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Abstract—The ability of listeners to identify two simultaneously presented vowels can be improved by introducing a
difference in fundamental frequency (FO) between the vowels. We propose an explanation for this phenomenon in the
form of a computational model of concurrent sound segregation, which is motivated by neurophysiological evidence of
oscillatory firing activity in the auditory cortex and thalamus. More specifically, the model represents the perceptual
grouping of auditory frequency channels as synchronised (phase-locked zero phase lag) oscillations in a neural network.
Computer simulations on a vowel set used in psychophysical studies confirm that the model qualitatively matches the
performance of human listeners; vowel identification performance increases with increasing difference in FO. Addition-
ally, the model is able to replicate other findings relating to the perception of harmonic complexes in which one
component is mistuned. © 1997 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

In his influential book, Bregman (1990) likens the per-
ceptual organisation of sound to an auditory scene ana-
lysis, which takes place in two conceptual stages. In the
first stage, the acoustic mixture reaching the ears is
broken down into a collection of ‘‘sensory elements’’.
Secondly, elements that are likely to have arisen from the
same environmental source are grouped to form a per-
ceptual structure (stream) which can be interpreted by
higher-level processes.

Although auditory scene analysis explains why certain
acoustic features are combined to form perceptual
wholes, it does not address the issue of how such groups
of features are represented and formed in the brain. A
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similar question has been debated in the context of other
modalities (particularly the visual system) and is known
as the binding problem. A solution to the binding
problem has been proposed by von der Malsburg,
1981; von der Malsburg & Schneider, 1986; see also
Milner, 1974). He suggests that the responses of feature
detecting cells might be bound together by the synchrony
of their firing activity. In this scheme, neuronal groups
with temporally synchronised activity represent a single
perceptual object, whereas neuronal groups with desyn-
chronised activity represent different objects. Von der
Malsburg’s theory has gained support from physiological
studies, which report synchronised oscillations in the
olfactory and visual systems (Eckhorn et al., 1988;
Gray et al.,, 1989; Freeman, 1991; Singer & Gray,
1995; Gray & McCormick, 1996).

In addition, there is growing evidence that acoustic
stimuli evoke synchronised oscillations in the auditory
system. Galambos et al. (1981) have demonstrated that
40 Hz oscillations occur in auditory potentials evoked by
a tone (see also Madler & Poppel, 1987; Mikeld & Hari,
1987). Using magnetic field tomography, Llinds and his
colleagues have demonstrated that acoustic stimuli elicit
synchronised oscillations in the auditory cortex and
thalamus (Ribary et al., 1991; Llinds & Ribary, 1993;
see also Barth & MacDonald, 1996). Indeed, direct evi-
dence for the role of neural oscillations in auditory
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grouping has recently come from a study by Joliot et al.
(1994). They presented awake human subjects with a
stimulus consisting of two clicks, separated by a time
interval. For clicks presented less than 12—15 ms apart,
listeners reported a single source and simultaneous mag-
netoencephalography (MEG) recordings from the audi-
tory cortex showed a single 40 Hz response. The
perceived timbre in this condition was different to that
of an isolated click, indicating that the two stimuli had
been fused into a single percept. For interstimulus
intervals greater than 12-15 ms, listeners reported two
clicks and MEG recordings showed a second 40 Hz
wave. Hence it appears that 40 Hz oscillatory activity
in the auditory cortex is associated with temporal group-
ing of auditory stimuli.

These findings have prompted a number of computa-
tional modelling studies which address the role of neural
oscillations in auditory organisation (Wang, 1994, 1996,
1997; Baird, 1996; Brown & Cooke, 1997). Here we
present a neural oscillator model with an emphasis on
one particular aspect of auditory perceptual grouping; the
segregation of concurrent vowel sounds (‘‘double
vowels’’) with different fundamental frequencies (FOs).
The following section of this paper gives a detailed
description of the neural model. In Section 3, simulations
are described which replicate findings from psycho-
physical studies of double vowel perception, and other
studies relating to the perception of harmonic complexes
in which one component is mistuned. We conclude with
a discussion of the limitations of the model, and its rela-
tionship with other computational studies.

2. STRUCTURE OF THE MODEL

The model consists of four main stages: peripheral audi-
tory processing, periodicity detection, neural oscillator
network and vowel recognition (Figure 1). Digitally
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recorded signals, sampled at a frequency of 10 kHz
with 16 bit resolution, provide the input to the model.

