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Abstract. The term auditory scene analysis (ASA) refers to the ability of human
listeners to form perceptual representations of the constituent sources in an acoustic
mixture, as in the well-known ‘cocktail party’ effect. Accordingly, computational
auditory scene analysis (CASA) is the field of study which attempts to replicate
ASA in machines. Some CASA systems are closely modelled on the known stages
of auditory processing, whereas others adopt a more functional approach. However,
all are broadly based on the principles underlying the perception and organisation
of sound by human listeners, and in this respect they differ from ICA and other
approaches to sound separation. In this paper, we review the principles underlying
ASA and show how they can be implemented in CASA systems. We also consider
the link between CASA and automatic speech recognition, and draw distinctions
between the CASA and ICA approaches.

16.1 Introduction

Imagine a recording of a busy party, in which you can hear voices, music and
other environmental sounds. How might a computational system process this
recording in order to segregate the voice of a particular speaker from the other
sources? Independent component analysis (ICA) offers one solution to this
problem. However, it is not a solution that has much in common with that
adopted by the best-performing sound separation system that we know of –
the human auditory system. Perhaps the key to building a sound separator
that rivals human performance is to model human perceptual processing?

This argument provides the motivation for the field of computational au-
ditory scene analysis (CASA), which aims to build sound separation systems
that adhere to the known principles of human hearing. In this chapter, we
review the state-of-the-art in CASA, and consider its similarities and dif-
ferences with the ICA approach. We also consider the relationship between
CASA and techniques for robust automatic speech recognition in noisy envi-
ronments, and comment on the challenges facing this growing field of study.

Reprinted from Speech Enhancement, J. Benesty, S. Makino and J. Chen (Eds.),
Springer, New York, 2005, pp. 371–402.
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Fig. 16.1. (A) Auditory spectrogram for the utterance “don’t ask me to carry an
oily rag” spoken by a female. (B) Auditory spectrogram for the utterance “seven
three nine five one” spoken by a male. (C) Auditory spectrogram for a mixture of
the male and female utterances. Light pixels correspond to regions of high energy,
and dark pixels correspond to regions of low energy. (D) Ideal binary mask for
the male utterance, obtained by using the criterion given in (16.1). White pixels
indicate reliable regions, and black pixels indicate unreliable regions.

16.2 Auditory Scene Analysis

In naturalistic listening situations, several sound sources are usually active at
the same time, and the pressure variations in air that they generate combine
to form a mixture at the ears of the listener. A common example of this
is the situation in which the voices of two talkers overlap, as illustrated in
Figure 16.1C. The figure shows the simulated auditory nerve response to a
mixture of a male and female voice, obtained from a computational model
of auditory processing. How can this complex acoustic mixture be parsed in
order to retrieve a description of one (or both) of the constituent sources?

Bregman [5] was the first to present a coherent answer to this question
(see also [17] for a more recent review). He contends that listeners perform an
auditory scene analysis (ASA), which can be conceptualised as a two-stage
process. In the first stage, the acoustic mixture is decomposed into elements.
An element may be regarded as an atomic part of the auditory scene, which
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describes a significant acoustic event. Subsequently, a grouping process com-
bines elements that are likely to have arisen from the same acoustic source,
forming a perceptual structure called a stream. For example, consider the
voice of a speaker; in Bregman’s terms, the vocal tract of the speaker is the
acoustic source, whereas the mental representation of the speaker’s voice is
the corresponding stream.

Grouping processes may be data-driven (primitive), or schema-driven
(knowledge-based). In the former case, it is thought that listeners exploit
heuristics similar to those proposed by the Gestalt psychologists for describ-
ing the ways in which elements of an image combine to form a coherent ob-
ject. In schema-driven grouping, listeners apply learned knowledge of sound
sources (such as speech and music) in a top-down manner. Examples of
speech-related schemas include prosodic, semantic and pragmatic knowledge.

