented on
the horizontal axis and the vertical axis displays their time dif-
ference when they are next on the lower left branch. This return
map ignores changes in ordering. We note several features of
this return map. The “jumping region” corresponds to those ini-
tial conditions in which the firing of one oscillator immediately
induces the other to fire. For the parameters used, the jumping
region represents the first 70% of the initial conditions. Just be-
yond the jumping region, there is an initial time difference, ,
that results in perfect synchrony. Somers and Kopell [39] called
the region near this time difference “super compressed,” because
large initial time differences are mapped into small time differ-
ences in just one period. For larger initial time differences, the
leading oscillator can jump up and down before the second os-
cillator can jump up. For the parameters we use, this trajectory
also significantly reduces the time difference. In Fig. 5(b), we
display the number of periods needed before two oscillators are
in the jumping region, , as a function of their initial time dif-
ference. The maximum is one.

For a pair of spike oscillators, we display the return map and
in Fig. 6(a) and (b), respectively, (from [7]). The parameters

are such that the jumping regions comprise approximately 70%
of the limit cycle. The spike oscillator pair exhibits an unstable
fixed point and many cycles can pass before the oscillators fire
synchronously depending on their initial conditions.

B. Comparison of Oscillators Chains

In Fig. 7, we display as a function of for
chain lengths from 5 to for spike oscillators and for relax-
ation oscillators modified so that . The average synchro-
nization time is not noticeably different than with

(data shown in Fig. 4).
We tried to compare oscillators that exhibit the greatest simi-

larity. We chose parameters so that the size of the jumping region
is approximately 70% of the limit cycle for both oscillators. Our

Fig. 6. (a) Return map for two pulse coupled spike oscillators. The phase
difference between the oscillators before (� , horizontal axis) and after (� ,
vertical axis) they have jumped. (b) Plot of the number of cycles needed, C ,
before the oscillators are synchronous as a function of � . Figure taken from
[7].

Fig. 7. Plot of hT i=� as a function of log (n) for relaxation oscillator
chains (plus signs) with an instantaneous traversal of the right branch and spike
oscillator chains (diamonds). Both oscillators have jumping regions which are
approximately 70% of the limit cycle. The data for the spike oscillators is from
[7] and the parameters for the relaxation oscillators are � = 3:5, � = 4, and
 = 7. The averages are based on approximately 300 trials except for the point
representing a chain length of 10 relaxation oscillators, which is based on 25
trials. The initial conditions for the relaxation oscillators were uniformly and
randomly distributed on the lower left branch, since it is not possible to place
an oscillator on the right branch in this case.

numerical results are consistent with a time to synchrony that in-
creases as the logarithm of the chain length for spike oscillators
and relaxation oscillators with . However, relaxation
oscillator chains achieve synchrony faster than spike oscillator
chains. This difference may be qualitatively explained by the
return map for two relaxation oscillators [Fig. 5(a)] and that for
two spike oscillators [Fig. 6(a)]. The return map for relaxation
oscillators indicates a generally larger compression per period
and the number of cycles needed before both oscillators jump
together is only one [Fig. 5(b)], while for two spike oscilla-
tors can be greater than one [Fig. 6(b)]. Based on these return
maps, one might expect that the time needed to synchronize a
chain of relaxation oscillators would be less than that for a chain
of spike oscillators.

In networks of spike oscillators, clusters of synchronous os-
cillators form and the evolution of the network is such that the
number of domain walls does not increase [7]. Assuming that
the rate at which clusters merge is a constant that is depen-
dent only on the system parameters, then the number of clusters
should decrease exponentially, and this is what is observed nu-
merically [7]. For relaxation oscillators in the spiking regime,
we believe that similar dynamics occur. Our preliminary inves-
tigations indicate that occasionally, a small number of oscilla-
tors switch from one cluster to another, but the formation of new
clusters is not observed. If the rate at which clusters merge is a
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Fig. 8. Plot of hT i=� as a function of log (n) for relaxation oscillator
chains in the singular limit. The four different symbols represent four different
values of B . The parameters are shown in Table I. The initial conditions were
randomly and uniformly distributed within the box bounding the limit cycle.
The data for B = 8:4� 10 are described the Fig. 4 caption. For the other
three values of B , the averages are based on 250 trials each, except for the data
points representing 10 oscillators, which are based on 10 trials each.

