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A central problem in computational vision, as well as in
understanding human motion perception, is the estimation
of object velocity by selective integration of local motion
signals. Although there have been a number of approaches
suggested for solving it, several aspects of the problem
have not yet been fully worked out. The present paper seeks
to address some of these problems. One problem concerns
the fact that moving borders and textures do not stimulate
single populations of motion sensors, tuned to detect a par-
ticular object velocity. Instead, the contours and surface
textures of moving objects stimulate many separate popu-
lations of local motion sensors tuned to different veloci-
ties. Furthermore, it is well known that human observers can
perceive motion transparency; that is, they can perceive mo-
tion simultaneously in two or more directions when a translu-
cent object moves in front of and across the surface of an-
other moving object. Thus, motion integration processes
must be able to appropriately partition those sensor re-
sponses that are associated with each moving surface,
even though they occupy the same spatial position. Other-

wise, only a single motion estimate would be associated
with the regions of transparent overlap. How does one re-
liably compute global object velocity from these esti-
mates? A second problem in motion integration concerns
the fact that many objects consist of untextured, homoge-
neous surfaces. Uniform surfaces convey no information
about motion. It is not clear, therefore, how these regions
are labeled for motion. This problem, known as the blank-
wall problem (Simoncelli, 1993), requires a motion inte-
gration process that will somehow “fill in” these silent re-
gions with motion estimates that are based on sensor
responses obtained in the border or textured regions of the
object.

In this paper, we will describe a model of motion per-
ception that attempts to deal with the velocity estimation
and blank-wall problems described above. The model con-
sists of two initially parallel segmentation processes or
pathways: a motion pathway and a luminance pathway.
The two pathways converge at an integration stage, where
static luminance information is used to iteratively guide
and constrain the final segmentation and velocity-labeling
processes. The impetus for this design comes from a num-
ber of studies that suggest that motion integration in hu-
mans depends not only on the outputs of local motion sen-
sors, but also on a variety of nonmotion cues that label
overlapping surfaces for relative depth (Shimojo, Silver-
man, & Nakayama, 1989; Trueswell & Hayhoe, 1993).
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We describe and evaluate a model of motion perception based on the integration of information from
two parallel pathways: a motion pathway and a luminance pathway. The motion pathway has two
stages. The first stage measures and pools local motion across the input animation sequence and as-
signs reliability indices to these pooled measurements. The second stage groups locations on the basis
of these measurements. In the luminance pathway, the input scene is segmented into regions on the
basis of similarities in luminance. In a subsequent integration stage, motion and luminance segments
are combined to obtain the final estimates of object motion. The neural network architecture we employ
is based on LEGION (locally excitatory globally inhibitory oscillator networks), a scheme for feature
binding and region labeling based on oscillatory correlation. Many aspects of the model are implemented
at the neural network level, whereas others are implemented at a more abstract level. We apply this
model to the computation of moving, uniformly illuminated, two-dimensional surfaces that are either
opaque or transparent. Model performance replicates a number of distinctive features of human mo-
tion perception.
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Among these are cues based on an analysis of the relative
luminances of juxtaposed regions in a scene. Stoner, Al-
bright, and Ramachandran (1990), for example, created
moving plaid stimuli by superposition of two rectangular
wave gratings moving at different orientations (see Fig-
ure 1). The gratings consisted of gray bars of identical lu-
minance moving on a white background. Stoner et al. ma-
nipulated the luminance of the regions in the plaid where
the gray bars intersect. If the luminance of the intersection
regions was consistent with phenomenal transparency, the
moving plaid dissociated into two gratings sliding trans-
parently past one another. Otherwise, the grating compo-
nents unified perceptually, and a single moving plaid was
seen. Although models of motion integration and seg-
mentation based solely on motion energy can account for
some of the phenomena observed in transparent plaids
(Wilson, Ferrera, & Yo, 1992), local motion alone cannot
account for all of the phenomena (Lindsey & Todd, 1996;
Stoner & Albright, 1996). Stoner and Albright (e.g., 1993)
have suggested that transparent plaid stimuli reveal the ac-

tion of motion integration processes that are partitioned,
or “gated,” across the two grating components if the lu-
minance analysis is consistent with global phenomenal
transparency. Otherwise, all local motion estimates are
unified into a single estimate of plaid velocity. Subsequent
studies (Lindsey & Todd, 1996; Stoner & Albright, 1996)
indicate that this gating process is not all or none and that
the interactions between motion and luminance in motion
integration may be more subtle than originally thought.
Our model attempts to capture these aspects of the motion
integration process.

A block diagram of the model, illustrating the different
components and the overall architecture, is shown in Fig-
ure 2 (see Cesmeli & Wang, 2000). The model consists of
two initially parallel segmentation processes or pathways:
one in which segmentation is based on similarities in es-
timated local motion velocity (indicated by the compo-
nents enclosed within the dotted boundary) and another
based on local static luminance information. The two path-
ways converge on an integration stage that iteratively in-
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Figure 1. Perceived motion in plaids depends on the luminance of the intersection
regions of gratings. (A) A sample plaid stimulus, consisting of two rectangular wave
gratings moving on a white background. In the original study by Stoner, Albright, and
Ramachandran (1990), the plaids were symmetrical—that is, the bars in the two grat-
ings were assigned identical gray values. Intersection luminances usually differed from
bar luminances. When intersection luminances were inconsistent with phenomenal
transparency, grating components cohered, and a single, unified moving plaid was
seen (solid arrow). However, when intersection luminances were consistent with trans-
parency, plaid dissociated into two moving gratings (dotted arrows). Lindsey and Todd
(1996) later employed asymmetric plaids, where the gratings have different lumi-
nances, as is shown in panel A. (B) A fragment of the plaid moving upward in panel A.
If motion analysis is confined to local regions of the plaid, different regions give dif-
ferent estimates of velocity. Along grating boundaries, local motions are perpendicu-
lar to either of the two local boundary orientations. Intersection points, locations P,
Q, R, and S, have local motions parallel to the plaid motion. These different estimates
generally do not depend critically on the intersection luminances in the plaid. How-
ever, perceptual integration of estimates does depend on intersection luminances. 
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teracts with the motion segmentation process. The final
image segmentation and velocity labeling are done within
the motion segmentation pathway.

The motion segmentation pathway of our model con-
sists of motion estimation, motion segmentation, and mo-
bility analysis components. Motion estimation proceeds
initially by spatiotemporal block matching, a method for
obtaining local motion estimates that is similar computa-
tionally to delay-and-compare methods for motion detec-
tion, described previously (Reichardt, 1961; van Santen &
Sperling, 1985). In addition, the motion estimation com-
ponent in our model incorporates three other functions
that have recently received considerable attention in the
computational vision literature and in studies of human
motion perception. The first of these is the slowness as-
sumption proposed by Weiss and Adelson (1997; Weiss,
Simoncelli, & Adelson, 2002), in which local motion analy-

sis seeks the slowest speed that is consistent with the mo-
tion sensor data. Another feature of the motion estimation
component of the model is that it weights local estimates
of image motion by the local statistics of samples obtained
from the front-end sensors within some neighborhood.
Estimates of local motion that exhibit high variance are
weighted less heavily in the final segmentation stages of
visual processing than are local estimates with low vari-
ance. Estimates with associated variances that exceed a
criterion are eliminated from consideration. Qian and his
colleagues (e.g., Qian, Andersen, & Adelson, 1994) have
presented evidence for the existence of these kinds of pro-
cesses in human motion perception. Finally, the motion
estimation process employs pooling regions that adjust
dynamically in size and shape to improve the reliability of
local motion estimates. Dynamic tuning is accomplished
by the component labeled Mobility Analysis in Figure 2.

Figure 2. The flow diagram of the motion model. Processing starts from the
top and proceeds downward. Following the analyses in the motion and the lu-
minance pathways, results are combined at the integration stage to refine mo-
tion estimates. Note that final segmentation is performed in the motion net-
work on the basis of the refined motion estimates. 
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This aspect of our model has two noteworthy features. First,
these dynamic processes lead to front-end motion processes
that adjust to the local orientations of contours, even
though our model does not employ a front-end that is ex-
plicitly tuned to local orientation. A second feature is that
these dynamic processes promote analysis at different spa-
tial scales. The different scales are not explicitly specified
but are determined by the scales of moving contours and
surfaces in the visual scene being analyzed.

The luminance pathway segments the scene on the basis
of local measurements of luminance. In the simulations
that we will describe below, the luminance pathway assists
motion segmentation in three ways. First, luminance seg-
mentation greatly facilitates object segmentation, on the
basis of differences across objects in their luminances.
These results can then be used to guide motion segmenta-
tion. Black and Jepson (1996) have previously made this
point. Second, luminance segmentation is important in
solving the blank-wall problem mentioned earlier: Veloc-
ity estimates propagate from boundary contours, where
the motion estimates are robust, to the interiors of homo-
geneous surfaces, on the basis of the results of the lumi-
nance segmentation analysis. Finally, luminance segmen-
tation processes are important in determining local
surface transparency and occlusion relationships at the
boundaries separating potentially overlapping surfaces.
This analysis is important not only in assessment of the
reliability of local motion estimates, but also in that it al-
lows the model to detect and deal with motion segmenta-
tion in phenomenally transparent moving patterns.