Consideration of Fig. 16.1C suggests that a number of primitive grouping
cues could be applied to segregate the mixture. First, consider cues which
might act upon acoustic components that overlap in time (so-called simul-
taneous organisation). At about 0.5 sec., the male speech begins and this
gives rise to an abrupt onset in acoustic energy across all frequency channels.
Hence, a principle of ‘common onset’ might allow the voices of the two speak-
ers to be segregated in this region – frequency regions that exhibit an abrupt
increase in energy at the same time are probably dominated by the same
acoustic source. Similarly, a principle of ‘common offset’ could be applied to
segregate the two speakers in the region close to 2 sec., when the male speech
ceases. Another powerful grouping cue is harmonicity. In the figure, horizon-
tal bands of energy are visible which correspond to harmonics of the same
fundamental frequency (F0). In principle, these harmonics can be sorted into
two sets, such that those related to the same F0 are grouped together.

Secondly, consider grouping cues which could act upon nonoverlapping
acoustic components (so-called sequential organisation). In Fig. 16.1C, the
male and female speakers occupy different average pitch ranges; hence the
continuity of their F0s might be exploited in order to group successive ut-
terances from the same speaker. Similarly, concentrations of energy in the
time-frequency plane tend to change smoothly, such as those due to formant
transitions. Again, such continuity can be exploited in order to separate one
voice from the other. Some cues to sequential organisation are not illustrated
by the figure. For example, listeners tend to group sounds that have a similar
timbre, and which originate from the same location in space.

16.3 Computational Auditory Scene Analysis

The structure of a typical data-driven CASA system is closely related to
Bregman’s conceptual model, as shown in Fig. 16.2. In the first stage, the
input mixture is processed in order to derive acoustic features. Subsequent
grouping processes may operate directly on these features, or more usually
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Fig. 16.2. Flow of processing in a typical data-driven CASA system, such as that
of Brown and Cooke [7].

they will be used to derive an intermediate representation prior to grouping.
In many systems, significant components in the time-frequency plane are
enocded as discrete symbols. Grouping rules are then applied, in order to
identify components that are likely to have arisen from the same source. The
grouping heuristics may be encoded explicitly in a rule-based system, or may
be implicitly encoded in a signal processing algorithm or neural network.

Once representations of individual sources are obtained, the auditory rep-
resentation can usually be inverted in order to recover a time-domain wave-
form for the segregated source. This allows the separated signal to be evalu-
ated using listening tests, or by performance metrics that involve a compar-
ison between the original and reconstructed signals. Alternatively, an evalu-
ation may be performed on the auditory representation directly.

An important notion in many CASA systems is the time-frequency mask.
Given a description of the acoustic input in the time-frequency plane, a spe-
cific source may be recovered by applying a weighting to each time-frequency
bin, such that regions dominated by the desired source receive a high weight
and those dominated by other sources receive a low weight. The mask values
may be binary or real-valued. Weintraub [67] was the first to use this approach
in a CASA system, and it has since been adopted by several other workers
[6,7,66,54,13]. The use of binary masks is motivated by the phenomenon of
masking in human hearing, in which a weaker signal is masked by a stronger
one within the same critical band (see Moore [41] for a review). It has also
been noted that the reconstruction of a masked signal may be interpreted as
a highly nonstationary Wiener filter [54].

What is the upper limit on the performance of a system that uses binary
masks? Cooke et al. [13] have adapted a conventional speech recogniser so
that reliable and unreliable (or missing) acoustic features are treated differ-
ently during decoding, and report excellent recognition performance using
so-called a priori masks. Assuming that the clean speech and noise signals
are available prior to mixing, the a priori mask is formed by selecting time-
frequency regions in which the mixture energy lies within 3 dB of the energy
in the clean speech. From the perspective of speech separation, Wang and
colleagues [27,52,29] have subsequently proposed the ideal binary mask as a
computational goal of CASA. Considering the auditory representation of a
speech signal s(t, f) and noise sigmal n(t, f), where t and f index time and
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frequency respectively, the ideal binary mask m(t, f) is given by

m(t, f) =

{

1 if s(t, f) > n(t, f)
0 otherwise

(16.1)