TABLE I
THE BRANCH RATIOS AND THE PARAMETERS FOR THE DATA

DISPLAYED IN FIG. 8

constant that depends only on system parameters then we can
expect exponential growth of the cluster size.

VII. SYNCHRONIZATION IN CHAINS OF RELAXATION

OSCILLATORS IN THE SINGULAR LIMIT

In Fig. 8, we display as a function of for re-
laxation oscillators with several different ( ,

, , and ) for chain lengths that
vary from 2 to . The parameters are listed in Table I and were
chosen to examine how the average time to synchrony changes
as the relaxation oscillators move out of the spiking regime. The
data show that chains with have the same average syn-
chronization time. For larger chain lengths, networks with dif-
ferent parameters exhibit different times to synchrony. The di-
amonds , plus signs , and
squares all appear to lie on straight lines for values
of and are, thus, consistent with . The
data for (denoted by ) are no longer linear on this
semilog plot.

The parameters used in Fig. 8 increased the amount of time
an oscillator spent on the right branch while attempting to min-
imize changes in other aspects of the oscillator. Specifically,
the distance between the right branch and the nullcline for

decreased while the distance between the left branch
and the nullcline for remained constant. This change
decreased the speed of the oscillator on the right branch while
not affecting the speed of the oscillator on the left branch. The

Fig. 9. Plot of hT i=� as a function of log (n) for relaxation oscillator
chains in the singular limit. The five different symbols represent relaxation
oscillator chains with five different values of B . The averages are based on
250 trials each, except for the data point representing 10 oscillators, which is
based on 10 trials. The parameters are shown in Table II. The initial conditions
were randomly and uniformly distributed within the box bounding the limit
cycle.

TABLE II
BRANCH RATIOS AND THE PARAMETERS FOR THE DATA DISPLAYED IN FIGS. 9

AND 10. THE LAST COLUMN CONTAINS THE SLOPES OF THE LINES

CALCULATED FROM THE DATA SHOWN IN FIG. 10

coupling strength was not altered and the position of the syn-
chronous limit cycle remained the same. The period increases
by a factor of two as goes from zero to one.

The slopes of the lines for , ,
and decrease as the oscillator spends more time on
the right branch, indicating a faster approach to synchrony. This
may be qualitatively explained by noting that the compression
ratio, , increases as increases.

With the data in Fig. 8 indicate that no longer
increases linearly with . This leads us to examine larger
values of . In Fig. 9, we display as a function of

with branch ratios larger than those shown in Fig. 8,
specifically, , , , ,
and ; the trend that started in Fig. 8 becomes more
pronounced. The parameters are listed in Table II.

In Fig. 10, we display the same data shown in Fig. 9 except
that the data are plotted on a log-log graph. Also, we do not
show all of the data from Fig. 9 because the average times to
synchrony for do not yield straight lines and we as-
sume that they do not reflect the asymptotic behavior of the
system. For system sizes from – , our data is consistent
with . The slopes of the lines were obtained using a
least squares fit and are listed in Table II. They vary from 0.46

to 0.14 .
In Fig. 10, the data for is shown in the inset along

with error bars representing the addition and subtraction of the
standard deviation. The standard deviations for other parameters
are not shown, but are similar to those seen in the inset.
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Fig. 10. Log-log plot of hT i=� as a function of n for the data shown in
Fig. 9. The straight line represents a least squares fit to the data for B = 0:53.
A plot of hT i=� and its standard deviations for B = 0:14 are shown in the
inset. The parameters used and the slopes of the lines computed for each value
B of are shown in Table II.

Fig. 11. Histogram of hT i=� for 25 075 trials of a chain of 500 relaxation
oscillators in the singular limit, B = 0:53, with parameters � = 3:5, � = 3,
and  = 6. The histogram indicates that the distribution of synchronization
times does not have a long tail. The initial conditions were randomly and
uniformly distributed within the box bounding the limit cycle.