2.1. Peripheral Auditory Processing

The frequency selective properties of the basilar mem-
brane are modelled by a bank of 64 gammatone filters
(Patterson et al., 1988), each of which simulates the fre-
quency response of a point along the cochlear partition.
The impulse response of a gammatone filter of order n
and centre frequency fy Hz is given by

gy=1"" lexp( - 2wbt)cosLafyt + ¢) e

where ¢ is phase and b is related to bandwidth. Here, we
use a digital implementation of the fourth order gamma-
tone filter proposed by Cooke (1993). The filters are dis-
tributed in frequency according to their bandwidths,
which increase quasi-logarithmically with increasing
centre frequency. Specifically, the centre frequencies of
the filters are equally spaced on the equivalent rectangu-
lar bandwidth (ERB) scale of Glasberg and Moore (1990)
between centre frequencies of 80 Hz and 4000 Hz. Outer
and middle ear resonances are modelled by adjusting the
gains of the gammatone filters according to the BS 3383
standard for equal loudness contours (BSI, 1988).
Subsequently, the output of each filter channel is pro-
cessed by the Meddis model of hair cell transduction
(Meddis, 1986, 1988). The Meddis model converts the
gammatone filter output into a probabilistic representa-
tion of firing activity in the auditory nerve, incorporating
well-known effects such as saturation and adaptation.

2.2. Periodicity Analysis

A key finding in psychophysical studies of double vowel
perception is that identification performance improves
when there is a difference in FO between the two vowels

Gating of peripheral channels

Digital signal

Aot >

Cochlear Hair cell
filtering transduction

Correlogram

Global
inhibitor

Oscillator array

Vowel recogniser «——

Minner—mke-all nerworkj

Oscillator synchronisation

FIGURE 1. Schematic diagram of the auditory model. The synchronisation of neural oscillators is determined by the periodicity informa-
tion in the correlogram; in turn, oscillator activity gates the input to the correlogram from each peripheral channel.
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(Scheffers, 1983; Assmann & Summerfield, 1990;
Chalikia & Bregman, 1989). This is usually interpreted
as evidence that the auditory system groups together
spectral regions that exhibit the same periodicity
(Bregman, 1990). Accordingly, the second stage of our
model involves the extraction of periodicity information
from simulated auditory nerve firing patterns.

Periodicity analysis is achieved in the model by com-
puting a correlogram (Slaney & Lyon, 1990; Meddis &
Hewitt, 1992; Brown & Cooke, 1994). The correlogram
is one of a class of pitch models in which periodicity
information is combined across resolved and unresolved
harmonic regions (see also Moore, 1997). Models of this
type are able to account for many classical pitch
phenomena, and have previously been applied to the
segregation of concurrent periodic sounds with some
success (Summerfield et al., 1990; Brown & Cooke,
1992; Meddis & Hewitt, 1992).

A correlogram is formed by computing a running auto-
correlation of the simulated auditory nerve firing patterns
at each centre frequency. For an auditory filter channel
with centre frequency f, the running autocorrelation
a(t,f, ) at time ¢ and lag 7 is given by

at.for)= D pi—T.Hpt—T—1e" ™ @
i=0
where the time constant Q is 25 ms, p(z,f) is the prob-

ability of a spike occurring in auditory channel f at time ¢
(derived from the Meddis hair cell model) and
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Autocorrelation functions are computed for values of 7
between 0 ms and 12.5 ms in steps of the sampling period
At. The correlogram is therefore a two-dimensional
representation, in which channel centre frequency and
autocorrelation lag are represented on orthogonal axes
(Figure 2). Since the spectral profile of a vowel is roughly
constant over time, subsequent stages of the model are
based on the processing of a single correlogram frame.
Section 4.3 discusses possible extensions to the model
which would enable it to segregate time-varying sound
sources.

2.3. Oscillator Network

Grouping is represented by the correlated pattern of
firing activity in a network of neural oscillators; specifi-
cally, a group of frequency channels is indicated by syn-
chronisation of the corresponding group of oscillators.
The building block of the neural network is a single
oscillator, which consists of a reciprocally connected
excitatory unit x and inhibitory unit y (Wang &
Terman, 1995; Terman & Wang, 1995; Wang, 1996,
1997). Formally,

%=3x—x3+2—y+1+s+p (4a)
dy
5=8[‘Y(1 + tanh(x/3)) — yI. (4b)

Here, I represents the external input to the oscillator, S is
the overall coupling from other oscillators in the
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FIGURE 2. (A) Correlogram (top) for the vowel /ah/ (FO = 100 Hz). The summary correlogram (bottom) exhibits a large peak at the
autocorrelation lag corresponding to the period of the vowel (10 ms). (B} Correlogram (top) and summary correlogram (bottom) for a
mixture of two vowels, /ah/ (FO = 100 Hz) and /er/ (FO = 126 Hz). Peaks occur in the summary function at the period of each vowel (10 ms

and 7.9 ms, respectively).
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FIGURE 3. Behaviour of a single oscillator in the (x,y) phase plane. (A) When /> 0, the system gives rise to a stable limit cycle (WXY2). The
limit cycle consists of rapid transitions between an active phase (WX) and a silent phase (Y2) of near steady state behaviour. (B) When

1 < 0 the system is not oscillatory; it exhibits a stable fixed point (P).

network, €, y and (3 are parameters and p is a Gaussian
noise term. The principal function of the noise is to assist
the desynchronisation of different input patterns.

