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ABSTRACT

Speech enhancement in noisy and reverberant conditions remains
a challenging task. In this work, a time-frequency masking based
method for speech enhancement with multi-channel data using con-
volutional neural networks (CNN) is proposed, where the CNN is
trained to estimate the ideal ratio mask by discriminating directional
speech source from diffuse or spatially uncorrelated noise. The
proposed method operates on, frame-by-frame, the magnitude and
phase components of the short-time Fourier transform coefficients
of all frequency sub-bands and microphones. The avoidance of
temporal context and explicit feature extraction makes the proposed
method suitable for online implementation. In contrast to most
speech enhancement methods that utilize multi-channel data, the
proposed method does not require information about the spatial
position of the desired speech source. Through experimental evalua-
tion with both simulated and real data, we show the robustness of the
proposed method to unseen acoustic conditions as well as varying
noise levels.

Index Terms— convolutional neural networks, speech enhance-
ment, microphone array, masking

1. INTRODUCTION

In modern hands-free communication systems, extraction of a de-
sired speech signal in noisy and reverberant environments is an im-
portant task. With the advent of multiple microphones on modern
devices, microphone array processing techniques for spatial filtering
methods have become an attractive solution to the task. Spatial fil-
tering techniques [1] rely on utilizing spatial information regarding
the sound scene within an estimation framework, to extract the de-
sired speech signal and suppress the undesired signal components.
Though with accurate information regarding the sound scene these
methods can perform well, in practice, information such as spatial
position of the speech source, second order statistics (SOS) of the
desired and the undesired signal components etc. is required. Such
spatial information generally needs to be estimated, which itself is a
challenging task in adverse acoustic conditions.

Following the recent success of deep learning based approaches
for different signal processing tasks, methods have been proposed
for performing speech enhancement with multi-channel data. Based
on the estimation target, two main types of approaches have been
proposed: 1) using deep neural networks (DNNs) to estimate beam-
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former weights [2-5]; ii) using DNNs to estimate time-frequency
(T-F) masks [6-9].

Methods of the first type train a DNN to estimate the real and
imaginary parts of the weights of a beamformer. In [2], a DNN
is used to estimate the weights of a delay-and-sum beamformer,
whereas in [5], a recurrent neural network (RNN) estimates the
weights of a filter-and-sum beamformer. Though both methods
showed improvement in terms of speech recognition performance,
both the target beamformers considered in these works are data-
independent beamformers which are known to be limited in terms
of their overall speech enhancement ability, especially in noisy and
reverberant conditions [1].

The work presented in this paper is related to the second type
of methods that relies on multi-channel data to estimate T-F masks,
which can either be used to estimate the SOS of the signal compo-
nents for spatial filtering or directly utilized as a real-valued gain to
obtain the desired signal. In [7], only spatial features from the mi-
crophone signals are used for training a DNN to estimate a T-F mask.
In [6,9], a binaural setup is considered where both spatial and spec-
tral features are computed to train a network to obtain an estimate
of the ideal binary mask (IBM) or the ideal ratio mask (IRM) [10],
which is then applied as a real-valued gain to obtain the desired sig-
nal. All the above mentioned methods involve explicit feature ex-
traction steps, which can lead to considerable computational cost,
especially when the number of microphones is high. Also the spa-
tial position of the desired speech source was considered fixed [6] or
known [7,9]. In [8], neural networks with shared weights for each
channel were used to estimate an IBM, which was then utilized to
compute the power spectral density (PSD) of the desired and noise
components. As each channel was treated separately, no spatial in-
formation was exploited for mask estimation.

In this work, we propose a T-F masking based approach for
speech enhancement where a convolutional neural network (CNN)
is trained to discriminate between the spatial characteristics of the
desired directional speech source and diffuse or uncorrelated noise
components in order to estimate the IRM for extracting the desired
speech source at the output. Instead of an explicit feature extraction
step, the magnitude and phase of the short-time Fourier transform
(STFT) coefficients of all the frequency sub-bands and microphones,
for a single STFT time frame, are directly provided as input to the
system. Without an explicit spatial feature extraction step or any
temporal context in the input representation, makes the proposed
method suitable for online speech enhancement. Additionally, the
proposed method is designed to be independent of the spatial po-
sition of the desired speech source. In this paper, we consider an
acoustic scenario with a single desired speech source in the pres-
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Fig. 1. Proposed CNN architecture.

ence of diffuse babble noise as well as microphone self-noise, and
evaluate the performance of the proposed method in unseen acoustic
conditions with both simulated and real data.