A similar approach has been advocated by Jourjine et al. [31], who note that
different speech utterances tend to be orthogonal in a high-resolution time-
frequency representation, and can therefore be separated by binary masking.
A number of workers have demonstrated that speech reconstructed from ideal
binary masks is highly intelligible, even when extracted from a mixture of two
or three concurrent speakers [54,52]. Speech intelligibility tests using both
speech and babble noise interference also show that ideal binary masking can
lead to substantial intelligibility improvements for human listeners [52]. An
extensive discussion on ideal binary masks can be found in [65].

In the following sections, we first review the feature extraction stage of
CASA, and then focus on monaural (one-microphone) and binaural (two-
microphone) approaches. We also consider the issue of cue integration, and
review a number of different computational frameworks that allow multiple
grouping cues to be brought to bear on an acoustic signal.

16.3.1 Peripheral Auditory Processing and Feature Extraction

The first stage of a CASA system is usually a time-frequency analysis that
mimics the frequency selectivity of the human ear. Typically, the input sig-
nal is passed through a bank of bandpass filters, each of which simulates
the frequency response associated with a particular position on the basilar
membrane. The ‘gammatone’ filter is often used, which is an approximation
to the physiologically-recorded impulse responses of auditory nerve fibres
[50,11]. The parameters of the gammatone filterbank (i.e., the filter order,
bandwidth and frequency spacing) are usually chosen to provide a match
to psychophysical data. Neuromechanical transduction in the cochlea may
be approximated by half-wave rectifying and compressing the output of each
filter; alternatively a detailed simulation of inner hair cell function can be em-
ployed [26]. We note, however, that not all CASA systems use an auditory-
motivated time-frequency analysis. The short-term Fourier transform and
discrete wavelet transform are also sometimes employed [42,56,38,43].

Examples of auditory spectrograms generated using a gammatone filter-
bank are shown in Fig. 16.1. Note that a nonlinear frequency scale is used,
and that the bandwidth of each filter varies proportionately to its centre
frequency. In low frequency regions, filter bandwidths are narrow and hence
individual harmonics of a complex sound (such as speech) are resolved. In
high-frequency regions, the bandwidths are broader and several components
interact within the same filter.

Most CASA systems further process the peripheral time-frequency rep-
resentation in order to extract features that are useful for grouping. The
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motivation here is to explicitly encode properties which are implicit in the
acoustic signal. Typical is the ‘synchrony strand’ representation of Cooke
[11], which is a symbolic encoding of significant features in the time-frequency
plane. Cooke demonstrates that the grouping stage of CASA (e.g., identifying
harmonically related components) is facilitated by using a representation in
which continuity in time-frequency is made explicit. A further example is the
system of Brown [7], which forms representations of onset and offset events,
periodicity and frequency transitions. Similar rich ‘mid level’ representations
of the acoustic signal have been proposed by other workers [21,66].

16.3.2 Monaural Approaches

Although binaural cues contribute substantially to ASA, human listeners are
able to segregate sounds when listening with a single ear, or when listening
diotically to a single-channel recording. Perceptually, one of the most potent
cues for monaural sound segregation is fundamental frequency (F0); specifi-
cally, listeners are able to exploit a difference in F0 in order to segregate the
harmonics of one sound from those of interfering sounds. Accordingly, much
of the work on monaural CASA has focussed on the problem of identifying
the multiple F0s present in an acoustic mixture (so-called ‘multipitch analy-
sis’), and using them to separate the constituent sounds. Perhaps the earliest
example is the system for separating two concurrent speakers described by
Parsons [49]. In his approach, the harmonics of a target voice are selected by
peak picking in the spectral domain, and the voice of each speaker is tracked
using pitch continuity.