The behaviour of a single oscillator is best illustrated
by considering the solutions of the system (4) in the (x,y)
phase plane. The x-nullcline (i.e. dx/dt = 0) of (4) is a
cubic curve, while the y-nullcline (i.e. dy/dt = 0) is a
sigmoid curve. For I > 0 and with & sufficiently small,
(4) gives rise to a stable limit cycle (Figure 3A). This
periodic solution alternates between a phase of relatively
high values of x and a phase of relatively low values of x,
called the active phase and silent phase respectively.
These two phases exhibit near steady state behaviour,
whereas the transition between the phases is rapid.
Periodic motion of this type is known as relaxation (or
discontinuous) oscillation (van der Pol, 1926). We use
relaxation oscillators because it has been found recently
that a network of such oscillators with local excitatory
coupling and global inhibitory coupling rapidly achieves
both synchronisation within a block of oscillators that
may correspond to a stream or object, and desynchroni-
sation between different blocks (Terman & Wang, 1995;
Wang & Terman, 1995). For I < 0, there is no periodic
solution and the system exhibits a stable fixed point
(Figure 3B).

Physiologically, the system (4) may be interpreted as a
model of action potential generation in a single neuron,
where the state variable x corresponds to the membrane
potential of the neuron, and y corresponds to a state
variable which describes the activation or inactivation
of ion channels and evolves on a slow time scale. Indeed,
(4) is closely related to the simple model of action poten-
tial generation proposed by FitzHugh (1961) (see also
Nagumo et al., 1962). However, the form of (4b)
allows the relative durations of the active and silent

phases to be specified; a larger value of vy gives a rela-
tively shorter active phase. Thus, (4) has a dimension of
flexibility that is absent from the FitzHugh—Nagumo
equations (Terman & Wang, 1995). Alternatively, the
oscillator model may be interpreted as a mean field
approximation to a network of interacting excitatory
and inhibitory neurons. In this case, x and y represent
the average firing activity of a group of excitatory cells
and a group of inhibitory cells, respectively (Wilson &
Cowan, 1972).

Each oscillator receives an excitatory input from its
own frequency channel. In addition, each oscillator is
coupled with a global inhibitor, which receives excitation
from every oscillator and feeds back inhibition. The pur-
pose of the global inhibitor is to ensure that weakly
coupled groups of oscillators desynchronise to form dif-
ferent streams; in other words, it introduces an element of
competition in the oscillator network so that only rela-
tively strong coupling leads to phase synchronisation.

A key concept in our model is the use of neural oscil-
lators as ‘‘gates’” on their corresponding peripheral
channels (Figure 1). Specifically, the activity in a peri-
pheral channel contributes to the percept of a sound
source only when the corresponding oscillator is in its
active phase (i.e. the ‘‘gate’’ on the channel is ‘‘open’’).
Separation of concurrent sounds is therefore achieved by
selectively gating groups of peripheral channels. Initi-
ally, all oscillators are synchronised, so that the gates
on all channels are open. Starting from this state, simula-
tion proceeds as an autonomous, dynamical process;
however, it is convenient to consider the behaviour of
the network in three stages, as described below.

2.3.1. Formation of a Summary Correlogram from
Channels with Open Gates. For a periodic stimulus,
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each channel of the correlogram exhibits a peak at an
autocorrelation lag corresponding to the stimulus
period. These peaks line up across frequency, generating
a distinctive ‘‘spine’’ (upper panel of Figure 2A). A con-
venient way of emphasising this pitch-related structure is
to sum the channels of the correlogram across frequency,
giving a ‘‘pooled’’ or ‘‘summary’’ correlogram. The
summary correlogram exhibits a large peak at a lag cor-
responding to the period of the stimulus (lower panel of
Figure 2A). Indeed, Slaney and Lyon (1990) and Meddis
and Hewitt (1991) have demonstrated that there is good
agreement between the position of the peak in the sum-
mary correlogram and perceived pitch. Further, the
height of the peak in the summary correlogram can be
interpreted as a measure of pitch strength. For mixtures
of concurrent sound sources with different FOs, the sum-
mary correlogram exhibits a peak at the period of each
source (Figure 2B).