In Fig. 11, we display a histogram of synchronization times
for a chain of 500 relaxation oscillators. The histogram indicates
that the distribution of synchronization times has the rough ap-
pearance of a log-normal distribution if one ignores the peri-
odic structure and examines its envelope. The periodic structure
arises because we determine that a system is synchronous when
all oscillators jump at the same time. Given random initial con-
ditions, the first oscillator to jump occurs shortly after the start
time and the synchronization time frequently occurs
near an integer interval of the period after that.

The data presented give the impression that is directly re-
lated to . While it may be true in general that increases as

increases, it is not true that is the only factor controlling
the rate of synchrony. Different parameters can yield identical
values for , but the resultant scaling relation between
and can appear quite different. Using , , and

, results in an average time to synchrony that increases
logarithmically with the system size, even though ,
a value nearly identical to one of the parameter sets shown in

Fig. 10 that exhibits a power law scaling relation. We do not
have a detailed understanding of which parameters are related
to .

We examined the scaling relation for a variety of coupling
strengths and parameters. All parameters tested with
exhibited a logarithmic scaling relation, while those with larger
values of exhibited either logarithmic or power law scaling,
with a tendency toward power law scaling.

For system sizes from – , our numerical results are con-
sistent with , though we do not know if this relation
accurately reflects the asymptotic behavior of the system. This
power law scaling is very curious. For systems that exhibit this
scaling relation we observe “defects,” or spatial arrangements of
oscillators resembling traveling waves, arise that hinder the for-
mation of synchrony. These defects have the same frequency as
traveling waves and they can remain stable for a short amount
of time (several periods) until they merge with a neighboring
synchronous cluster. We suspect that they may be the cause of
the power law scaling. Because traveling waves occur with de-
creasing frequency as decreases, and because they cannot
exist unless the right branch represents a finite portion of the
period, it is likely that the logarithmic scaling relation occurs
for , and power law scaling for . Unfortunately,
we have no theoretical explanations for the power law scaling
at this time and refer the reader to [5], which describes traveling
waves, specific spin-wave type initial conditions which result in
somewhat longer times to synchrony, and other relevant issues.

VIII. EFFECTS OF COUPLING FORM ON

RELAXATION OSCILLATORS

We now examine the synchronization rate in chains of relax-
ation oscillators for and with two different couplings, a
Heaviside function and a smooth sigmoid.

A. Heaviside Interaction

In Sections II–VII, relaxation oscillators were in the singular
limit and no time was needed for an oscillator to jump from
branch to branch. We now investigate the case of which
results in a finite time needed for an oscillator to jump from
branch to branch. This immediately causes a fundamental
change in that the time needed for one oscillator to induce
another oscillator to jump is finite and information can only
propagate from one end of the chain to the other at times
proportional to [39].

In Fig. 12, we present our data for relaxation oscillators in the
sinusoidal regime with a Heaviside coupling in the
form of histograms of the time to synchrony divided by . Data
from two chain lengths and , and two values of

( and ) are shown. Although the histograms are
noisy and the variance of the time to synchrony is quite large,
the scaled histograms have a qualitative match in their shape and
their extent. The values of and its standard deviation both
appear to increase linearly with the system size for both
and . A value of places the relaxation oscillators
clearly in the sinusoidal regime and a value of arguably
places the relaxation oscillators in the sinusoidal regime.
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Fig. 12. Histograms of the time to synchrony divided by n using a nearly
discontinuous interaction (� = 5000) for chains of length n = 25 (thin)
and n = 50 (thick) (a) Scaled histograms for " = 1:0 are based on 2000
trials for both chain lengths. (b) Scaled histograms for " = 0:1 are based on
1200 and 1500 trials for chain lengths of 25 and 50, respectively. The remaining
parameters are � = 6, � = 3,  = 42, � = �0:5, and � = 1000. Each trial
was performed with the initial conditions uniformly and randomly distributed
on the lower left branch of the limit cycle.

For , a network is synchronous when the average Eu-
clidean distance squared between the oscillators is less
than 0.01

(18)

The limit cycle varies in both the - and -directions by roughly
, thus, a threshold of 0.01 for indicates that the oscil-

lators are relatively close to each other. We tested several mea-
sures of synchrony and did not see any discernible difference in
our results. An adaptive fifth-order Runge–Kutta method from
[36] generated all results for (see [5] for more details).