In the final stage of our model, motion and luminance
information are integrated, the local motion estimates are
refined, and final image segmentation occurs. The inte-
gration stage consists of two components. There is a
process that performs occlusion analysis, where T- and X-
junctions are used to determine occlusion and transparency
relationships. There is also a process for iteratively refin-
ing the motion estimates and filling in all regions of the
scene with estimates of object or background velocity.
These results are then fed back to the motion segmenta-
tion stage for final segmentation and velocity labeling.

The two stages of segmentation described above—
motion and luminance—are modeled using a multilayer
LEGION network. LEGION is an acronym for locally ex-
citatory, globally inhibitory oscillator networks (D. L. Wang
& Terman, 1995). LEGION is an instantiation of oscilla-
tory correlation as a method of solving the feature-binding
problem. It has been used successfully in modeling a num-
ber of aspects of visual processing. Here, we use it to
group local regions on the basis of similarities in motion
and in luminance, as well as in the final motion labeling
of segmented image elements of our model.

The present paper builds on previously published work
in which we have demonstrated a model of image seg-
mentation based on the integration of luminance and mo-
tion information (Cesmeli, Lindsey, & Wang, 1999; Ces-
meli & Wang, 2000). The original model was intended to
be used in engineering applications where the goal is to
segment video-based image sequences of natural scenes.

As such, the original model was designed to be relatively
immune to various kinds of image noise. Although the
present model retains all of the basic features of the pre-
vious version, much is new. For example, the computa-
tional strategies for the integration stage are largely new:
The occlusion and transparency analyses are new, as are
the slowness constraint and the certainty analysis embod-
ied in Equations 4 and 5, below. These additional features
of the present model permit an analysis of a broad range
of psychophysical results in humans not previously mod-
eled by us.

The remainder of the paper is organized as follows.
First, we will provide an overview of our motion integra-
tion model. This section is divided into separate discussions
of the motion segmentation pathway, the luminance seg-
mentation pathway, and the integration stage. Then we will
describe the results of simulations involving several kinds
of stimuli that illustrate how the model deals with some of
the issues in motion integration described above.

FUNCTIONAL DESCRIPTION
OF THE MODEL

Motion Segmentation Pathway
Motion estimation. In our model, the motion estima-

tion stage consists of sensors that provide local measure-
ments of motion at different velocities at each point in the
image array and of processes that make point-wise esti-
mates of velocities, on the basis of the sensor measure-
ments and the robustness of these measurements. Local
measurements of motion are obtained using temporal
block matching (Anandan, 1987), as is illustrated in Fig-
ure 3. Let NB represent a two-dimensional (2-D) block of
light sensors centered at location (i, j). For a temporal
block matcher employing two consecutive image frames,
the correlation corresponding to displacement r 5 (ri, rj),
at location (i, j) and time t can be expressed as

(1)

where I(i, j, t) is the luminance at location (i, j) in the
image frame t. The denominator of the above expression,
as in the rest of the equations, includes a small quantity, d,
to avoid division by zero. A large correlation implies a high
probability of the displacement, r 5 (ri, rj), at location 
(i, j) in time interval time t. One can view the magnitude of
a correlation for a particular displacement, r, as the re-
sponse of a detector tuned to a velocity of r/t.

We apply an adaptive temporal block matcher to three
consecutive frames, instead of two, to improve accuracy
(Singh, 1991). The correlation corresponding to displace-
ment r 5 (ri, rj) is

(2)

where ỹr(i, j, t) and ỹr(i, j, t 1 1) are the correlations at 
(i, j) between the image frames at t and t 2 1 and those at
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t 1 1 and t, as given in Equation 1. We have a total num-
ber of L 5 (2R 1 1)2 different displacements, hence ve-
locities, corresponding to a set of displacements varying
from 2R to R in the x- and y-directions. In order to make
motion estimation resistant to the effects of dynamic lu-
minance noise, we apply block matching not only to neigh-
borhoods of luminance, but also to local spatial correla-
tion surfaces. A spatial correlation surface (SCS) is obtained
by cross-correlating luminance within a block, NB, at a lo-
cation with that of a neighboring location in the same
image frame. Repeating cross-correlation for all neigh-
bors in NS around the same location, its SCS is con-
structed, whereby a relative luminance distribution is as-
sessed. SCS for all locations including the neighboring
frames are obtained similarly. Subsequently, both lumi-
nance within NB and SCS of size NS are matched across
time for different displacements, to obtain the temporal
correlation surface at a location. Two SCSs are matched
using Equation 2, and substituting SCSs for a block lumi-
nance. This results in cr(i, j, t) for displacement r 5 (ri , rj)
at location (i, j, t). Consequently, the temporal correlation
at (i, j, t) for displacement r 5 (ri, rj) is

(3)

Furthermore, we include a bias favoring “slow” motions
(Weiss & Adelson, 1997; Weiss et al., 2002). As is shown
in Figure 4A, for a location, P, along a straight border,
there are multiple new locations, P¢, along the new posi-
tion of the border. Correspondingly, the cross-correlation
surface has multiple peaks, as is illustrated in Figure 4B.
In contrast, perceived motion is unique and appears to be
in the direction perpendicular to the orientation of the bor-
der. In other words, among multiple possible estimates,
the smallest velocity is perceived. In order to capture this
preference, we multiply the cross-correlation surface,

V̂r(i, j, t), obtained using Equation 3 with a 2-D Gaussian
surface centered at zero velocity or origin (Weiss, 1998):

(4)

Owing to the shape of the Gaussian surface, the magni-
tudes of the peaks decrease as they get farther away from
the origin. Consequently, the resulting correlation surface
has its maximum at a single peak that corresponds to a
perceptually preferred estimate, as is shown in Figure 4C.
Note, however, that the magnitude of the single peak is not
drastically different from those of the others; the peak
magnitudes vary smoothly.

The displacement resulting in the maximum correlation
at a location yields the local motion estimate at that loca-
tion. An estimate is obtained at each location that satisfies
a reliability criterion, which will be discussed next.

The shape of a cross-correlation surface depends on the
underlying luminance structure at a location. A correlation
surface might have a less pronounced maximum, as in the
example of a straight border in Figure 4, implying a large
uncertainty in the estimate. However, when a location is
near a curved border or in a textured region, its correlation
surface has a sharp peak, indicating a small uncertainty in
the estimate. In order to capture these variations, we deter-
mine a certainty measure for each estimate on the basis of
the shape of its correlation surface. We define a 2-D co-
ordinate system at the maximum of a correlation surface, Ve,
corresponding to the estimate e 5 (ei, ej), as is shown in
Figure 5. The speed axis passes through the origin and e.
The direction axis is perpendicular to the speed axis at e, as
is shown in Figures 5A and 5B. Note that a one-dimensional
sharp maximum along an axis represents a better selec-
tivity along the axis. Certainty in the estimation of local
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Figure 3. Luminance within the regions indicated by two 3 3 3 neighborhoods, NB,
in two consecutive frames are cross-correlated by temporal block matching to detect
a diagonally rightward and downward motion of 1 pixel per frame. We use the term
block to refer to the small regions of visual space being analyzed across successive time
intervals. Mechanisms that perform the block-matching operation might be said to
have receptive fields that indicate the blocks over which a given mechanism operates. 
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motion is based on the sharpness of the maximum along
the direction axis. The sharper the maximum is, the better
the direction selectivity is and, thus, the more certain the
estimate is assumed to be. Dropping (i, j, t) from the ex-
pressions for convenience, the certainty, w, of the estimate
e is given by

(5)

Here, e 2 k and e 1 k are the nearest neighboring dis-
placements to e along the direction axis, corresponding to
correlations Ve 2 k and Ve 1 k, respectively, as is shown in
Figure 5B. According to Equation 5, the larger we is, the
more certain estimate e is assumed to be. Figure 6A shows
gratings moving upward behind a rectangular aperture.
The cross-correlation surfaces at locations P and Q have

quite different shapes around their peaks, corresponding
to their local motion estimates, as is depicted in Figures
6B and 6C. According to Equation 5, wP , wQ, and hence,
the estimate at Q is assigned a larger certainty than that of P.

Mobility analysis and dynamic spatial pooling. Mo-
bility analysis is used for two purposes. The first is to dy-
namically adjust the size and shape of the correlation
blocks, NB, employed by the motion sensors. Basically,
mobility analysis seeks to adjust the correlation blocks so
that they will be optimized for the analysis of regions of
the scene that are undergoing changes in luminance over
time. Regions of uniform luminance or regions that are
static have low mobility values, whereas those that contain
motion information give high mobility values. Noisy re-
gions will give intermediate mobility values. The second
reason for mobility analysis is to restrict analysis of mo-
tion to those areas that contain motion information. The
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Figure 4. (A) The aperture problem. Two positions of a gray region are shown at times t and t 1 1. Location P along
the leading edge of the gray region at time t might appear to move any location along the region’s leading edge at time 
t 1 1. In the figure, only a subset of possible new locations, P ¢s, is shown. The location closest to P is generally perceived
to be the new location. Next shown is the cross-correlation surface for the location P, (B) without or (C) with the slow-
ness assumption. Horizontal axes are velocity components along x- and y-directions. 
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correlation blocks do not grow in size without bound.
They are allowed to grow up to a certain size, in order to
increase mobility. If a threshold mobility has not been
reached by a predetermined size, those regions are ex-
cluded from the motion estimation process. For example,
in scenes containing homogeneous surfaces bounded by
luminance borders, mobility analysis confines analysis to
the borders that are undergoing changes in position over
time and adjusts the shape of the correlation blocks so that
they are aligned with those borders.