In our model, a summary correlogram is formed only
from those channels of the correlogram whose gates are
currently open (i.e. whose corresponding oscillators are
in their active phase). Formally, the summary correlo-
gram s(t, 7) at time ¢ and lag 7 is given by

st,7y= . [H(s —8p)a(t,f, 7)) 5)
f

where x; is the activity of the oscillator connected to
peripheral channel f, 6, is a threshold and H represents
the Heaviside step function.

2.3.2. Pitch Determination. Since the activity in the cor-
relogram may reflect the presence of more than one pitch,
we assume that the largest peak in the summary correlo-
gram corresponds to the pitch period of the most domi-
nant source. Selection of the largest peak in the summary
correlogram can be easily computed by a winner-take-all
network, as shown in Figure 1 (see Grossberg, 1976, for
one formulation of winner-take-all dynamics). However,
to reduce the computational load in the current imple-
mentation we simply compute the dominant pitch period
d(#) by applying a maximum selector. Note that when
applying winner-take-all, the search is confined to auto-
correlation lags between 12.5ms and 4.5 ms (corre-
sponding to a pitch range of 80 Hz to 222 Hz). This is
acceptable for the vowel stimuli used in this study, which
have FOs near to 100 Hz.

2.3.3. Channel Selection. In the last stage of a simulation
cycle, groups of correlogram channels are identified
which are likely to belong to the same vowel, and the
input to the oscillator network is updated. This promotes
the phase synchronisation of the oscillators which repre-
sent the group. For example, consider Figure 2B which
shows the correlogram for a mixture of vowels /ah/ (FO =
100 Hz) and /er/ (FO = 126 Hz). Peaks occur in the sum-
mary correlogram at the period of each vowel, and
groups of channel autocorrelation functions are visible
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which are dominated by one of these two periods. Hence,
the spectral components of the dominant vowel can be
isolated by selecting those channels of the correlogram
which exhibit a peak at the period identified in Section
2.3.2 above. Formally, let P be the set of channels such
that for each channel f, f € P if and only if

at.f,d()a(,f,0)> ¢ ©

The autocorrelation function a(z,f, 0) corresponds to the
energy in channel f of the correlogram. Hence, (6) repre-
sents ‘‘peak detection’’ on the basis of an energy thresh-
old; if the peak height in the autocorrelation function at
the delay d(f) exceeds some proportion of the energy in
the channel then it is considered a peak. Here we use
¢=0.8. Our observations suggest that (6) is more reli-
able than other methods of peak detection, since the low-
frequency channels of the correlogram tend to exhibit
very broad peaks.

Oscillators corresponding to P receive an additional
input, which maintains their synchrony and causes (via
the global inhibitor) their desynchronisation from oscil-
lators which do not receive an additional input. After a
short time, the group of oscillators that are currently in
their active phase move to their silent phase, causing the
‘“‘gates’’ to close on the corresponding channels of the
correlogram. Similarly, other oscillators that were pre-
viously inhibited (in their silent phase) now jump to their
active phase, causing a different set of gates in the
correlogram to open. The three stages above continue
autonomously so long as input is presented to the net-
work. Essentially, then, the dynamics of our neural
network embody a process in which initial estimates of
the peripheral channels belonging to each sound source
are refined during alternating simulation cycles. At the
end of this grouping process, the pattern of synchronisa-
tion in the oscillator network indicates the frequency
channels that belong to each vowel. For a stimulus con-
sisting of a single vowel, nearly all oscillators are phase
synchronised.

Regarding the number of oscillation cycles needed to
achieve synchronisation, Terman and Wang (1995) have
proven that the number of oscillation cycles a general
network of the relaxation oscillators described in (4)
requires to achieve synchronisation within each segment
and desynchronisation between different segments is less
than or equal to the number of segments. In our oscillator
array, which is a simplified version of theirs, their result
implies that the system takes at most two cycles to seg-
regate two groups of frequency channels, each corre-
sponding to the components of a different FO. Our
simulation results presented in Section 3 are consistent
with their analysis.

2.4. Vowel Recogniser

In the last stage of the model, the groups of correlogram
channels represented in the oscillator network are
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classified by a simple vowel recogniser. This allows the
performance of the model to be compared with the recog-
nition performance of human listeners. The segregation
mechanism used here does not provide a suitable input
for conventional vowel recognition schemes which
match observed spectra against templates, since holes
appear in the auditory spectrum when the gates for a
channel are closed. Instead, a modified recognition
scheme proposed by Meddis and Hewitt (1992) is
employed, which uses periodicity information from the
summary correlogram rather than spectral information.