2. PROBLEM FORMULATION

Let us consider an array of L microphones that captures the reverber-
ant speech signal along with noise. In the STFT domain, the vector
of received signals, y(n, k) = [Y(n,k,1),...,Y(n, k, L)]" at time
frame n and frequency bin k is given by
y(n, k) :Xd(n, k) +X7"(n7 k) +Vd(n7k)+v(n7 k), (1)

where x4(n, k) and x,(n, k) denote the direct and the reverberant
part of the speech signal, respectively. We consider two different
kinds of noise components present in the sound scene; diffuse babble
noise, denoted by v4(n, k), and spatially uncorrelated microphone
self-noise, denoted by v (n, k). Given the recorded microphone sig-
nals, the aim in this work is to extract the direct component of the
speech signal at a reference microphone Xg4(n, k, 1).

To obtain an estimate of the desired signal, we propose a time-
frequency (T-F) masking based approach, where we want to estimate
the positive and real-valued ideal ratio mask (IRM) [10], given by

_ | Xa(n, k,1)]

Mgy (n, k) = Y(n, k, 1)

@3

where Y(n, k, 1) denotes the signal recorded at the first microphone.
With the mask, an estimate of the desired signal is given by

Xa(n,k,1) = Mgm(n, k) - Y (n, k,1). A3)
Inverse STFT using the estimated magnitude and the noisy and re-
verberant phase is performed to obtain the desired signal waveform.

In the following sections, we describe the proposed method to obtain
an estimate of the IRM using the multi-channel data and a CNN.

3. PROPOSED SYSTEM

The aim of the proposed method is to obtain an accurate estimate of
the IRM for all the frequency bins of a single time frame, given the
input feature representation of the corresponding time frame. Please
note that no temporal context is utilized in this work.

3.1. Input feature representation

In the proposed system, the input corresponds to a single time frame
of the STFT representation of the microphone signals. The observed
signal can be expressed as

Yi(n, k) = Ai(n, k)1 ™0, “)
where A;(n, k) represents the magnitude component and ¢;(n, k)
denotes the phase component of the STFT coefficient of the received
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Fig. 2. Spatial coherence of speech vs babble noise.

signal at the [-th microphone. Rather than performing explicit fea-
ture extraction, we directly provide the magnitude and the phase of
the STFT coefficients of the received signals as input to the sys-
tem. The idea is to have the system learn to differentiate between the
directional speech source and the diffuse/uncorrelated noise compo-
nents during training in order to estimate the IRM.

The input feature for the n-th time frame is formed by arranging
Aj(n, k) and ¢ (n, k) for each time-frequency bin (n, k) and each
microphone [ into a three dimensional tensor of size L x K X 2,
which we call the STFT map, where K = Ny/2 + 1 is the total
number of frequency bins, upto the Nyquist frequency, at each time
frame and L is the total number of microphones in the array.

3.2. CNN for mask estimation

Given the input STFT map for each time frame, ®(n), we employ
a CNN to learn to differentiate between the spatial characteristics
of the speech and noise sources, and obtain an accurate estimate of
the IRM for all the frequency bins corresponding to that time frame,

M(n) = [J/\/[\(n, 1),..., M(n, K)].

In Fig. 1, we show the CNN architecture employed in this work,
which is similar to the architecture proposed in our previous work
for the task of DOA estimation [11]. In the convolution layers (Conv
layers in Fig. 1), small filters of size 2 x 1 are applied to the in-
put. The choice of such small filters is motivated by the discrimi-
native feature that the CNN can learn to differentiate between sound
sources with different spatial characteristics.