For completeness, we examined pairs of relaxation oscillators
for a few parameters with and found that there is a transi-
tion from synchrony to aperiodicity between and .

B. Smooth Interaction

In this section, we set and the interaction is a smooth
sigmoid instead of an approximate Heaviside step function.
Fig. 13(a) displays histograms of the time to synchrony divided
by , for , and for chains of length and .
It is evident that this scaling is appropriate. Fig. 13(b) and
(c) displays similar histograms with and
and for these values of , the scaled histograms do not line up
precisely. Scaling by overestimates the time to synchrony
by a small but noticeable amount. This is as expected because
the interaction is a nontrivial function of the coordinate and
becomes less smooth as decreases.

Our data confirms the numerical results of Somers and Kopell
in that relaxation oscillator chains synchronize faster as de-
creases [39], and in that greater slopes of the interaction term aid
synchronization [40]. In Table III, we show a subset of our data
for two extreme values of and several values of . Intermediate
values of do not yield readily quantified scaling behaviors, but
they are intermediate between and . The data are also con-
sistent with a time to synchrony proportional to . This is in
agreement with perturbation analysis for relaxation oscillators,
in which an expansion in gives a first term of order [2].

Our data may include large errors due to boundary effects that
are significant in comparison to the small system sizes (

Fig. 13. Histograms of the time to synchrony divided by n using a smooth
interaction (� = 1) for chains of length n = 25 (thin) and n = 50 (thick). (a)
The scaled histograms for " = 1:0 are based on 1000 and 800 trials for chain
lengths of 25 and 50, respectively. (b) Scaled histograms for " = 0:1 are based
on 1000 and 400 trials for chain lengths of 25 and 50, respectively. (c) Scaled
histograms for " = 0:01 are based on 4000 and 2500 trials for chain lengths of
25 and 50, respectively. The remaining parameters are � = 6, � = 3,  = 42,
� = �0:5, and � = 1000. Each trial was performed with initial conditions
randomly and uniformly distributed on the lower left branch of the limit cycle.

TABLE III
THE AVERAGE TIME TO SYNCHRONY (IN PERIODS) FOR DIFFERENT VALUES OF

n, ", AND �. (A) CONTAINS OUR DATA FOR � = 1:0 AND (B) CONTAINS OUR

DATA FOR � = 5000. THE DATA SUGGEST AN INCREASE IN THE TIME TO

SYNCHRONY AS n FOR � = 1:0 AND AS n FOR � = 5000. THE DATA ALSO

SUGGEST THAT THE TIME TO SYNCHRONY IS PROPORTIONAL TO "

is the largest), or the effects of correlations that are larger than
the size of the system used. In spite of these possibilities, we
have good reasons to believe in the scaling relations suggested
by our data. One reason is that the histograms for different
have very similar shapes, indicating that these shapes result from
the system parameters and not the size of the network. Also, our
data indicate an expected proportionality to , and this pro-
portionality might not be evident if boundary effects are signif-
icant. Finally our data are consistent with the results reported in
[39], [40], and [46].

It has been shown, that under certain conditions, many forms
of oscillators and interactions can be reduced to a system of
phase oscillators coupled through a function of their phase dif-
ferences [11]. To a first-order approximation, this becomes a
system of phase oscillators with diffusive coupling, and the time
to synchrony is then proportional to the length of the chain
squared (more general and complete arguments for this scaling
relation are made in [11], [22], [39]). This is a possible expla-
nation for the observed scaling relationship, , when
the interaction term is a smooth sigmoid.
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Fig. 14. Plot of hT i=� as a function as a function of log (2L � 1) for
L � L networks of locally coupled relaxation oscillators. All oscillators are
coupled with their four nearest neighbors, except those on the borders and the
corners, which are connected with three and two neighbors, respectively. The
coupling is normalized as described in Section IV. (a) Network parameters are
such that B = 0:021 (� = 8, � = 112, and  = 115), and the averages are
based on 300 trials except for the average of the largest square which is based
on 100 trials. (b) Network parameters are such thatB = 0:33 (� = 8, � = 8,
and  = 11), and the averages are based on 250 or more trials except for the
largest two square sizes, which are based on 150 and 14 trials, respectively. The
error bars are shown and indicate the standard deviation. The initial conditions
were randomly and uniformly chosen to lie on the lower left branch of the limit
cycle to avoid nonsynchronous solutions.