Meddis and Hewitt make a distinction between the
timbre region and the pitch region of a summary corre-
logram. The timbre region lies between autocorrelation
delays of 45ms and 0.1 ms (222 Hz-10kHz), and
contains information about the high frequency compo-
nents (‘‘timbre’’) of the stimulus. This region of the
summary correlogram is used for vowel recognition.
The pitch region extends from autocorrelation delays of
12.5-4.5 ms (80-222 Hz), and indicates the likely pitches
in the stimulus. The pitch region is excluded from the
recognition process in order to prevent the FO of a vowel
from influencing its categorisation by the recogniser.

A template is formed for each vowel by computing the
correlograms for six presentations of the vowel with dif-
ferent FOs. The six timbre regions obtained in this way
are averaged to form the template, which is then normal-
ised to have zero mean and unity variance. Vowel recog-
nition proceeds by matching an input pattern against each
template, using an inverse Euclidean distance metric

-1
m=— [1+ Z (ri—vi)2:|

Here, r; is the ith element of the normalised template and
v; is the ith element of the timbre region to be classified,
which is also normalised to have zero mean and unity
variance. The best matching template (i.e. the template
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that gives the largest value of m) is taken to be the vowel
identity.

After the network has converged to a stable pattern of
oscillations, two successive bursts of oscillations are
classified by the vowel recogniser. If the stimulus con-
sists of two vowels with the same FO, the two bursts of
oscillations will be identical, and therefore represent the
same group of auditory channels. Otherwise, the two
bursts of oscillations represent two different groups of
channels (the same vowel with two different FOs, or two
different vowels with different FOs).

2.5. Example

Before presenting the results of simulations using the
neural network oscillator model, we consider an
example. Figure 4 shows the output from the model at
some of the processing stages described above, for an
input consisting of two concurrent vowels, /ah/ (FO =
100 Hz) and /er/ (FO = 126 Hz). For this mixture, in
which the FOs of the vowels are separated by four semi-
tones, listeners would be expected to perform well in
identifying the two constituent vowels.

Figure 4A shows the activity x in each channel of the
oscillator network. Oscillators initially have the same
phase, but quickly segregate into a repeating pattern of
two phase-synchronised groups. Each group of oscilla-
tions represents a set of channels in the correlogram,
shown in panels B and C of the figure. For each group
of channels, the position of the largest peak in the pitch
region of the summary correlogram indicates the period
of the vowel, and the profile of the timbre region indi-
cates the vowel identity. The channels shown in Figure
4B have centre frequencies close to the five formant
frequencies of the /ah/ (F1 = 650 Hz, F2 = 950 Hz, F3
= 2950 Hz, F4 = 3300 Hz, F5 = 3850 Hz). Note also
that the summary correlogram for this group of channels
has a large peak at 10 ms in its pitch region, which
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FIGURE 4. Behaviour of the model for a stimulus consisting of the double vowel /ah/ (FO = 100 Hz) and /er/ (FO = 126 Hz). Neurons in the
oscillator network (A) phase synchronise to form two groups, corresponding to correlogram channels which define the formants of the

two vowels (B and C).
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correctly indicates that the FO of the vowel /ah/ is
100 Hz. Similarly, the channels in Figure 4C correspond
to the first three formants of the vowel /er/ (F1 = 450 Hz,
F2 = 1250 Hz, F3 = 2560 Hz), and the FO is correctly
indicated as 126 Hz.

3. SIMULATIONS

The evaluation described below compares the perfor-
mance of the model with that of human listeners for
the same double vowel identification task, using listeners’
data from a study by Assmann & Summerfield (1990).
Two versions of the model were investigated; one in
which auditory channels were allocated to a single
vowel, and a version in which the same auditory channel
could be allocated to both vowels. We also demonstrate
that the model can replicate findings from harmonic
mistuning experiments (Moore et al., 1985).

3.1. Segregation of Double Vowels

Assmann & Summerfield (1990) studied the perception
of double vowels using a set of five British English
monophthongs; /a/, /i/, /e/, fu/ and /5/ (here, we refer to
them as /ah/, /ee/, /er/, /oo/ and /or/ respectively. The
vowels had a duration of 200 ms, and were synthesised
using the Klatt (1980) cascade formant synthesis formant
algorithm at a sampling frequency of 10 kHz. Each
vowel was synthesised on six FOs, corresponding to dif-
ferences of 0, 0.25, 0.5, 1, 2 and 4 semitones from
100 Hz. Listeners were presented with pairs of vowels,
and asked to identify both vowels in the mixture. In each
trial, one vowel always had a FO of 100 Hz, and the other
constituent could be any vowel on any FO. In total, there
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were 150 stimuli (5 vowels X 5 vowels X 6 fundamental
frequencies).

The results from the Assmann and Summerfield
(1990) study are shown in Figure 5. For vowel pairs
with the same FO, listeners were able to correctly identify
both vowels at well above the chance level of 6.7%.
Identification performance increased with increasing dif-
ference in FO between the two vowels, reaching a plateau
at a separation of two semitones.