To illustrate this point, in Fig. 2, for a microphone pair sepa-
rated by 8 cm, the difference in the spatial coherence [12] between
the speech source and the diffuse babble noise, assuming an ideal
isotropic spherically diffuse noise field is shown. It can be seen that
while the speech signal is highly coherent across the complete spec-
trum, the diffuse noise is coherent only in the very low frequency
region. For the CNN to effectively learn this frequency-dependent
discriminative feature, small filters are applied that can potentially
learn from the correlation between the STFT coefficients of neigh-
boring microphones for each of the frequency sub-bands separately.
These learned local structures are then eventually combined by the
fully connected layers (FC layers in Fig. 1 ) for the final mask esti-
mation.

For both the convolution as well as the fully connected layers, in
this work, we use the rectified linear units (ReLU) activation func-
tion [13]. In the final layer of the network, as the IRM for each
T-F bin lies between 0 and 1, we use K sigmoid units to estimate
the IRM for a given time frame. Though the IRMs for all the fre-
quency bins of a single time frame are estimated simultaneously, the
optimization is done separately for each sigmoid output correspond-
ing to each frequency bin. For the optimization of the weights of
the CNN, we use the L2 or mean-square error (MSE) loss function,
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Simulated training data

Signal Speech signals from TIMIT Simulated test data
Room size R1: (6 x 6), R2: (5 x 4),R3: (10 x 6), R4: (8 x 3), R5: (8 X 5) Signal Speech signals from LIBRI
Array positions in room 7 different positions in each room Room size Room 1: (4 x 7), Room 2: (9 x 4)

Source-array distance 1 m and 2 m for each position

Array positions | 3 arbitrary positions in each room

RTeo

R1: 0.35s,R2:0.2s,R3:0.8s,R4: 0.45s,R5: 0.6 s

Source-array dist. 1.7 m for both rooms

SNR

Diffuse babble: -6 to 6 dB, Spatially white: 5 to 20 dB

Room 1: 0.38 , Room 2: 0.70

RTes0(s)

(a)

(b)

Table 1. (a) Configuration for training data generation. All rooms are 2.7 m high. (b) Configuration for simulated test data generation. All

rooms are 3 m high.

Rooms | Room 1 Room 2

SNR ‘ —6dB 0dB 6 dB —6dB 0dB 6 dB
Measure | ASNR AP AST|ASNR AP AST|ASNR AP AST|ASNR AP AST|ASNR AP AST|ASNR AP AST
DSB 8.6 0.21 0.08 9.2 0.23 0.09 9.7 0.30 0.08 8.5 0.10 0.08 9.2 0.22 0.09 9.1 0.25 0.08
RSD 9.1 0.25 0.14 9.8 0.30 0.12 9.9 0.34 0.10 8.8 0.13 0.12 9.5 0.26 0.11 94 0.30 0.09
Proposed 3.8 0.30 0.16 4.3 0.43 0.14 4.8 0.45 0.11 3.8 0.21 0.15 4.2 0.36 0.13 4.8 0.39 0.10
Oracle ‘ 19.4 1.48 0.40 ‘ 19.5 1.56 0.31 ‘ 19.8 1.53 0.25 ‘ 19.3 1.38 0.42 ‘ 19.2 1.54 0.31 ‘ 19.6 1.53 0.24

Table 2. Results for two different simulated acoustic conditions with varying levels of diffuse babble noise. The best performing methods are
shown in bold. A P and A ST denote PESQ and STOI score improvement, respectively.

given by

L= (MIRM(n, k) — M(n, k:))2 . )

The different hyper-parameters of the proposed architecture in Fig. 1
were chosen by using a validation data set.

sitions, 10 speech signals were convolved with the simulated RIRs
corresponding to that specific setup. Then, spatially uncorrelated
Gaussian noise was added to the training data with randomly chosen
SNRs between 5 and 20 dB. Additionally, diffuse babble noise, with
randomly chosen SNRs between -6 and 6 dB was also added. A 40 s

The CNN is trained using a training data set {{®(n), Migm(n)} | n 10ng sample of multi-channel diffuse babble noise was generated us-

1,..., N}, where N denotes the total number of STFT time frames
in the training set, and Mirm(n) denotes the IRM vector for the n-th
time frame. Details regarding the preparation of the training data set
are given in Section 4.1.