An important class of algorithms for F0 estimation is based on a temporal
model of pitch perception proposed by Licklider [36]. The first computational
implementation of Licklider’s theory was described by Weintraub [67], who
referred to it as an ‘auto-coincidence’ representation; subsequently, Slaney
and Lyon [57] introduced the term correlogram. The correlogram is computed
in the time domain by performing an autocorrelation at the output of each
channel of a cochlear filter analysis,

A(t, f, τ) =

N−1
∑

n=0

h(t − n, f)h(t − n − τ, f)w(n) (16.2)

Here, h(t, f) represents the cochlear filter response for channel f at time
frame t, τ is the autocorrelation delay (lag), and w is a window function of
length N samples (typically a Hanning, exponential or rectangular window is
used). Alternatively, the autocorrelation may be performed in the frequency
domain by means of the discrete Fourier transform (DFT) and its inverse
transform (IDFT), i.e.

IDFT(|DFT(h)|k) (16.3)
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Fig. 16.3. A. Correlogram for time frame 100 of the mixture of two speakers shown
in Fig. 16.1. B. Summary autocorrelation function (SACF). The pitch periods of
the two speakers are marked with arrows. The male voice has a period of 8.1 ms
(corresponding to a F0 of 123 Hz) and the female voice has a period of 3.8 ms
(corresponding to a F0 of 263 Hz). C. Enhanced SACF, in which one iteration of
processing has been used to remove sub-octave multiples of the significant peaks.

where h is a windowed section of the cochlear filter response. The intro-
duction of a parameter k allows for a ‘generalised autocorrelation’ [62]. For
conventional autocorrelation k = 2, but smaller values of k are advantageous
because this leads to sharper peaks in the resulting function ([62] suggest a
value of k = 0.67).

The correlogram is an effective means for F0 estimation because it detects
the periodicities present in the output of the cochlear filterbank. For example,
consider a voice with a F0 of 125 Hz. A channel responding to the fundamental
component of the voice has a period of 8 ms, and hence a peak occurs in the
corresponding autocorrelation function at a lag of 8 ms. Similarly, a channel
responding to the second harmonic (250 Hz) has an autocorrelation peak at 4
ms, but because of the periodic nature of the autocorrelation function, peaks
also occur at 8 ms, 12 ms, 16 ms and so on. In high-frequency regions, cochlear
filters are wider and a number of harmonics interact within the same filter,
causing amplitude modulation (AM). These interacting components ‘beat’
at a rate corresponding to the fundamental period, and also cause a peak in
the autocorrelation function at the corresponding lag. Hence, for a periodic
sound a ‘spine’ occurs in the correlogram which is centered at the fundamental
period (8 ms in our example); for an example, see Fig. 16.3A. A convenient
means of emphasizing this F0-related structure is to sum the channels of the
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correlogram over frequency,

S(t, τ) =

M
∑

f=1

A(t, f, τ) (16.4)

The resulting summary autocorrelation function (SACF) S(t, τ) exhibits a
peak at the period of each F0, and can be used as the basis for multipitch
analysis (Fig. 16.3B). For example, Tolonen and Karjalainen [62] describe a
computationally efficient multipitch model based on the SACF. Computa-
tional savings are made by splitting the input signal into two bands (below
and above 1 kHz) rather than performing a multi-band frequency analysis.
A generalized autocorrelation is then computed for the low-frequency band
and for the envelope of the high frequency band, and added to give a SACF.
Further processing is then performed to enhance the representation of differ-
ent F0s. Specifically, the SACF is half-wave rectified and then expanded in
time by a factor of two, subtracted from the original SACF and half-wave
rectified again. This removes peaks that occur at sub-octave multiples, and
also removes the high-amplitude portion of the SACF close to zero delay
(Fig. 16.3C). The operation may be repeated for time expansions of a factor
of 3, 4, 5 and so on, in order to remove higher-order multiples of significant
pitch peaks. In [32], the authors show how pitch tracks from this system
can be used to separate harmonic sounds (two vowels) by applying a comb-
notch filter, which removes the harmonics of the pitch track to which it is
tuned. Ottaviani and Rocchesso [46] also describe a speech separation sys-
tem based on F0 tracking using the enhanced SACF. They resynthesize a
separated speech signal from a highly zero-padded Fourier spectrum, which
is selectively weighted to emphasize harmonics of the detected pitch.