We use a mobility measure similar to that described by
Irani, Rousso, and Peleg (1994). The mobility value at
each location and time (i, j, t) is given by

(6)

where NM is a mobility neighborhood. Note that changes
are normalized by the summated local luminance. A large
value at a location indicates a high probability of motion
at that location and in its vicinity. Otherwise, the presence
of motion is uncertain, since noise could also cause a tem-

poral change in luminance. Thus, we do not obtain esti-
mates at locations with small mobility values. Note that
our reliability criterion serves two purposes. First, loca-
tions with sufficient motion evidence are identified. Sec-
ond, pooling neighborhoods, NB, at these locations are
modified so that their estimates are more accurate.

Initially, a small correlation block is assumed to be suf-
ficient for spatial pooling. When the sum of the mobility
values, Ms, and the average mobility, Ma, within the block
are large enough, matching is performed using Equa-
tion 3. When Ms is small, the block is expanded in the di-
rection that maximally increases Ms. The expansion con-
tinues until either both Ms and Ma are sufficiently large or
the block size reaches an upper limit. If the upper size
limit is reached, estimation is not performed. Otherwise,
the smallest block satisfying the former condition is used
for estimation. We use the selected block, NB, for both lu-
minance matching and SCS construction. Figure 7 illus-
trates the adaptive changes in NB for an image composed
of a horizontally moving rectangular region and a back-
ground, where both regions are homogeneous (Fig-
ure 7A). Among the three consecutive input frames, only
the middle one is depicted. Figure 7B shows the mobility
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Figure 5. The definition of our estimate certainty. (A) Shaded ellipsoid is the top
view of a crosscorrelation surface. The speed axis passes through the origin and the
estimate e 5 (ei , ej ) that corresponds to the maximum cross-correlation, Ve. The di-
rection axis is perpendicular to the speed axis and intersects the latter at the estimate,
e. (B) A side view of the cross-correlation surface. Ve 2 k and Ve 1 k correspond to the near-
est neighboring displacements of the estimate, e, along the direction axis. 
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image, where the intensity at a location is its mobility
value. In this image, the evolution of the blocks is depicted
at a location near a boundary. Initially, NB 5 5 3 5, and the
stopping condition is not met. Since boundaries and sur-
face markings of moving regions have large mobility val-
ues, NB usually extends to them. For the location consid-
ered in the image, NB expands to cover a considerable
portion of the boundary. Initially, expansion is isotropic,
and mobility is very low, since the starting point is away
from the moving edge. However, when the edge is en-
countered, expansion proceeds in a direction parallel with
the moving contour. When a location does not produce large
mobility values in its NM (e.g., a location away from bound-
aries in Figure 7B), Ms and/or Ma become small, because of
the normalization in the denominator of Equation 3. Even-
tually, NB reaches the upper limit, mobility fails to reach
threshold, and motion is not estimated at that location.

Motion segmentation. Motion segmentation is per-
formed by a multilayer network, schematized in Figure 8A.

Each layer represents the spatial distribution of motion at
one particular velocity. Figure 8A depicts four layers/
velocities. Each of the layers corresponds to a separate
LEGION network. The multilayer architecture allows mul-
tiple velocities to be active at any given time, and our model
therefore can handle motion transparency, either in the
case in which objects partially overlay or in the case in which
one object completely overlaps another.

LEGION employs the idea of oscillatory correlation,
where oscillator phases encode the bindings of local fea-
tures with global objects. In this network, the nodes con-
sist of relaxation oscillators. When stimulated, these os-
cillators alternate periodically between a brief active
phase and a somewhat longer silent phase. The short duty
cycle of the active phase means that multiple objects can
be represented by multiplexing the active phases of mul-
tiple oscillator populations within the overall relaxation
cycle of the network. The oscillators are locally coupled—
for example, four nearest neighbors—with excitatory

Figure 6. The shape of a cross-correlation surface at a location depends on its underlying luminance structure.
(A) Gratings are moving vertically upward behind a rectangular aperture. Note that location P is less spatially con-
strained than location Q. Thus, the cross-correlation surface at P shown in panel B has a less pronounced maximum than
that of Q depicted in panel C. 
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weights, whereas there is a single global inhibitory input
to all oscillators within, as well as across, layers. Terman
and Wang (1995; D. L. Wang & Terman, 1995) have
shown that LEGION networks have the property that
groups of oscillators stimulated by the same temporal
input tend to rapidly synchronize their oscillations to one
another, owing to local excitation, whereas oscillator
groups stimulated by different inputs tend to rapidly de-
synchronize, owing to global inhibition. Thus, in this net-
work, different moving objects give rise to different (al-
though possibly overlapping) populations of network
nodes oscillating at the same frequency, but in different
phases relative to one another.

A single oscillator, (i, j), of a LEGION network is de-
fined as a feedback loop between an excitatory unit xij and
an inhibitory unit yij:

(7a)

(7b)

Here, Sij denotes coupling, a and b are system parame-
ters, and r is the variance of a Gaussian noise term. The
parameter e is chosen to be a small positive number so that
Equation 7 defines a relaxation oscillator. e induces two
time scales for the relaxation oscillators: a slow scale cor-
responding to the period between active and silent phases
and a fast time scale when the oscillator is active and is
rapidly oscillating between two fixed states.

The coupling term, Sij, includes a variable called lateral
potential and coupling from neighboring oscillators and a
global inhibitor:

(8)

where Wij,kl is the connection weight from oscillator (k, l )
to oscillator (i, j), H is the Heaviside step function, Wp and
Wz are the weights for the lateral potential and the global
inhibition, respectively, and N represents a local coupling
neighborhood—for example, four nearest neighbors. W and
q are local coupling contribution and local similarity
threshold, respectively. The lateral potential is introduced
for each oscillator, to distinguish a homogeneous region
from a noisy one:

(9)

where Np is the potential neighborhood, which is larger than
N. The potential of an oscillator, which is initially set to 1,
continuously decays. Only when an oscillator is active and
has a number of active neighbors greater than qp in its Np
does its potential rise to 1. Oscillators become either leaders
or followers. Leaders are those that maintain high potential,
and the rest constitute followers. Groups of strongly cou-
pled oscillators are candidates for forming segments. How-
ever, owing to the potential term, only groups that have a
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Figure 7. An example for adaptive spatial pooling. (A) The middle frame of an input sequence in which the gray rec-
tangular region is moving to the right. (B) The mobility image for the frame in panel A, where intensities are the corre-
sponding mobility values. The evolution of the pooling blocks is depicted as white rectangles for a location near the
boundary (white dot). Note that the neighborhood extends along the boundary to encompass locations with large mo-
bility values. 
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leader can form segments. The potential neighborhood is
chosen so that only relatively large homogeneous regions
can produce leaders. Since noisy fragments tend to be small,
they are unable to produce leaders; moreover, they tend to
be isolated and, thus, cannot be recruited by other active
oscillators. As a result, oscillators corresponding to a noisy
fragment will stop oscillation after a brief initial period.
These oscillators together form the background.

Whether an oscillator becomes active at any moment
also depends on the activity of the global inhibitor, z,
which is defined by

(10)

When no oscillator is active, z decays to 0; otherwise, it
rises to 1. A leader can jump only when z , .5. Otherwise,
an oscillator can become active only if it has strong cou-
plings with currently active oscillators.

The coupling weight between two oscillators, (i, j) and
(k, l ), on a velocity layer r is determined by their tempo-
ral correlations for the corresponding displacement per
time interval Dt. Dropping time t from the expressions for
convenience, the coupling weight is given by

(11)

When oscillators have similar correlations for a particular
displacement, they are strongly coupled in the corre-
sponding velocity layer. At locations without estimates,
couplings are set to zero. We replace Sij in Equation 8 by 

where qM is a threshold and

(12)

Note that the major change is the two terms multiplying
the potential to extend the definition of leadership. The
first term ensures that only locations with large mobility
values can become leaders. The second term allows for
only a single leader within each velocity column. Owing to
the inhibitory interaction within each column, the oscilla-
tor with the largest correlation becomes a winner. Pro-
vided that a winner has sufficiently high mobility and po-
tential, it becomes a leader and starts forming its segment.
A leader recruits oscillators on its layer through local cou-
plings when they have similar correlations. As in the single-
layer LEGION network, recruited oscillators become active
simultaneously (synchronization). Because of the global
inhibition across all layers, leaders form their segments at
different times (desynchronization). Periodic activity of seg-
ments continues as long as the input stays the same.

Note that the selection of a single leader within each col-
umn does not deprive the network of representing multiple
motions at a location. An oscillator can become active if it is
a leader or a follower recruited by a leader on its layer. Since
there could be several followers in the velocity column of a
leader, more than one oscillator at a single location can be-
come active, representing different motions. This ability has
a key role in the representation of motion transparency.