In the test phase, the test signals are first transformed into the
STFT domain using the same parameters used during training. Fol-
lowing this, the STFT map for each time frame of the test signals is
given as input to the CNN, and the CNN provides an estimate of the
IRM for each frequency bin in each time frame. Finally, an estimate
of the desired signal is obtained using (3).

4. PERFORMANCE EVALUATION

4.1. Training details

We consider a uniform linear array (ULA) with L = 4 microphones
with inter-microphone distance of 8 cm, and the input signals, with
sampling frequency of F; = 16 kHz, are transformed to the STFT
domain using a DFT length of 256, with 50% overlap, resulting in
K = 129. The room impulse responses (RIRs) required to simulate
different acoustic conditions are generated using the RIR generator
[14].

The configurations for generating the training data are given
in Table la. For training, we used 370 randomly chosen speech
utterances from the TIMIT dataset, each 2 s long. For the pro-
posed method to be independent of the spatial position of the de-
sired speech source, for each array position and source-array dis-
tance considered in the training conditions, the whole angular range
of the ULA was discretized with a 5° resolution, to get 37 differ-
ent angular positions of the speech source. For each of these po-
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ing the acoustic noise field generator [12], assuming an isotropic
spherically diffuse noise field. The generated babble noise was di-
vided into 20 segments, each of length 2 s. The first 10 segments
were used for training, and the rest were used for test. In total, the
training data consisted of around 8.3 million time frames, which was
approximately 18 hours worth data.

The CNN was trained using the Adam gradient-based optimizer
[15], with mini-batches of 512 time frames and a learning rate of
0.001. During training, at the end of the three convolution layers
and after each fully connected layer, a dropout procedure [16] with
a rate of 0.5 was used to avoid overfitting. All the implementations
were done in Keras [17].

4.2. Baselines and performance measures

The performance of the proposed method is compared to two tradi-
tional beamformers, delay-and-sum beamformer (DSB) and the ro-
bust super-directive beamformer (RSD) [1]. To compute the relative
transfer function (RTF) for both beamformers, first a white noise
signal is convolved with the direct part of the RIR. Then with the
STFT representation of this signal, for each frequency sub-band, the
PSD matrix is computed with a long-term average. From this PSD
matrix, depending on the reference microphone, the corresponding
column, normalized with respect to the signal power at the reference
microphone, is used as the propagation/steering vector. Addition-
ally, for the RSD beamformer, the theoretical coherence matrix for a
spherically isotropic diffuse noise field is used as the undesired sig-
nal PSD, with diagonal loading applied to avoid singularity at low
frequencies. Please note that the beamforming methods used for
comparison are their corresponding ideal versions with perfect in-
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RTGO ‘ 0.160 s

0.360 s 0.610s

Distances | 1m 2m 1m

2m 1m 2m

Measure ‘ASNR AP AST‘ASNR AP AST‘ASNR

AP AST‘ASNR AP AST‘ASNR AP

AST‘ASNR AP AST

DSB 85 0.22 0.11 82 0.20 0.11 8.5 0.21 0.10 82 0.14 0.09 85 0.20 0.09 83 0.17 0.07
RSD 8.7 0.25 0.13 83 0.27 0.12 86 0.29 0.11 85 0.19 0.10 86 0.23 0.12| 84 0.18 0.09
Proposed 43 042 0.14| 36 032 013| 38 039 0.14| 38 021 0.13| 33 027 0.12| 32 021 0.11
Oracle ‘ 20.1 1.41 0.32 ‘ 19.7  1.40 0.33 ‘ 20.0 1.42 0.33 ‘ 19.6  1.34 0.37 ‘ 20.2 1.46 0.36 ‘ 19.7 1.37 041

Table 3. Results for different distances and reverberation times in real acoustic conditions. The best performing methods are shown in bold.

formation. In practice, these methods would require an estimate of
the direction-of-arrival (DOA) of the source or the RTF.

The compared methods are evaluated in terms of frequency
weighted segmental signal-to-noise ratio improvement (ASNR)
[18], PESQ improvement (AP) [19] and improvement in terms of
short-term objective intelligibility (AST) score [20].