One of the more sophisticated algorithms for tracking the pitch of mul-
tiple speakers is reported by Wu et al. [69]. Their approach consists of four
stages, shown schematically in Fig. 16.4. In the first stage, the digitised in-
put signal is filtered by a bank of gammatone filters, in order to simulate
cochlear filtering. Further stages of processing treat low-frequency channels
(which have a centre frequency below 800 Hz) and high-frequency channels
differently. In low-frequency channels the correlogram is computed directly
from the filter outputs, whereas in high-frequency channels the envelope in
each channel is autocorrelated.

In the second stage of the system, ‘clean’ correlogram channels (i.e., those
that are likely to contain reliable information about the periodicity of a sin-
gle sound source, and are relatively uncorrupted by noise) are identified. The
third stage of the system estimates the pitch periods present in each indi-
vidual time frame using a statistical approach. Specifically, the difference
between the true pitch period and the time lag of the closest correlogram
peaks in each channel is employed as a means of quantifying the support for
a particular pitch period hypothesis.
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Fig. 16.4. Schematic diagram of the Wu, Wang and Brown [69] system for tracking
multiple fundamental frequencies in an acoustic mixture.

Periodicity information is then integrated across channels in order to de-
rive the conditional probability of observing a set of pitch peaks P (Φ|x)
given a pitch state x. Since zero, one or two pitches may be present, the
pitch state is regarded as a pair x = (y, Y ) where y ∈ RY is the pitch pe-
riod and Y ∈ {0, 1, 2} is the space index. Channel conditional probabilities
are combined into frame conditional probabilities by assuming the mutual
independence of the responses in all channels.

In the final stage of Wu et al.’s system, pitch periods are tracked across
time using a hidden Markov model (HMM). Hidden nodes in the HMM rep-
resent the possible pitch states in each time frame, and observation nodes
represent the set of selected peaks in each time frame. Transition probabili-
ties between time frames are estimated from a small corpus of speech signals.
Transition probabilities between state spaces of zero, one and two pitches
are also estimated from the same corpus of speech signals, with the assump-
tion that a single speaker is present for half of the time and two speakers
are present for the remaining time. The optimal state sequence is found by
the Viterbi algorithm, and may consist of zero, one or two pitch states. Fig.
16.5 shows an example of the F0 tracks derived by Wu et al.’s system for a
mixture of two speakers.

Wu et al.’s system suffers from a number of limitations. In principle, the
algorithm could be modified to track more than two simultaneous speakers by
considering more than three pitch spaces, but it remains to be seen how well
such an approach would work in practice. Although it is robust to the presence
of an interfering speaker (and can track its F0), Khurshid and Denham [35]
find that Wu et al.’s system is less robust in the presence of background noise.
They also find that although Wu’s algorithm tracks the F0 of the dominant
speaker in a mixture very accurately, its estimate of the nondominant F0 can
be poor.

Khurshid and Denham suggest an alternative approach that rectifies some
of these problems, which is a based on the analysis of the output of a bank of
damped harmonic oscillators, which model the frequency analysis performed
by the cochlea. Analysis of the fine time structure (consecutive zero cross-
ings and amplitude peaks) of each oscillator output is performed in order to
determine the driving frequency. An algorithm is then used to hypothesise
the F0 (or multiple F0s) that are present in order to explain the observed
frequency components. This is achieved by identifying salient spectral peaks
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Fig. 16.5. Pitch tracks for the mixture of two speech signals shown in Fig. 16.1,
obtained using the algorithm of Wu, Wang and Brown [69]. Solid lines show the
ground-truth pitch tracks for each speaker, open circles show the estimated pitch
periods at each time frame.