The complete activity of all layers is captured in an 
output network in which each unit has the summated ac-
tivity of the corresponding velocity column. Since, at most,
one oscillator is active in each column at any time, the out-
put network displays segments in the order they become
active.
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Figure 8. Neural network architectures in our motion model.
Small ellipses represent oscillators, and the big black circle is the
global inhibitor. The global inhibitor is connected to all oscillators
in each pathway. (A) Multilayer motion network in which corre-
sponding to each velocity layer is a LEGION network. Each layer
is tuned to a particular velocity indicated by a filled square in a
small rectangular grid representing the set of velocities varying
from 2 2 to 2 in the x- and y-directions. Units interact vertically
within velocity columns and horizontally within velocity layers.
Vertical interactions are shown only for one oscillator. (B) Lumi-
nance network. Each oscillator is locally coupled with its four
nearest neighbors (reproduced from Cesmeli & Wang, 2000). 
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Luminance Segmentation Pathway
In the parallel luminance pathway, the middle frame of

the sequence analyzed in the motion pathway is processed
in terms of its luminance distribution. In this pathway,
where also a LEGION network is employed, as is depicted
in Figure 8B, we assume that each region is approximately
homogeneous. The coupling weight between two oscilla-
tors, (i, j) and (k, l ), is defined as

(13)

When locations have relatively similar luminances, a strong
coupling weight results. We employ the network model
given in Equation8 where Sij is replaced by H(Sij 2 qB) and
qB is a threshold. Strongly coupled oscillators with at least
one leader become synchronized. Oscillators correspond-
ing to regions with different luminances become active at
different times (desynchronization). When oscillators cor-
respond to textured regions, they tend not to have strong
couplings and, thus, leaders. Since they do not form seg-
ments, textured regions are distinguished from homoge-
neous ones, a property that has a significant functional
role in the subsequent integration stage.

Integration Stage
So far, the motion and the luminance pathways perform

segmentation independently. Lacking spatial luminance
variations, homogeneous regions have low mobility val-
ues and, thus, estimates only along their moving bound-
aries. Conversely, locations in textured regions are not
grouped by the luminance network, owing to their lumi-
nance variations. Thus, one purpose of the integration stage
is to facilitate segmentation of these regions of the visual
scene. In addition, the integration stage performs general
occlusion analysis, eliminates unreliable motion esti-
mates, and fills in the unlabeled regions with more reliable
motion estimates. The results are then fed forward to the
motion segmentation stage, described above, for final seg-
mentation and velocity labeling.

Occlusion analysis. Our occlusion analysis, first, clas-
sifies a given motion segment into one of the three cate-
gories. In the first category, all locations in the segment
belong to textured regions. In the second category, they
belong to untextured (homogeneous) regions. In the final
category, locations are from both textured and homoge-
neous regions. Note that, since the luminance pathway
segregates textured regions from homogeneous ones, the
classification step utilizes the segmentation results in both
pathways.

When all the locations in a motion segment belong to
textured regions, estimates in this segment are not changed.
When the majority of the locations in a motion segment
belong to multiple homogeneous regions, an occlusion re-
lationship among these regions is obtained, using T- and
X-junction analyses. We adopt a simple template-matching
technique to detect junctions, since our goal is to illustrate
the usefulness of occlusion analysis in the integration of
local motion estimates. More sophisticated techniques

have been described previously (see Liu & Wang, 2000;
Parida, Geiger, & Hummel, 1998).

Our model detects T-junctions by applying a set of 24
templates to the luminance segmentation result. Tem-
plates are composed of three regions whose borders form
a T-junction with various orientations and look like the ex-
amples shown in Figure 9A. A T-junction detected among
three homogeneous regions uniquely determines the oc-
cluding opaque region and the two occluded regions (see,
e.g., Cavanagh, 1987)). As is illustrated in Figure 9B, T-
junction analysis provides important information during
motion integration. In that figure, regions B1, B2, and B3
form a T-junction at two different points along the border
between B2 and B3. The relative positions of the regions at
the T-junctions indicate that B3 occludes B2 and B1. This
implies that local motion estimates in B1 and B2 along the
border of B3 are likely to be unreliable, owing to the mo-
tion of B3.

X-junction analysis indicates occlusion relationships
among regions where the one lying on the top is transpar-
ent (Beck, Pradzny, & Ivry, 1984; Metelli, 1974). Our model
detects X-junctions, using luminance segments and their
luminances. Unlike T-junctions, analysis of X-junctions
involves four neighboring regions and also the relation-
ship among their luminances (see Figure 10). Our model
first applies a set of templates to the luminance segmen-
tation result, to locate X-junctions. When an X-junction is
detected, the luminance relationships among the four re-
gions defining the junction are analyzed, subject to two
constraints that determine whether the junction exists be-
cause of a transparent occlusion or because of four juxta-
posed opaque regions. Let us consider the example in Fig-
ure 10B, where regions B1, B2, B3, and B4 form two X-
junctions. When B1 and B3 are opaque and B2 and B4 are the
regions forming a transparent surface, the luminances of
these regions satisfy the following two constraints (Beck
et al., 1984; Metelli, 1974):

(1) the order constraint, in which the sign of the lu-
minance change across the border of B1 and B3, 
IB1 2 IB3, is the same as that of B2 and B4, IB2 2
IB4—in other words, (IB1 2 IB3)(IB2 2 IB4) . 0;

(2) the magnitude constraint, in which regions form
ing a transparent surface, B2 and B4, have a lu-
minance change across their common border 
smaller than that of opaque regions, B1 and B3—
namely, (IB1 2 IB3) . (IB2 2 IB4). 

Having detected junctions satisfying these constraints,
region B2 is inferred to transparently overlap with regions
B3 and B1. Thus, estimates in B1, B2, and B3 along the bor-
der of B4 are assumed to be unreliable. As a result, B4 is
considered to be part of both B2 and B3, a condition that
has a role in the motion filling-in step. Note that, when no
T- or X-junction is detected among homogeneous regions,
estimates in these regions stay intact.

When locations in a motion segment are from both ho-
mogeneous and textured regions, another technique is uti-
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lized to resolve the occlusion relationship. Our model ob-
tains the occlusion relationship between textured and ho-
mogeneous regions by determining motion distributions
(histograms) in the homogeneous regions. For each neigh-
boring homogeneous region of a textured region, two mo-
tion distributions are obtained within the luminance seg-
ment of the homogeneous region. The first one includes
estimates at all locations in the luminance segment. The
second one considers only locations along the border of
the textured region. When the peak location and its mag-
nitude in the first distribution correspond to a similar peak
in the second, the textured region is assumed to occlude
the homogeneous region. Accordingly, estimates in the
homogeneous region that are along the border of the tex-
tured region are assumed to be unreliable. When the loca-
tion of the peaks is the same but their magnitudes are dif-
ferent, the two regions are assumed to be moving together,
and thus, estimates in the homogeneous region stay intact.
This process is repeated for the other neighboring homo-
geneous regions of the textured region.

In the first step of the integration stage, the estimates
that are classified to be unreliable on the basis of the oc-
clusion relationship among surfaces are eliminated.

Motion filling-in. Because our reliability criterion has
a local estimate, inner locations of homogeneous regions
do not have estimates. Following the removal of unreliable
estimates, remaining ones within each luminance seg-
ment, B, interact iteratively and result in a segment veloc-
ity, rB, given by

(14a)

and

(14b)

Here, rt
B and Wt

B are the segment velocity and the sum of
certainties, wt(i, j ), in B at iteration step t, respectively.
r(i, j) is the local estimate at location (i, j). a × b is the dot
product between vectors a and b, and ||a || is the magni-
tude of a. In Equation 14a, rt

B
is determined by weighing

the estimates in B by their certainties. In Equation 14b,
wt11(i, j) increases when r(i, j) and rt

B have a similar di-
rection. Finally, when wt11(i, j)’s in B do not change, rt

B is
assumed to have converged to its final value, rB. As a re-
sult, rB is filled in at all locations in B.
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Figure 9. T-junction detection. (A) A subset of T-junction templates used in our
model. (B) A schematic illustration of T-junction detection. On the basis of the de-
tected T-junctions, region B3 is inferred to occlude regions B1 and B2. 
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Note that some locations in a scene may initially assume
large certainties, as in the case of T-junctions. Owing to
the interaction mechanism in Equation 14, different loca-
tions vote to support their motion estimates. Thus, locations
that might have large certainties do not by themselves de-
fine the segment velocity of a luminance segment. It is the
collective decision of locations, possibly with different
certainties, that determines a segment velocity. The mo-
tion interaction in Equation 14 takes place in all lumi-
nance segments. Since textured regions, which already
have reliable estimates, do not form luminance segments,
the motion interaction does not take place in these regions.

Prior to Equation 14, we assign estimates of zero veloc-
ity to locations without estimates in luminance segments
along the image borders. This assignment is consistent
with the tendency of large homogeneous regions touching
image borders to appear stationary.

Following the integration stage, couplings in the mo-
tion network are updated on the basis of the refined esti-
mates, and the final segmentation result is obtained.

SIMULATIONS AND RESULTS

The details of our simulations, including parameter val-
ues, may be found in the Appendix.