4.3. Test results
4.3.1. Simulated RIRs

For test in simulated conditions, we used a total of 185 different
speech utterances from the LibriSpeech ASR corpus [21], 5 utter-
ances per angular position for each array setup. Each utterance was
2 s long. The acoustic conditions for test are shown in Table 1b.

The results in simulated acoustic conditions are shown in Ta-
ble 2. The performance of the methods was evaluated for three dif-
ferent input SNRs for the babble noise, while the self-noise input
SNR was 10 dB for all the cases. In addition to the three competing
methods, objective results for the oracle IRM applied to extract the
desired speech source is also shown (Oracle). The shown results for
each input SNR of babble noise was averaged over all the different
angular positions of the desired source for a given array position, as
well as the different array positions considered for each room.

From the results, it can be seen that the proposed method
achieves significant enhancement, in terms of STOI score and PESQ
improvement, even in highly reverberant conditions (Room 2).
Also, both the proposed method and the RSD beamformer achieve
the maximum improvement in objective intelligibility (AST) when
the level of diffuse babble noise is high, whereas for the DSB, the
performance is constant for the different SNRs of babble, since it is
mainly designed to reduce uncorrelated noise which is constant for
all conditions. In terms of SNR improvement, the best performance
is always achieved by the RSD beamformer, with the performance of
the DSB being slightly inferior. The proposed method demonstrates
significantly less SNR improvement.

Overall, in terms of STOI and PESQ improvement, the proposed
method achieves the best performance, however from the results pro-
vided for the oracle IRM (Oracle), it can be seen that there remains a
significant scope for improvement in results of the proposed method.

4.3.2. Measured RIRs

To further investigate the robustness of the proposed method to
different acoustic conditions, we evaluated the performance of the
methods with measured RIRs. It should be noted that the proposed
method was only trained with simulated data. For this evaluation,
we used the Multichannel Impulse Response Database from Bar-
[lan university [22]. The database consists of measured RIRs with
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sources placed on a grid of [0°,180°], in steps of 15°, at distances
of 1 m and 2 m from the array. For our experiment, we chose the
four middle microphones from the array setup with 8 cm inter-
microphone distance [22] to have a similar geometric setup in both
simulated and real conditions. The test data was generated by con-
volving 5 different speech utterances, randomly chosen from the
LibriSpeech corpus, with the measured RIRs for each of the thirteen
discrete angles in the database.

The results for different reverberation times and distances are
shown in Table 3. For all the different acoustic conditions, spatially
white noise and diffuse babble noise were added to the test signal to
obtain an average segmental SNR of 10 dB and 0 dB, respectively.
The results shown here are averaged over all the thirteen angles for
each acoustic setup.

From the results, we see that that the proposed method, though
trained with only simulated data, manages to achieve considerable
enhancement across all different real acoustic conditions. Similar
to the results in simulated acoustic conditions, the proposed method
always achieves the best performance in terms of STOI score and
PESQ improvement, but has a significantly lower SNR improve-
ment.

It should be noted that the proposed approach is essentially a sin-
gle channel enhancement method that utilizes the multi-channel data
to estimate the mask. Due to this, as well as the reconstruction of the
signal with noisy and reverberant phase, we notice some amount of
distortion introduced in the enhanced signal for all the investigated
scenarios, which possibly leads to the lower performance in terms
of A SNR. To further illustrate this, audio examples are provided on
our website' for both simulated as well as real acoustic conditions.

5. CONCLUSION

A T-F masking based speech enhancement method using a CNN was
proposed, and without explicit feature extraction and temporal con-
text it is suitable for online implementations. Based only on spatial
features, the proposed method showed significant enhancement per-
formance in both simulated and real acoustic conditions. However,
for both cases, we observed a significant gap in performance com-
pared to what could be achieved with the oracle IRM.

In future work, we would like to investigate the improvement
in performance that can be achieved by including temporal context
as well as spectral features. Additionally, we would also like to ex-
tend this work to deal with directional noise sources. Since the input
feature representation and the CNN architecture used here are simi-
lar to what was used in our previous work on DOA estimation [11],
it would also be interesting to investigate whether transfer learning
leads to improvement in performance for either task.

'www.audiolabs-erlangen.de/resources/2018-TWAENC-CNNSpEnh
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