(similar to the place groups described by Cooke [13]) and then assessing the
support for every subharmonic of the peak that falls within the normal range
of voice pitch. Such a frequency ‘remapping’ leads to noise robustness, and
may be regarded as a simple model of simultaneous masking in the auditory
nerve. Simple continuity constraints are used to track two F0s over time.
Khurshid and Denham performed a comparison and reported that, although
Wu et al.’s system is able to more accurately track the dominant pitch, their
own system tracks the nondominant F0 more reliably and is also more robust
to noise.

The correlogram, as described in (16.2), is based on an autocorrelation
operation such that a large response occurs at the period of a F0. An alter-
native approach, advocated by de Cheveigné [15], is to perform cancellation
rather than autocorrelation. In his approach, a time-domain comb filter of
the form

q(t) = δ(t) − δ(t − τ) (16.5)

is applied to the acoustic signal (or to the output from each channel of a
cochlear filter bank), where δ(t) is the delta function, t is time and τ is the
lag parameter. The filter has zeros at frequencies f = 1/τ and all its multi-
ples, and hence its response to a signal with a period of τ is zero. F0 analysis
is therefore performed by applying the filter for different values of τ and
searching for the minimum response. de Cheveigné and Kawahara [16] fur-
ther suggest that this approach can be extended to the problem of multipitch
estimation by cascading N filters, each of which is tuned to cancel a partic-
ular period. Hence, to perform multipitch estimation it is simply necessary
to search the N -dimensional space of lag parameters until the minimum is
found. The authors evaluated their algorithm on a corpus consisting of mix-
tures of two or three harmonic complexes, with impressive results. However,
their joint cancellation technique has certain limitations. It is computation-
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ally expensive (although amenable to parallelism), and cancellation of one
source may partially cancel another source if their periods are related by an
integer multiple.

As noted previously, the correlogram deals with two cues to the F0 of a
sound in a unified way; resolved harmonics in low-frequency regions and AM
(‘beating’) in high-frequency regions. However, this unified treatment leads
to poor segregation in the high-frequency range because AM alters autocor-
relation structure and makes it difficult to group high-frequency components
[29]. Some CASA systems process resolved and unresolved harmonic regions
using different mechanisms (e.g., [11]). Hu and Wang [29] describe a recent
system in which AM is extracted in high frequency regions and used to seg-
regate unresolved harmonics, whereas conventional techniques are used to
segregate resolved harmonics. AM detection is based on an ‘envelope correlo-
gram’, which is of the form given in (16.2) except that the autocorrelation is
performed on the envelope of each filter response rather than the fine struc-
ture. Correlations between adjacent channels are then computed in order to
identify significant acoustic components. An initial segmentation based on F0
is then performed, which is similar to that described by [66]. Further process-
ing is used to refine the F0 track for the dominant source, based on temporal
smoothness and a periodicity constraint. Time-frequency units are then la-
belled according to whether they are dominated by the target speech signal or
not, using heuristics that are based on the conventional correlogram in low-
frequency regions and the envelope correlogram in high frequency regions.
Finally, segments are generated based on cross-channel envelope correlation
and temporal continuity, and these are grouped with low-frequency segments
that share a common F0. The authors show that their system performs con-
sistently better than that of Wang and Brown [66] across 10 noise conditions.
In all but one noise condition it also outperforms a conventional spectral
subtraction scheme for speech enhancement.