Based on this data, we conjecture that a discontinuous interac-
tion has better properties of synchronization than a smooth inter-
action for many types of oscillators. This conjecture is in agree-
ment with the work of Daido [10] in which a step-like interaction
perfectly synchronizes a portion of the oscillators in a globally
coupled network with a normal distribution of intrinsic frequen-
cies, whereas a smooth coupling cannot. Also, chains of pulse
coupled spike oscillators synchronize at times proportional to

[7], but when weakly coupled with a smoothly varying
function, the scaling relation changes completely [22]. These
data indicate that a discontinuous interaction may be generically
better at producing quick synchronization than a smooth inter-
action.

IX. SYNCHRONIZATION IN 2-D NETWORKS OF RELAXATION

OSCILLATORS IN THE SINGULAR LIMIT

Because synchrony was quickly attained in chains of oscilla-
tors, we examined 2-D locally coupled networks also. Here we
only examined relaxation oscillators in the singular limit and in
the spiking regime because they can be numerically integrated
rapidly [25] enabling us to present data for large network sizes.

In Fig. 14(a), we display as a function of
for square networks of length varying from 4

to 250, with . Our data are consistent with
. This scaling relation is the same as that observed in 2-D

networks of spike oscillators [7], thus, again indicating that re-
laxation oscillators in the spiking regime appear to be funda-
mentally similar to spike oscillators.

In rings of oscillators, traveling waves can occur. In 2-D
networks with periodic boundary conditions, traveling waves
and other more complex patterns occur. Rotating waves were
observed but only when initial conditions were randomly
distributed within the box bounding the limit cycle (see [5] for
more details). When we restricted the initial conditions to the
lower left branch of the limit cycle, synchrony was always the
final solution.

As with traveling waves, rotating waves in 2-D lattices need a
highly specific positioning on the limit cycle to occur and are not
observed frequently when initial conditions are randomly gen-
erated. This is explained by the fact that a rotating wave needs
at least two or more oscillators or groups of oscillators to be
active at any given time. As the time spent on the right branch
decreases, the temporal ordering of the oscillators must become
more and more precise, and the number of oscillators required
for a rotating wave increases. The frequency with which rotating
waves are observed decreases as decreases. We refer the
reader to [5] for a more complete description of this behavior.
Note that traveling or rotating waves were not observed in 1-D
and 2-D locally coupled networks of spike oscillators [7].

In Fig. 14(b), we display as a function of
for square networks with varying from 2 to 500

with . Even though synchrony is always achieved,
there is no obvious scaling behavior. The curve is nonmonotonic
and nonintuitive. We have no theoretical understanding of how
this curve arises. Note the exceptionally short synchronization
times.

X. DISCUSSION

Synchronization phenomena are widely observed in nature,
and are the subject of intense research. Thus far, the study of
coupled oscillator systems has revealed a variety of behaviors,
including synchrony [18], [31], phase transitions [24], [41], par-
tial synchrony [10], antiphase solutions [23], traveling waves
[14], [40], cluster formation and dissipation [12], and self-orga-
nized criticality [4]. The complexity of oscillator systems arises
in part from the variety of their components, and determining
factors include the nature of the oscillator, the form of the inter-
action (as well as its amplitude, time delay, spatial extent, and
homogeneity), the distribution of intrinsic frequencies, external
driving forces, and noise.

We numerically examined how the rate of synchrony changes
in networks of relaxation oscillators as we changed the nature
of the oscillation. Four different classes of relaxation oscillator
were studied with a Heaviside coupling, and three different syn-
chronization rates were observed . was observed
for relaxation oscillators in the spiking regime for chains of
length and for 2-D square networks of length

. was observed for relaxation oscillators in the
singular limit. was observed for relaxation oscillators
and relaxation oscillators in the sinusoidal regime. These results
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indicate that the kind of the oscillation changes the rate of syn-
chronization.