Overlapping Opaque Rectangles
Figure 11A shows an input scene in which two vertical

rectangles are moving toward each other at the speeds of
3 and 2 pixels per frame, respectively. The horizontal one
is moving downward with a speed of 2 pixels per frame.
In the motion pathway, first, the mobility image is ob-
tained using Equation 6 and is shown in Figure 11B. Next,
local motions and their certainties are estimated at loca-
tions with large mobility values, as is depicted in Figures 11C
and 11D. The initial motion segmentation in Figure 11E is
based on these estimates. Note that missing and erroneous
estimates in occluded regions along occluding boundaries
cause inaccurate segmentation. However, the segmenta-
tion result in the luminance pathway, as shown in Fig-
ure 11F, matches well with the input scene. In the subse-
quent integration stage, the occlusion analysis is
performed using the segmentation results in the two path-
ways. Having detected T-junctions, as depicted in Fig-
ure 11G, it is found that the larger vertical rectangle oc-
cludes the background and the horizontal rectangle,
which, in turn, occludes the background and the smaller
vertical rectangle. Figures 11H and 11I show the remain-
ing estimates and their certainties after removing the ones
in the occluded regions along the occluding boundaries.
Finally, the motion interaction takes place in luminance

Figure 10. X-junction detection. (A) A subset of X-junction templates used in our
model. (B) A schematic illustration of X-junction detection. According to the detected
X-junctions, region B2 occludes regions B3 and B1 and results in an overlapping region
B4. 
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segments, filling in their locations with their resulting seg-
ment velocities, as illustrated in Figure 11J. The final seg-
mentation result, based on the refined estimates, is shown
in Figure 11K and compares well with the regions and
their motions in the input scene. Note that the homoge-
neous background is assigned zero velocity, owing to the
introduction of estimates of zero velocity along the image
borders.

The input scene in Figure 12A is composed of two
square regions. The upper region moves in the rightward
and downward direction, whereas the lower one has a left-
ward and downward motion. Both regions have the speed
of 2 pixels per frame. In the center of the scene, the re-
gions overlap transparently. Similar to the example in Fig-
ure 11, the scene is processed, and segmentation results
are obtained in the two pathways. Figures 12B and 12F

(A)

(B) (C) (D)

(F) (G) (H) (I)

(J) (K)

(E)

Figure 11. (A) An input scene composed of three opaque homogeneous regions moving in different directions. Gray
levels indicate surface luminances. (B) Mobility image. Higher mobilities appear whiter. (C–D) Estimates and certain-
ties. Higher certainties appear whiter. (E) Initial motion segmentation. Gray levels label recovered velocities. (F) Lumi-
nance segmentation. Gray levels label recovered segments. (G) In the occlusion analysis, only T-junctions are detected.
On the basis of T-junction analysis, motion estimates in occluded regions are eliminated if they fall along borders of oc-
cluding regions. (H–I) Motion estimates and certainties, following T-junction analysis. (J) Segment velocities are deter-
mined and filled in within luminance segments. (K) Final motion segmentation based on the refined estimates. As in
panel F, different segments are assigned different velocity labels. Gray levels indicate the three differently labeled regions
recovered by the model. 
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show the mobility image, motion estimates and their cer-
tainties, initial motion segmentation, and the luminance
segmentation results, respectively. In the occlusion analy-
sis, X-junctions are detected (Figure 12G), and the lower
square region is determined to overlap with the upper one
transparently. As a result, the overlapping area between
the two is inferred to belong to both regions. Figures

12H–12I show the remaining estimates and their certain-
ties, following the elimination step. Subsequently, seg-
ment velocities are determined by considering the over-
lapping area as part of both regions. These velocities are
filled in at the locations, as shown in Figure 12J. For vi-
sual clarity, estimates in the lower square region are arti-
ficially scaled down. Note that locations in the overlap-

(A)

(B) (C) (D)

(F) (G) (H) (I)

(J) (K)

(E)

Figure 12. (A) An input scene composed of transparent homogeneous regions. (B) Mobility image. (C–D) Estimates
and certainties. (E) Initial motion segmentation. (F) Luminance segmentation. (G) In the occlusion analysis, only X-
junctions are detected. (H–I) Estimates and certainties in occluded regions along the borders of occluding regions are
eliminated on the basis of the occlusion relationship obtained. (J) Segment velocities are filled in within luminance seg-
ments. Note that the common region is assigned two different motions. (K) Final motion segmentation based on the re-
fined estimates. Owing to transparency, resulting segments overlap in the center of the region and, hence, are shown in
two separate images. 
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ping area are assigned both velocities. Thus, the final re-
sult includes two overlapping square segments, as de-
picted in Figure 12K.

Homogeneous Region Surrounded
by Textured Region

In Figure 13, we consider a scene composed of a homo-
geneous region surrounded by textured regions. In a sta-
tionary textured background, a homogeneous rectangular

annulus is moving to the right while the inner textured re-
gion is moving in the opposite direction, as is shown in
Figure 13A. Similar to the preceding examples, first, the
mobility image is obtained in the motion pathway and is
shown in Figure 13B. Next, local motions and their cer-
tainties are estimated at locations with large mobility val-
ues, as depicted in Figures 13C and 13D. As is shown in
Figure 13E, the initial motion segmentation is based on
these estimates and is not accurate, since the annular re-

Figure 13. (A) An input scene composed of textured and homogeneous regions. (B) Mobility image. (C–D) Estimates
and certainties. (E) Initial motion segmentation. (F) Luminance segmentation. (G–H) On the basis of the occlusion re-
lationship obtained, unreliable estimates and their certainties are eliminated. (I) Common velocity of the luminance seg-
ment is filled in within its locations. (J) Final motion segmentation based on the refined estimates. 

(A)

(B) (C) (D)

(F) (G) (H)

(I) (J)

(E)
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gion includes erroneous estimates along the boundary of
the inner region. However, the segmentation result in the
luminance pathway, as shown in Figure 13F, captures the
annular region well, owing to its homogeneous luminance.
In the subsequent integration stage, the occlusion analysis
is performed using these segmentation results. Since the
motion segment includes locations from both textured and
homogeneous regions, two types of motion distributions
are obtained in the homogeneous annular region. On the
basis of these distributions, the inner textured region and

the annular region are determined to be moving indepen-
dently. As a result, estimates in the annular region along
the boundary of the inner textured region are assumed to
be unreliable and are eliminated. Figures 13G and 13H
show the remaining estimates and their certainties. Fi-
nally, the motion interaction takes place in the luminance
segment and fills in its locations with the resulting seg-
ment velocity, as is illustrated in Figure 13I. Note that es-
timates in the textured regions stay the same. The final
segmentation result, based on the refined estimates, is
shown in Figure 13J and compares well with the regions
and their motions in the input scene.

The Barber Pole Illusion
An intriguing visual illusion occurs when gratings

move behind an aperture (Wallach, 1935). Namely, the
perceived direction of motion of a grating can be modified
merely by changing the shape of the aperture. Gratings in
Figures 14A and 14E move vertically upward behind a cir-
cular and a rectangular aperture, respectively, at a speed of
5 pixels per frame. When the aperture is circular, local es-
timates are, in general, in a direction perpendicular to the
orientation of gratings, as is shown in Figure 14B. In con-
trast, estimates within the rectangular aperture show vari-
ations in direction, as is depicted in Figure 14F. Estimates
closer to the aperture border are in a direction parallel to
the border orientation, whereas the others are in a direc-
tion perpendicular to the grating orientation. Certainties in
both aperture types are similar as shown in Figures 14C
and 14G. Estimates closer to the aperture borders have
larger certainties than those of inner locations. Following
the initial segmentations, our model detects T-junctions in
the occlusion analysis.

When we assume that the aperture borders are intrinsic
boundaries of the gratings by ignoring T-junctions, we ob-
tain the distributions of segment velocities in Figures 14D
and 14H, corresponding to the circular and the rectangu-
lar apertures, respectively. In the case in which the aper-
ture is circular, gratings appear to move in a direction per-
pendicular to their orientation. However, when the aperture
is rectangular, except for the locations closer to the upper-
left and the lower-right corners of the aperture, gratings
appear to move parallel to the longer axis of the aperture—
namely, vertically upward—mimicking the barber pole il-
lusion (Wallach, 1935). Note that motion distributions at
locations closer to the upper-left and lower-right corners
are also consistent with human perception. When we as-
sume that the aperture borders are extrinsic, the gratings
appear to move in a direction perpendicular to their ori-
entation in both cases. The model results obtained with
both intrinsic and extrinsic borders are consistent with
studies of human motion perception (Shimojo et al., 1989;
Trueswell & Hayhoe, 1993).

Plaids
A square plaid can be created by the spatial repetition

of a simple tile pattern, as is shown in Figure 15A. A char-
acteristic parameter of gratings and, hence, plaids is their
duty cycle, which is defined as the ratio l1/(l1 1 l2). In gen-

Figure 14. The barber pole illusion. Gratings are moving ver-
tically upward, when the aperture is (A–D) circular and (E–H)
rectangular. (B and F) Initial local motion estimates. (C and
G) Their certainties. (D and H) Final motion distributions. De-
spite having the same motion, gratings appear to move differently
depending on the aperture shape. 
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eral, all four regions—namely, a, b, c, and d—can have
different luminances. When plaids have the same lumi-
nance in regions b and d, we refer to them as symmetric
plaids. Otherwise, they are called asymmetric plaids (see
Figures 18A–20A).