Explicit representations of AM have been proposed as an alternative to
the correlogram. For instance, Berthommier and Meyer [2] describe a system
for separating sounds on the basis of their F0s using the modulation spectrum
(see also [34]). Each channel of a gammatone filterbank is half-wave rectified
and bandpass filtered to remove the DC component and frequencies above
the pitch range. The magnitude of a DFT is then computed to give a two-
dimensional representation of tonotopic frequency against AM frequency. A
harmonic sieve is then applied to perform F0 analysis and grouping according
to common F0. In a subsequent paper [3], the authors extend their system
by introducing two further stages of processing. The first of these addresses
a problem caused by the distributive nature of the DFT, namely that evi-
dence for a particular F0 is distributed across various harmonic frequencies
along the modulation frequency axis of the map. The author’s solution is
to compute a pooled map, in which evidence for each F0 is integrated. The
resulting representation is better suited to grouping and pitch analysis, since
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a single peak occurs in the pooled map for each period source. The second
stage of processing is an identification map, which estimates the correlation
between stored spectral prototypes and each spectral slice along the modu-
lation frequency axis. This allows classification of vowel spectra without the
need for an explicit F0 detection stage. It is an open question whether a
similar mechanism could be used to segregate continuous speech, rather than
isolated vowels; the computational cost may be prohibitive.

Other principles of auditory organization, such as spectral smoothness,
may also be used to improve F0 detection and tracking. Klapuri [33] describes
a multipitch estimation technique which exploits a spectral smoothness prin-
ciple. His system uses an iterative approach to multipitch estimation, in which
a predominant F0 is found, and then the corresponding harmonic spectrum
is estimated and linearly subtracted from the mixture. This process is then
repeated for the residual. However, this approach has a tendency to make
errors when constituent F0s in the mixture are harmonically related, because
cancellation of one F0 may inadvertently remove a frequency component that
is shared by another source. The solution proposed in [33] is to smooth the
spectrum before subtraction; partials containing energy from more than one
source extend above the smoothed envelope, so that they are preserved in
the residual when the smoothed envelope is subtracted from the mixture.
Klapuri shows that application of the spectral smoothness constraint reduces
the error rate for pitch analysis of four-pitch mixtures by about half.

Finally, although most monaural CASA systems have used F0-based cues,
there have been some attempts to exploit other cues such as frequency mod-
ulation [40] and common onset [18], [6], [7], [28]. For example, Denbigh and
Zhao [18] describe a system which selects the harmonics for a target voice in
a manner that is similar to the approach described by Parsons [49]. Addition-
ally, their system compares adjacent spectra in order to determine whether
the onset of a new voice has occurred. This allows their pitch tracking al-
gorithm to extract weak voiced sounds, and increases the accuracy of pitch
tracking when two voices are active. Common onset is currently a somewhat
under-utilised cue in CASA systems, although a recent study has been de-
scribed in which it is employed to segregate stop consonants [28].

16.3.3 Binaural Approaches

The principal cues that human listeners use to determine the location of a
sound source are those that involve a comparison between the two ears. A
sound source located to one side of the head generates sound pressure waves
that arrive at the nearer ear slightly before the farther ear; hence there is
an interaural time difference (ITD) which provides a cue to source location.
Similarly, the sound intensity will be greater in the nearer ear, causing an
interaural intensity difference (IID). The IID is usually expressed in decibels,
in which case it is termed the interaural level difference (ILD). The rela-
tive efficacy of ITD and ILD cues depends on frequency. At low frequencies,
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sounds diffract around the head and hence there is no appreciable ILD below
about 500 Hz. At high frequencies, ITD does not provide a reliable cue for
the location of tonal sounds because of phase ambiguities. However, the en-
velope of complex sounds can be compared at the two ears in high frequency
regions; this cue is referred to as the interaural envelope difference (IED).

In addition to binaural comparisons, direction-dependent filtering by the
head, torso and pinnae provide cues to source location. These provide some
ability to localise sounds monaurally, and are particularly important for dis-
crimination of elevation and for resolving front-back confusions. Such cues
are seldom used explicitly by CASA systems and are not considered here;
however, their use in CASA systems remains an interesting area for future
research. Preliminary work on a sound localization system that exploits pinna
cues is reported in [25].