Figure 5 also shows the vowel identification perfor-
mance of the neural oscillator model, for the same set of
150 stimuli used by Assmann and Summerfield. The
vowels were presented in pairs, and the response of the
model was accepted as correct only if it correctly identi-
fied both constituent vowels.With the exception of the 0
and 0.25 semitone conditions, the vowel identification
performance of the model is comparable to human
listeners. More importantly, however, it shows the
required pattern of response; an increase in vowel iden-
tification performance with increasing difference in FO.

In the simulations described so far, the oscillations in
the neural network partition the channels of the correlo-
gram into mutually exclusive sets; in other words, the
energy in each frequency channel is assigned only to
one source. The model therefore exploits a ‘‘principle
of exclusive allocation’’ (Bregman, 1990). Although
there are many examples of the application of this
principle in perceptual organisation there are also some
exceptions, many of which occur in the perception of
speech sounds (e.g. the ‘“‘duplex’ perception of speech;
Rand, 1974; Liberman et al., 1981). It is therefore instruc-
tive to consider the vowel identification performance of our
model when joint allocation of channels is permitted.

In the oscillator network we have explained so far, the
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FIGURE 5. Percentage of vowel pairs for which both vowels were correctly identified. Results are shown for model simulations with
exclusive allocation (@) and joint allocation (E3) of channel energy, together with data for listeners (J) from the study by Assmann and
Summerfield (1990).
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model allocates energy in the 500 Hz region (arrowed) to both
vowels.

oscillators oscillate with the same frequency, and their
phases signal the identity of each group (vowel). To
allow joint allocation of peripheral channels, we require
that the oscillators stimulated by shared channels oscil-
late with a frequency double that of the oscillators stimu-
lated by non-shared channels (Figure 6). Such behaviour
can be achieved by introducing a stable fixed point on the
higher branch of the y-nullcline of (4) (see Figure 3) and
the use of a slow inhibition mechanism. The purpose of
the new fixed point is to reduce the phase variations
between oscillators corresponding to shared channels
and those corresponding to non-shared channels. On
the other hand, slow inhibition is stimulated when any
oscillator jumps to the active phase, but it takes some
time to be activated. When the slow inhibition mechan-
ism is activated, it causes all of the oscillators in the
active phase to simultaneously jump down to the silent
phase. We note that slow inhibition has been used fre-
quently in biologically realistic modelling (for example,
see Wang & Rinzel, 1992; Terman & Lee, 1996).

The performance of the joint allocation model on
Assmann and Summerfield’s (1990) stimuli is shown in
Figure 5. Although the model shows the correct pattern
of response, its vowel identification is worse than that of
listeners, and is also below the performance of the exclu-
sive allocation version of the model. This problem is
most likely due to spurious peaks in the high-frequency
channels of the correlogram, which are not related to the
period of either vowel (the problem of ‘‘overlapping
harmonics’’; see also Summerfield et al., 1990; Brown,
1992). With exclusive allocation, there is a 50% chance
that channels with spurious peaks will be inappropriately
grouped depending on which FO is detected first (if the
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channel is first allocated to the appropriate FO, it cannot
then be allocated to the second F0). When joint allocation
is permitted, however, such channels will always be
inappropriately grouped.

3.2. Segregation of a Mistuned Harmonic from a
Complex Tone

The segregation of concurrent harmonic sounds has been
investigated by Moore et al. (1985) using a mistuning
paradigm. They presented listeners with a harmonic
complex in which one component was mistuned by a
percentage of its frequency, so that it was no longer an
integer multiple of the FO of the complex. For small
amounts of mistuning (up to 3% of the harmonic fre-
quency), the mistuned harmonic made a normal contri-
bution to the perceived pitch of the complex. However,
the contribution of the mistuned harmonic decreased
with progressively larger mistuning, until at 8% it
made no contribution to the pitch of the complex.

Since our model is intended to explain the grouping of
acoustic components by common FO, we would expect it
to be able to replicate the findings from mistuning
experiments. Figure 7 shows the activity in the oscillator
network elicited by two stimuli used in the study of
Moore et al. (1985). The stimuli had a duration of
90 ms, and consisted of the first 12 harmonics of a
155 Hz fundamental. In some conditions the 4th partial
was mistuned by a percentage of its harmonic frequency.
For a stimulus with no mistuning (Figure 7A), the
responses of most oscillators in the network are phase
synchronised. The only channels excluded from the
group are those in which there is no significant energy
in the stimulus; specifically, those above 2200 Hz and
channels in the region of 230 Hz (which lie between
the first and second harmonics of the complex). How-
ever, in the 8% mistuned condition (Figure 7B) channels
close to the frequency of the mistuned harmonic
(670 Hz) form a separate perceptual group, as indicated
by the different phase of their oscillations. The switch
from one group of oscillations to two groups occurs at a
mistuning of 4%, which is in good agreement with
psychophysical findings; Moore et al. (1985) report that
listeners hear a harmonic that is mistuned by more than
3% as a separate sound source.