Recently, an interesting phenomenon has been ob-
served with plaids, where their perceived motion changes
in a predicted way under the influence of the luminance in
region c, Lc, (Lindsey & Todd, 1996; Stoner et al., 1990).
In their studies, Lindsey and Todd (1996) and Stoner et al.
reported that plaids are more likely to be perceived to have
noncoherent motion when region c appears to be formed
by the transparent overlapping of regions b and d, as is de-
scribed in the introduction of this paper. In order to inves-
tigate this phenomenon, we apply our model to plaid stim-
uli composed of three consecutive frames. A frame of a
symmetric plaid sequence, for instance, is shown in Fig-
ure 15. In our results, plaid (coherent) motion is 5 pixels
per frame in the upward direction. When we apply our
model, the reliability criterion allows estimates only along
the grating boundaries (cf. Figure 1). Owing to the homo-
geneity in regions, the entire scene is segmented into a
collection of parallelograms, such as regions, a, b, c, and
d, in the luminance pathway. Next, the initial motion seg-
mentation is obtained, and the occlusion analysis is per-
formed. Depending on the presence of X-junctions, un-
reliable estimates are eliminated. The inclusion of detected

T-junctions formed by the gratings and the aperture bor-
der does not affect our results, and so we ignore them in
the subsequent analysis. Because of the spatial regularity
in the segments and the proximity between regions having
the same luminance, we introduce a small extension into
the motion interaction mechanism. This extension does
not affect earlier results in this paper and is not imple-
mented for the sake of simplicity. According to the exten-
sion, instead of considering a single segment, local motion
estimates in a set of segments having the same luminance
are allowed to interact. For instance, all segments corre-
sponding to region as are treated as a single segment in
Equation 14. Having obtained refined motion estimates in
all luminance segments, we define a probability measure
in terms of area, in order to compare the model output
with the psychophysical data. For this probability, the total
area of the regions having their refined motion estimates
in noncoherent motion directions is calculated and nor-
malized by the area of the circular aperture. Accordingly,
when the majority of the segments have noncoherent mo-
tion, their total area becomes large, and so does the prob-
ability of noncoherent motion for the input plaid stimu-
lus.

We first analyze a set of symmetric plaids. Three exam-
ples from this set are shown in Figure 16A. Here, La 5 255,
Lb 5 Ld 5 100, and from left to right, Lc is 20, 60, and 120,
respectively. In all plots, as in Figure 16B, the vertical axis

Figure 15. (A) A generic tile to form a square plaid. Each region is a paral-
lelogram (e.g., region b has sides of length l1 and l2). (B) One frame of a sym-
metric plaid motion sequence. In our results, plaids move vertically upward
behind a circular aperture. 
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shows the probability of noncoherent motion perception.
In Figure 16B, the horizontal axis represents the lumi-
nance in region c, Lc. For each point in the plot, we use the
corresponding Lc in the input plaid and apply our model
to calculate the probability. In all plots, including this one,
the solid line corresponds to the model output. The dotted
line in Figure 16B represents the corresponding psy-
chophysical data from the study by Stoner et al. (1990).
Examining the plot, we observe that a noncoherent mo-
tion is more frequently perceived when Lb

2/La # Lc # La—
namely, 39 # Lc # 100 with our values. This result is
quantitatively consistent with the psychophysical data. In
general, the model results in three major groups of local
motion estimates in plaids. The first one is composed of
estimates in the coherent motion direction, whereas the
other two are those in the two noncoherent motion direc-
tions (cf. Figure 1A). Estimates in the intersection regions
of gratings are dominated by the former group, whereas
those in the remaining regions are the mixture of all
groups. Especially, estimates at locations in the vicinity of
the intersection regions are in the coherent motion direc-
tion. Thus, when an X-junction is detected, estimates at
these locations are determined to belong to an occluded

surface and are eliminated, reducing the total number of
locations supporting the coherent motion. As a result, the
probability of noncoherent motion perception in occluded
regions increases. However, in the absence of X-junctions,
no estimate is eliminated, and thus, estimates in the co-
herent motion direction are more likely to determine the
overall motion perception.

In the second set, we consider the variations in the duty
cycle of symmetric plaids. In Figure 17A, plaids with duty
cycles of 30%, 50%, and 70% are shown from left to right,
respectively. There is no psychophysical data available in
the literature assessing the role of the duty cycle quantita-
tively. However, it has been observed that an increase in
the duty cycle decreases the probability of noncoherent
motion perception (Stoner & Albright, 1996). In Fig-
ure 17B, the horizontal axis is the duty cycle, whereas La 5
255, Lb 5 Ld 5 100, and Lc 5 60. Our result is consistent
with the qualitative observation as shown in Figure 17B.
Recall that there are three groups of local motion esti-
mates in plaids and that estimates in the intersection re-
gions mostly support the coherent motion perception. As
a result of increasing duty cycles, the intersection regions
become larger, and so does the support for the coherent

Figure 16. (A) Three different symmetric plaids where La 5 255, Lb 5 Ld 5 100, and, from
left to right, Lc is 20, 60, and 120, respectively. (B) Resulting final motion types. The vertical
axis is the probability of noncoherent motion, whereas the horizontal axis is Lc varying be-
tween 10 and 140. The solid line represents the model result, whereas the dotted line is the
psychophysical data from Stoner, Albright, and Ramachandran (1990). Consistent with the
psychophysical data, when Lc falls into the range of transparent interpretation (39 # Lc ,
100), noncoherent motion is favored. 
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motion, leading to a decrease in the probability of nonco-
herent motion perception.

In order to investigate further the role of luminance in
the motion perception of plaids in more detail, we apply
the model to the set of asymmetric plaids used by Lindsey
and Todd (1996). These plaids are formed by two narrow
gratings having the duty cycle of 30%. The gratings are at
the angles of 622.5º with the plaid motion direction. Fol-
lowing the procedure used by Lindsey and Todd, we use
two different palettes—namely, P1 and P2—in the con-
struction of these plaids. The luminances in P1 were 0,
128, 192, and 255, and those in P2 were 0, 64, 128, and
255. In addition, we have three different categories based
on the number of possible transparent interpretations they
allow. The first one (Category I) has a luminance config-
uration that allows two different transparent interpreta-
tions (Figure 18A). In Category I, both of the narrow grat-
ings satisfy the transparency constraints, to appear on top
of the other regions. The second category (Category II)
has only one transparent interpretation, in which the grat-
ing with the darker luminance appears to be in the front
(Figure 19A). In the final category (Category III), trans-
parency is not observed (Figure 20A).

We specify configurations in each category with a four-
letter string—for example, abdc, dacb. Each letter corre-
sponds to one luminance, and luminances are in ascend-

ing order in a string. For each category, there is a prototype
configuration. According to each prototype, luminances
from the palettes are reordered. For example, in Cate-
gory I, the prototype is abdc, and the reordered lumi-
nances are 0, 128, 255, and 192 for P1 and 0, 64, 255, and
128 for P2. Next, reordered luminances are assigned to the
regions starting from region a and visit other regions
clockwise in Figure 15A. Having defined the prototype
configuration, three more configurations are obtained by
rotating luminance assignments one region at a time in the
clockwise direction. For example, the next configuration
for Category I, using P1, has the luminances of 192, 0,
128, and 255 for regions a, b, c, and d, respectively. Since
the letters in the string should be in ascending order, this
configuration uniquely corresponds to bcad. Similarly,
the prototype of Category II is abcd, and that of Cate-
gory III is acbd. Since there are three categories, where
each of them has four different configurations for each
palette, and there are two palettes, we have a total of 24
different plaid stimuli.

Having obtained the input sets, three consecutive frames
from each plaid sequence are fed into our system. Per-
forming the area analysis for the probability calculation
of noncoherent motion perception, we obtain the plots given
in Figures 18–20. In each plot, the horizontal axis is the
luminance configuration. The left and the right plots in

Figure 17. (A) Symmetric plaids with three different duty cycles of 30%, 50%, and 70%
are shown from left to right, respectively. (B) The model results in a decreasing probability
of noncoherent motion as the duty cycle increases. 
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each figure correspond to P1 and P2, respectively. In all
plots, the dotted line is the psychophysical data from
Lindsey and Todd (1996).

Note that in Category I, there are two different possible
transparency interpretations. Among them, we select the
interpretation that assumes the brighter grating to be in the
front. This decision is consistent with human perception
and with the depth-from-contrast cue presented in Egusa
(1982). According to this cue, the regions that contrast
more with their background tend to be seen as closer in
depth than do regions with lesser contrast. By comparing
the plots in Figure 18B, we observe that the model result
is in good agreement with the data. Except for the config-
uration cdba, all the configurations have a relatively high
probability of resulting in noncoherent perception. In fact,
the model is able to capture the difference between P1 and
P2 as reflected in the model response to the configuration
cdba.