We note that for small values of , the function appears
as a straight line on a semilog plot. Therefore, can
be hard to distinguish from logarithmic scaling
for even relatively large chain lengths. From our data we cannot
exactly determine whether or not the scaling relation is loga-
rithmic or a power law with small .

For relaxation oscillator chains with , when the cou-
pling changed from a nearly discontinuous step function to a
smooth sigmoid, the synchronization rate changed from

to . These results indicate that the form of the cou-
pling modifies the synchronization rate.

All of our numerical results were performed using finite sys-
tems. Although the aforementioned trends are apparent in our
data, we do not know with certainty that they accurately reflect
the asymptotic behavior of the systems studied.

Somers and Kopell [39] emphasized the role of relaxation os-
cillations in obtaining quick synchrony and suggested that “fast
threshold modulation” (FTM) [39], [40] is responsible for the
linear scaling relationship. Though they used a Morris–Lecar
oscillator with a sigmoid interaction term multiplied by the
voltage-like variable, the same basic dynamics of FTM are
observed with Terman–Wang oscillators in the relaxation
regime. For Terman–Wang oscillators in the sinusoidal regime,
the dynamics of FTM are not observed and the linear scaling
relation persists, thus, suggesting that an additional mechanism
exists that causes the linear scaling relationship.

We also note that the coupling term is a nontrivial function of
the fast variable. When the position of the oscillator changes
rapidly, the interaction term exhibits rates of change accord-
ingly. In this sense, the nature of the relaxation oscillation causes
the interaction term to become step-like. Our data suggest that
as becomes smaller the system exhibits synchronization times
that are shorter than , but we do not have a good es-
timate for what value of is required for a relaxation oscillator
network of a given size and interaction to exhibit .

We conjecture that a discontinuous interaction has better
properties of synchronization than smooth interactions in many
oscillator systems. This is consistent with Daido’s argument
that a step-like coupling “embodies a limit of strong coupling
because it yields finite synchronizing force even from an in-
finitesimal phase difference” [10] (see also [21]). We note that
another benefit of a step-like coupling is that synchronization
occurs quicker.

Our conjecture may have practical applications. Resonance
tunneling diodes [8], [50] oscillate at megahertz and higher fre-
quencies. However, the output current of these devices is very
small and there is a need to couple many diodes together to
create devices that yield high-output currents at these frequen-
cies. Similarly, phase synchrony of Josephson arrays is desirable
[15]. At the moment, it is unknown how to quickly synchronize
the outputs of locally coupled arrays of these devices. Even a
partial understanding of how to achieve quick synchrony in the
presence of noise and disorder would be valuable. Step-like, or
pulsatile interactions may also be useful in synchronization of
chaotic systems (see [26], [42] for example).

While emphasizing the flexibility of relaxation oscillators, we
have only discussed a limited set of relaxation oscillator systems
and our results are focussed almost entirely on synchronization.
Networks of relaxation oscillators can exhibit a variety of be-
haviors. With inhibitory coupling, our experiments showed that
chains of oscillators quickly attained an entrained state. For re-
laxation oscillators with an intermediate time scale on the active
phase of the limit cycle, slower than the transition time scale,
but faster than the slow time scale, almost synchronous solu-
tions arise, and desynchronous solutions exist also [3]. With
time-delay coupling, chains of Terman–Wang relaxation oscil-
lators with Heaviside coupling exhibit a rapid approach to a
loosely synchronous solution [6], although antiphase solutions
exist dependent on the coupling strength and the time delay.
For other relaxation oscillators, the synchronous solution can
be stable even in the presence of time delays [13]. For a pair
of piece-wise linear relaxation oscillators in the singular limit,
in-phase and antiphase solutions arise dependent on the initial
conditions, the rate of decay of the interaction, and the coupling
strength [37] (also see [9]). With diffusive coupling, lattices of
relaxation oscillators can synchronize but the coupling strength
must be large enough [1]. In a chain of relaxation oscillators
with different intrinsic frequencies and diffusive coupling, syn-
chrony is attained, but exhibits extremely long transients even
in the presence of large coupling [29]. These behaviors reveal
the complexity and subtlety of the systems involved.
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