In addition, the model partially accounts for the pat-
tern of change in perceived pitch reported by listeners for
increasing amounts of mistuning. For mistunings of 3%
or less, one group of oscillations is observed; therefore,
the channels close to the frequency of the fourth har-
monic are included in the computation of the summary
correlogram. This causes the position of the peak in the
summary function to shift, which corresponds to the
change in pitch reported by listeners. For a mistuning
of 8%, the 4th harmonic is represented by a separate
group of oscillations (Figure 7b). Therefore, the
mistuned harmonic makes no contribution to the pitch
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FIGURE 7. (A) Activity in the oscillator network elicited by a stimulus consisting of the first 12 harmonics of a 155 Hz fundamental. (B)
Oscillator activity for the same stimulus, but with the 4th harmonic mistuned by 8% of its frequency. Neurons which receive input from
channels close to the frequency of the mistuned harmonic (670 Hz) do not synchronise with the remaining oscillators, indicating that the
mistuned harmonic is segregated from the other components of the stimulus.

of the complex (i.e. it is excluded from the computation
of the summary correlogram), as reported by listeners.
However, the 4th harmonic is also represented by a
separate pattern of oscillations for mistunings between
4% and 8%. Since exclusive allocation is enforced in the
version of the model used here, the model predicts that
the 4th harmonic will make no contribution to the pitch
of such stimuli; it will be heard as a separate source. In
contrast, listeners report that the mistuned harmonic is
heard as a separate source and makes a contribution to
the pitch; this is therefore a violation of the principle of
exclusive allocation. A version of the model which per-
mits the sharing of channels between sources would be
compatible with the experimental findings; however, it
was noted in Section 3.1 that such a scheme performed
poorly in our vowel segregation experiments. Clearly,
the relative merits of exclusive and joint allocation
schemes should be a topic for further investigation.

4. GENERAL DISCUSSION

We have presented a neural oscillator model of auditory
grouping, which is able to replicate listeners’ perfor-
mance in double vowel identification and mistuning
experiments with good accuracy. In this section we
discuss the compatibility of the model with other psycho-
physical findings. Additionally, we consider the limita-
tions of the model, and discuss its relationship with other
models of double vowel segregation.

4.1. Compatibility with Psychophysical Findings

An important aspect of our model is the manner in which
neural oscillators act as gates for their corresponding
frequency channels; when the oscillator moves to its

active phase , the ‘‘gate’’ opens and allows the energy
in the channel to contribute to the percept of the sound
source. Such gating mechanisms have been criticised as
too rigid by Bregman (1992), on the grounds that they
only allow the energy in an auditory channel to be allo-
cated to a single perceptual stream. We have demon-
strated in Section 3.1 that an explanation of auditory
grouping based on gating does not imply that groups of
channels must be mutually exclusive; the relaxation
oscillators used here may be permitted to synchronise
with more than one group of oscillations. However, we
also found that the joint allocation version of our model
provided a poorer match to listeners’ vowel identification
performance than one in which exclusive allocation of
channels is enforced, a finding which is compatible with
the results of other modelling studies (Assmann &
Summerfield, 1990; Meddis & Hewitt, 1992; Summer-
field et al., 1990). This finding is intriguing, given that
joint allocation of auditory channels is required to model
other well known effects in speech perception, such as
the ‘‘duplex’’ perception of speech sounds (Rand, 1974;
Liberman et al., 1981).

Recently, McKeown and Patterson (1995) have inves-
tigated the effect of stimulus duration on the identifica-
tion of double vowels. They presented listeners with
double vowels varying in duration between one and
eight waveform cycles, and found that the ability of lis-
teners to identify both vowels improved with increasing
stimulus duration. However, this improvement was
almost completely due to improved identification of
one of the vowels (the ‘‘nondominant’” vowel); even
for a duration of one waveform cycle, identification of
the other (‘‘dominant’’) vowel in the mixture was near
ceiling performance. Since very short stimuli do not
elicit a clear pitch percept, this result appears to be
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incompatible with models of double vowel segregation
which require FO estimates for both vowels (Assmann &
Summerfield, 1990; de Cheveigné, 1993) or for the domi-
nant vowel only (Meddis & Hewitt, 1992).