Similarly, in Category II—except, perhaps, for the con-
figuration abcd with P1—the model predicts the general
characteristics of the data as shown in Figure 19B. Finally,
in Category III, the model captures the configuration de-
pendence in the data, as is depicted in Figure 20B, although

the model overestimates the probability of noncoherent
motion for configuration acbd. This mismatch between
data and simulation for this configuration suggests that
the model may underestimate the importance of static
transparency cues in plaid motion analysis. As is shown in
Figure 20A, the highest contrast border in this configura-
tion corresponds to the nonoverlapping portion of one of
the plaid bars. The high contrast of this region apparently
provides a powerful diagonal motion component (sug-
gesting noncoherent motion) that effectively overrides the
results of X-junction analysis (suggesting coherent mo-
tion). One way in which the results could have been im-
proved would have been to adjust the threshold qs for the
sum of mobility values or Ms, which determines the spa-
tial pooling neighborhood, NB, or both. However, we chose
to conduct all simulations with the same set of model pa-
rameters; there were no free parameters to manipulate
across the various experiments simulated in this paper.

Despite these imperfections in the model, it can be seen
that it is able to capture the general behavior in the psy-
chophysical data for plaid motion. Instead of producing a
response curve composed solely of points indicating a
probability of one or zero, it also generates probabilities

Figure 18. (A) An example plaid stimulus (abdc) from Category I, which is obtained using P1. (B) The left and
right plots correspond to P1 and P2, respectively. The vertical axis is the probability of noncoherent motion per-
ception, and the horizontal axis is the luminance configuration. The solid line represents the model result, whereas
the dotted line is the psychophysical data from Lindsey and Todd (1996). Our model captures the dependence of
noncoherent motion perception on the luminance configuration in Category I. 
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of intermediate values, and the resulting response curve
generally conforms to the data obtained psychophysically
from human subjects.

DISCUSSION

Over the past 15 years, a number of models of motion
perception have been proposed for the recovery of object
motion. These models generally have focused on the use
of local motion signals as the principal source of infor-
mation in the solution to this problem (e.g., Giese, 1999;
Hildreth, 1983; Simoncelli & Heeger, 1998; Wilson et al.,
1992; Wilson & Kim, 1994). We have previously presented
such a model, based on a neural network, that has proved
successful in the recovery of object motion from movies
of natural scenes (Cesmeli & Wang, 2000). In those
scenes, surfaces are textured, and local motion estimates
often provide reasonable first approximations to actual
object motions. However, as we pointed out in the intro-
duction of the present paper, there are a number of aspects
of motion perception that cannot be dealt with without in-
corporating an additional analysis of the surface proper-

ties of objects whose patterns of motions are being deter-
mined. In the present paper, we have focused on two of
these aspects: the so-called blank-wall problem and mo-
tion in overlapping transparent surfaces. Our general ap-
proach to this problem has been to segment surface infor-
mation early in the visual processing chain and to integrate
this information with that obtained from low-level motion
sensors in a parallel channel similar to one we have de-
scribed previously. Our approach has been motivated not
only by its intrinsic plausibility, but also by a number of
lines of evidence suggesting that the human visual system
performs an analysis of object surfaces early in the visual
processing chain (Nakayama, He, & Shimojo, 1995).

Our analysis of multiple overlapping rectangles mov-
ing in different directions in the Overlapping Opaque Rec-
tangles section above (see Figure 11) illustrates the bene-
fits of integrating luminance and motion information
when object surfaces are uniform in luminance. Figure 11E
shows that motion segmentation alone leads to very poor
recovery of the three individual moving surfaces. How-
ever, using information from the luminance segments not
only facilitates filling-in of homogeneous regions with ve-

Figure 19. (A) An example plaid stimulus (abcd ) from Category II, which is obtained using P1. (B) The left and
right plots correspond to P1 and P2 , respectively. The vertical axis is the probability of noncoherent motion per-
ception, and the horizontal axis is the luminance configuration. The solid line represents the model result, whereas
the dotted line is the psychophysical data from Lindsey and Todd (1996). Our model, in general, captures the de-
pendence of noncoherent motion perception on the luminance configuration. However, it overestimates the prob-
ability for the configuration abcd, as compared with that of the data in Category II. 
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locity estimates obtained at the region boundaries; the lu-
minance segments also support analysis of occlusion re-
lationships among overlapping moving objects, and this
analysis facilitates the assignments of velocities to both
locally occluding and occluded regions of these objects.
The analysis of occlusion relationships also allows the
model to deal with motion transparency, as in the case of
the two overlapping rectangles illustrated in Figure 12.

Another important feature of the present model is dy-
namic pooling and the use of certainty measures of local
motion in these pooling processes. The need for some form
of spatiotemporal pooling of motion responses has been
appreciated for a long time. Direct psychophysical evi-
dence for pooling has come from studies of the ability of
humans to perceive the average speed and direction of dy-
namic random dot arrays in which dots assume a range of
speeds and/or directions (e.g., Hiris & Blake, 1995; Wata-
maniuk & Duchon, 1992; Watamaniuk & Sekuler, 1992;
Watamaniuk, Sekuler, & Williams, 1989; Williams &
Sekuler, 1984).

Evidence for pooling also has come from studies that
show large improvements in motion detection thresholds
when stimulus size and duration are increased (e.g., Fred-
ericksen, Verstraten, & van de Grind, 1993, 1994a, 1994b,

1994c; Lindsey & Todd, 1998; van Doorn & Koenderink,
1982, 1984).

A number of previous models have employed fixed
pooling regions (e.g., Black & Anandan, 1996; Black &
Jepson, 1996; Enkelmann, 1988; Horn & Schunck, 1981).
Other models have employed cooperative and competitive
interactions among front-end motion sensors differing in
spatiotemporal tuning and location (e.g., Chey, Grossberg,
& Mingolla, 1997; Giese, 1999; Grzywacz & Yuille, 1995;
Marshall, 1991; Nowlan & Sejnowski, 1995; J. Y. A. Wang
& Adelson, 1994; R. Wang, 1997; Weber & Malik, 1997;
Weiss & Adelson, 1996; Wilson & Kim, 1994). Few mod-
els of motion processing have used reliability measures of
local motion estimation to guide pooling. One approach
similar to the present one is that described by Nowlan and
Seijnowski (1994, 1995). In their model, however, relia-
bility measures are based on training of a network; we
compute these measures explicitly from the responses of
low-level motion sensors.

In the model we have presented, dynamic pooling oc-
curs at two different sites: very early in motion processing,
as estimates of local motion are being determined, and
again at the level of motion integration, as motion and lu-
minance information are being integrated (see Figure 2).

Figure 20. (A) An example plaid stimulus (acbd ) from Category III, which is obtained using P1. (B) The left and
right two plots correspond to P1 and P2 , respectively. The vertical axis is probability of noncoherent motion per-
ception, and the horizontal axis is the luminance configuration. The solid line represents the model result, whereas
the dotted line is the psychophysical data from Lindsey and Todd (1996). Our model, in general, captures the
shape of the probability of noncoherent motion perception in Category III. 



1214 CESMELI, LINDSEY, AND WANG

Pooling at the early stage of local motion estimation dy-
namically adjusts the sizes and shapes of the correlation
blocks employed by motion sensors. In this way, motion
estimation is tuned to the sizes and shapes of the image re-
gions being analyzed. As we noted earlier, an interesting
and important consequence of this pooling strategy is the
appearance of classical orientation tuning of motion sen-
sors in image regions containing objects with straight con-
tours, even though the sensors are not themselves intrinsi-
cally orientation tuned.

In calculating flow fields for gratings moving within
rectangular apertures, we have shown how sensor responses
and certainty measures of these responses interact at the
integration stage of the model. There are two sources of
sensor responses to these stimuli: those obtained from the
grating bars and those obtained from the intersections of
grating bars with the boundaries of the aperture, which we
referred to as edge terminators. The grating bars generate
large responses from many motion sensors, and the re-
sulting distributions of velocities are broad, owing to the
aperture problem. Motion estimation of the edge termina-
tors, on the other hand, does not suffer from the aperture
problem, and although these features generate modest re-
sponses, the distribution of responses is considerably nar-
rower than those obtained for the grating bars. Responses
from these terminators are, therefore, weighted relatively
more heavily than those from the grating bars. The com-
puted flow field for a given grating/aperture configuration
will depend on interactions among the relative responses
to the grating edges and the edge terminators and the rel-
ative reliabilities of these various measurements. When
the grating aperture is circularly symmetric, motion esti-
mates from both grating contours and line terminators
yield estimates of motion distributed around a direction
perpendicular to the grating orientation, and the calcu-
lated flow field reflects this average direction. However,
when the aperture is rectangular in shape with an aspect
ratio that deviates markedly from 1, the high-reliability
motion estimates obtained from the line terminators aug-
ment one another and, because of their relatively high
weights, dominate the pooling process, and the computed
flow field is directed parallel to the long side of the aper-
ture, except near the corners, where motion estimates
from the line terminators from adjacent sides of the aper-
ture give conflicting velocity estimates. In these corner re-
gions, the calculated flow field is perpendicular to the
grating bars, a result that is consistent with human motion
perception (Wallach, 1935). Similar results have been ob-
tained from a model of motion reported by Chey et al.
(1997). In that model, line terminators are treated as spe-
cial features that guide attentive motion perception. In our
model, the line terminators are accorded special status
only by virtue of their providing high-reliability local es-
timates of object motion.

Our calculations of model responses to plaids have il-
lustrated how all three principal features of the present
model—dynamic pooling, motion reliability estimation,

and motion–luminance integration—interact. X-junction
analysis performed on the output of the luminance seg-
mentation pathway is used to detect the static transparency
cues and, if transparency is detected, the implied depth
order of the surfaces being analyzed. Edge intersections in
the regions of putative transparent occlusion generate mo-
tion responses with modest/high reliability; grating edges
produce high-total-response/low-reliability motion re-
sponses. Each of these aspects of the low-level analysis—
X-junction detection and edge and intersection motion—
interact to predict the likelihoods of transparent motion
perception as functions of the relative grating luminances
and grating duty cycles. In general, the predicted relation-
ships are remarkably close to those obtained from human
observers, especially considering the simplicity of the mo-
tion model we employ.

In developing our model of motion perception, we have
been motivated by the goal of providing a neural network
account of motion perception. Such an approach is in-
tended to mimic interactions occurring among neurons in
humans and, therefore, to provide a biologically plausible
simulation of human motion perception. Nonetheless, the
principal constraint in the development of the present ver-
sion of the model has been the perceptual data on human
subjects and the computational adequacy of our model in
accounting for these phenomena. Therefore, our approach
to modeling motion perception is distinctly different from
the approaches of others who have based their models
solely on the properties of neurons known to be sensitive
to motion (e.g., Simoncelli & Heeger, 1998). Thus, al-
though we claim that the basic functions of our model
components mimic basic processes involved in human
motion perception, we do not claim a one-to-one corre-
spondence between model structures and functions, on the
one hand, and biological structures and functions, on the
other. In this regard, several aspects of the present model
require further comment. First, unlike most modern, bio-
logically oriented models of human motion perception,
we employ low-level motion sensors based on temporal
block matching, rather than orientation-tuned motion en-
ergy detectors. Block matching was chosen because it is
less intensive computationally than motion energy mea-
surement, and we do not think that our approach to mod-
eling human motion perception depends critically on our
choice of low-level local motion sensors. Neither block
matching nor local motion energy computations are suffi-
cient for the computation of object motion, which requires
additional pooling processes. Our model focuses on the
processes involved in pooling low-level motion signals
derived from multiple sensor populations, rather than on
the specifics of how these low-level signals are obtained.

Second, our image segmentation pathway is based on
local analyzers that measure static local luminance. An al-
ternative approach has been described by Grossberg and
Mingolla (1985, 1987). In their scheme, surface lumi-
nance is recovered by two interacting subprocesses: one
that recovers object boundaries and another that integrates
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surface features within those regions enclosed by those
boundaries. This scheme has been successful in account-
ing for a wide variety of phenomena involving the per-
ceptual organization of luminance- and color-defined
boundaries. Although we expect that these additional fea-
tures could allow our model to deal with a broader range
of stimuli than we have examined in this paper, we do not
expect these additions to alter the conclusions of the pres-
ent study.

Third, we have not included a module for computing
second-order motion in this paper. Such a module could
be incorporated following standard models proposed by
others. In these models, a pointwise nonlinearity is ap-
plied to the image data, and the results are low-pass fil-
tered. First-order motion analysis is then performed on the
filtered images (e.g., Lu & Sperling, 1995).

Fourth, all of our simulations involved analysis of
three-frame animation sequences, which we chose for
computational convenience. In general, the corresponding
psychophysical data that we modeled were often obtained
from longer animation sequences; for example, Lindsey
and Todd’s (1996) results simulated in the preceding sec-
tion of our paper were obtained from 45-frame sequences.
We could have extended the input integration time (as well
as reduce the input gain) in our model to more closely
match the time scale of the original experiments. Clearly,
some aspects of plaid motion processing depend on stim-
ulus duration, particularly when stimulus contrast is low.
For example, Yo and Wilson (1992) have shown that the
perceived direction of coherent motion in plaids is dura-
tion dependent, presumably owing to different latencies in
the processing of first- and second-order motion compo-
nents in the stimulus. The results of our simulations sug-
gest that the model, in some cases, may slightly underes-
timate the contribution of static transparency cues in
moving plaid perception. Perhaps, in human subjects, this
contribution depends on stimulus duration in a way not
captured by the present model.

Fifth, our model was designed to be relatively immune
to the effects of dynamic noise of the kind encountered in
high-quality video recordings of natural scenes (see Ces-
meli & Wang, 2000). To this end, the motion estimation
and mobility analysis components of the model attach
greater weights to those regions of the scene that show low
variance in motion signals across limited ranges of space
and time. Because spatiotemporal integration is limited,
the model’s immunity to dynamic noise will be as well. In
comparing this aspect of the model with human psy-
chophysical performance, we note that while motion de-
tection shows remarkable noise immunity, the perception
of object boundaries between an object and its back-
ground does not show the same immunity to dynamic
noise (see, e.g., Beverley & Regan, 1984), presumably be-
cause of tradeoffs in spatiotemporal integration that de-
termine noise immunity and spatiotemporal resolution.

The final aspect of our model that requires some com-
ment is our decision to base the neural network portions
of the model on oscillatory correlation. The advantages of

this approach are that not only does it support cooperative
and competitive interactions among the various elements
in the model that lead to image and motion segmentation
and transparency, it also explicitly gives a solution to the
binding problem—that is, the unification of responses in
many different neuronal elements into groups of neurons
that represent objects. In our model, groups of neurons
representing an object fire in synchrony, and different ob-
jects are represented by different groups of neurons that
desynchronize from each other. Although the relevance of
oscillatory correlation to solving the binding problem is
debatable, there is a growing body of neurobiological ev-
idence that supports our approach (Buzsaki, Llinas, Singer,
Berthoz, & Christen, 1994; Castelo-Branco, Goebel, Neu-
enschwander, & Singer, 2000; Eckhorn et al., 1988; Gray,
Konig, Engel, & Singer, 1989; Keil, Mueller, Ray, Gru-
ber, & Elbert, 1999; Livingstone, 1996). Furthermore, our
approach is consistent with psychophysical results show-
ing that spatiotemporal synchrony gives rise to perceptual
organization (Elliot & Muller, 1988; Lee & Blake, 1999;
Usher & Donnelly, 1998).

In conclusion, we have described and evaluated a model
of motion perception based on the integration of motion
and luminance information obtained in two parallel seg-
mentation pathways. This approach allows the model to
deal not only with situations involving textured objects
and backgrounds, but also with a variety of situations in-
volving uniformly luminant surfaces.
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APPENDIX

We demonstrate the performance of our model with synthetic image sequences and visual stim-
uli used in psychophysical studies. All the image sequences have three frames with a size of 
256 3 256, and we show only the middle frame as the input scene. We choose NM 5 NS 5 5 3 5,
which is also the initial size of NB. The thresholds for Ms, Ma, and the maximum edge length for
the block size are qs 5 1.0, qa 5 0.1, and em 5 15, respectively. The maximum displacement and
the threshold set are R 5 10 and (qM,1, qM,2, qB) 5 (20, 10, 10), respectively, for all the scenes. The
standard deviation of 2-D Gaussian in Equation 4, s, is selected to have the maximum displace-
ment, R, within its halfbandwidth—namely, s $ R/Ö [2ln(2)], resulting in s > 8.5. The size of T-
and X-junction templates in the integration stage is 7 3 7. The template set for T-junctions includes
eight different orientations for a T-configuration. There are three different T-configurations in
which the vertical part of the T makes three different angles—that is, 45º, 90º, 135º—with the roof
of the T. These conditions are tuned to detect the configurations in which the boundary of the oc-
cluded surface makes these three different angles with the boundary of the occluding surface. In
the detection of X-junctions, note that each of the four regions could be the area where the over-
lapping surface is. Similar to T-junctions, we allow three different angles between the two oblique
lines forming the shape X—that is, 45º, 90º, and 135º. Thus, we obtain 12 different configurations.
Noting that a particular configuration detected by 1 of the 12 detectors could also occur when this
configuration is rotated around the common corner of the four regions, we obtained three addi-
tional versions for each of the 12 configurations, resulting in 48 templates in the X-junction set.

In the simulation of LEGION networks, an algorithmic version (D. L. Wang & Terman, 1997)
is employed for computational efficiency, for which only the following parameters are needed:
local coupling neighborhood, N 5 3 3 3, and its contribution, W 5 1.0; the local similarity thresh-
old, q 5 2.0; the potential neighborhood, Np 5 7 3 7, and its contribution, Wp 5 0.4; the relevant
threshold, qp 5 36.75; and finally, the contribution of global inhibitor, Wz 5 1.0. We adjust qM,1
and qM,2, the thresholds for the initial and the final segmentations in the motion network, respec-
tively, and qB, that of the luminance network. We require that qM ,1 and qB initially do not group lo-
cations with significantly different motion and luminance. Since refined estimates allow for a
sharper distinction, the selection is relatively easier.

Finally, for better visualization, estimates in needle diagrams are displayed after a spatial sub-
sampling by a factor of 10 in all results.
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