Although our model employs information about the FO
of both vowels, it is not in conflict with McKeown and
Patterson’s data. In conditions where the stimulus dura-
tion is very short, there is no meaningful pitch informa-
tion in the summary correlogram; as a result, all
oscillators remain synchronised and every channel of
the correlogram contributes to the computation of the
timbre region. Hence, the oscillator network reports a
single group, and the timbre region for this group will
resemble the dominant vowel rather than the nondomi-
nant vowel. In other words, for very short stimulus dura-
tions only the dominant vowel is correctly identified. For
stimuli of more than one cycle duration, pitch informa-
tion is available in the summary correlogram. Since the
pitch estimates are more accurate for longer stimuli, the
model predicts that segregation of the nondominant
vowel should improve with increasing stimulus duration.
Indeed, simulations on a subset of Mckeown and Patter-
son’s stimuli indicate that our model is able to replicate
their findings; the dominant vowel is correctly identified
for all stimulus durations, whereas the nondominant
vowel is correctly identified only for durations of five
or six waveform cycles.

4.2. Relationship with Other Modelling Studies

There are some similarities between our model and that
of Meddis and Hewitt (1992). In particular, we use their
vowel recognition scheme, which is based on template
matching of the short-lag periodicities (‘‘timbre-
region’’) of the summary correlogram. However, there
are also many differences in our two approaches. First,
the Meddis and Hewitt scheme is an algorithmic descrip-
tion of the vowel segregation process, which does not
appeal to specific neural mechanisms; in contrast, the
neural oscillator model proposed here is an autonomous,
dynamical system supported by recent findings in neuro-
biology. A second difference is that FO estimation is a
one pass mechanism in the Meddis and Hewitt scheme,
whereas in our model the FO of each source is progres-
sively refined. Further, the Meddis and Hewitt scheme
only determines the FO of the dominant vowel, whereas
our model determines the FOs of both vowels. Our
approach finds better support in psychophysical
literature. Summerfield et al. (1990) note that listeners
can often hear both pitches in a double vowel, and are
able to indicate which vowel has the higher pitch and
which has the lower pitch. Similarly, Beerends and
Houtsma (1989) have found that listeners are able to
correctly identify the pitches of concurrent two-tone
complexes, for differences in FO of two semitones or
more. It seems unlikely, then, that segregation is based
only on the FO of the dominant vowel.
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As noted above, the model achieves the segregation of
sound sources by a dynamical process; the set of chan-
nels and FO are refined for each source in alternation,
until there is no further change in the state of the network.
Other approaches to source separation which progres-
sively refine the FO estimate for each source have been
described by a number of workers (Parsons, 1976; Schef-
fers, 1983; Lea, 1992; de Cheveigné, 1993), although not
in the context of a neural network architecture. These
approaches share the same rationale as the model
described here; namely, that it is easier to estimate the
characteristics of one source in an acoustic mixture when
the other competing sources are attenuated. In the model
proposed here, attenuation occurs when the group of
oscillators representing a source move to their silent
phase; this closes the ‘‘gates’ on the corresponding
group of auditory frequency channels.

4.3. Limitations of the Model

Currently, the model does not address the representation
of time in the auditory system; the input to the neural
oscillator network is a single correlogram frame. While
this is acceptable for the limited situations with steady
state-stimuli considered here, it is clearly inadequate for
the segregation of acoustic signals which vary in time-
frequency. One possible approach to time representation
is to create a time axis in a two-dimensional oscillator
network using a system of delay lines (Wang, 1996,
1997). Alternatively, an inertia could be introduced to
the oscillator network, which would maintain a pattern
of oscillations after the pattern was turned off (Horn &
Usher, 1992); such a mechanism would act as a short
term memory.

Another limitation of the model is the arbitrary divi-
sion between the pitch and timbre regions of the sum-
mary correlogram (see also Meddis & Hewitt, 1992). For
example, the voice pitch of a female speaker is likely to
exceed the 222 Hz limit of the pitch region, and cause a
peak in the timbre region. A possible solution to this
problem is to perform vowel recognition in the spectral
domain with a template matching algorithm which per-
forms robustly when there are gaps in the input spectrum
(caused by the gates on some channels being closed).
Recent work on the partial matching of speech signals
(Cooke et al., 1994) suggests that this is a viable
approach.

5. CONCLUSION

A computational model of the perceptual segregation of
concurrent vowels has been proposed. Groups of audi-
tory channels which define the spectrum of each vowel
are represented by the pattern or temporal synchronisa-
tion in a network of neural oscillators. The model is able
to replicate the finding that listeners’ identification of
concurrent vowels improves with increasing difference
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in FO between the vowels. Additionally, the model is able
to replicate the results of harmonic mistuning experi-
ments. Future work will extend the model to include a
representation of time, thus allowing the segregation of
acoustic signals that vary in time-frequency.
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