Computational systems for binaural signal separation have been strongly
influenced by two key ideas in the psychophysical literature. The first is
Durlach’s [20] equalization-cancellation (EC) model of binaural noise suppres-
sion, which is a two-stage scheme. In the first stage, equalization is applied to
make the noise components identical in each of two binaural channels. This
is followed by a cancellation stage, in which the noise is removed by subtract-
ing one channel from the other. Many two-microphone approaches to noise
cancellation may be regarded as variants of the EC scheme (e.g., [61], [38],
[56]).

The second key idea motivating binaural signal separation systems is the
cross-correlation model of ITD processing proposed by Jeffress [30]. In this
scheme, neural firing patterns arising from the same critical band of each ear
travel along a dual delay-line system, and coincide at a delay corresponding
to the ITD. Computationally, the Jeffress model may be expressed as a cross-
correlation of the form

C(t, f, τ) =
N−1
∑

n=0

hL(t − n, f)hR(t − n − τ, f)w(n) (16.6)

where hL(t, f) and hR(t, f) represent the simulated auditory nerve response
in the left and right ears respectively for time frame t and frequency channel
f , and w(n) is a window of size N samples. The resulting cross-correlogram
C(t, f, τ) is closely related to the correlogram given in (16.2); both are three-
dimensional representations in which frequency, time and lag are represented
on orthogonal axes. Fig. 16.6A shows a cross-correlogram for a mixture of
a male and female speaker, originating from azimuths of -15 degrees and
+10 degrees respectively. As with the correlogram, it is convenient to sum
the cross-correlation functions in each frequency band to give a summary
cross-correlation function (SCCF), in which large peaks occur at the ITD of
each source (Fig. 16.6B). The figure also shows the ILD for this mixture,
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Fig. 16.6. A. Cross-correlogram for time frame 100 of the mixture of speakers
shown in Fig. 1, for which the male speaker has been spatialised at an azimuth
of -15 degrees and the female speaker at an azimuth of +10 degrees. B. Summary
cross-correlogram. C. Interaural level difference (ILD) in each frequency channel.

computed using

ILD(t, f) = 10 log
10

(

∑N−1

n=0
hR(t + n, f)

2

∑N−1

n=0
hL(t + n, f)2

)

(16.7)

Note that, as expected, the ILD is negligible in low frequency channels. How-
ever, in the mid-frequency region channels tend to be dominated by the female
speaker and exhibit a large positive ILD. Above 2.5 kHz, the male speaker is
dominant and a substantial negative ILD is observed.

Early attempts to exploit spatial cues in a system for speech segregation
include the work of Lyon [39] and the binaural ‘cocktail party processor’
described by Bodden [4]. Bodden’s system is based on a cross-correlation
mechanism for localising the target and interfering sources, and uses a time-
variant Wiener filter to enhance the target source. Effectively this filter ap-
plies a window function to the azimuth axis of the cross-correlogram, such
that energy from a speaker at a target azimuth is retained, and the remainder
is cancelled. Bodden reports good performance for mixtures of two or three
speakers in anechoic conditions.

Bodden’s system uses a modification of the Jeffress scheme in which con-
tralateral inhibition is employed to sharpen the cross-correlogation pattern.
Numerous other approaches have been described for improving the accuracy
of location estimates from cross-correlation processing, such as the ‘stencil’
filter proposed by Liu et al. [37]. The SCCF shown in Fig. 16.6B is a direct
way of estimating the ITD of a sound source from the cross-correlogram, but
it assumes that the ITD is independent of frequency. This assumption does
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not hold if the binaural recordings are obtained from a dummy head, because
diffraction around the head introduces a weak frequency dependence to the
ITD. The ‘stencil’ approach described by Liu et al. is a more sophisticated
way of determining source location, which is based on pattern-matching the
peaks in the cross-correlogram. At the ITD of a sound source, the pattern of
peaks in the cross-correlogram exhibits a structure in which curved traces fan
out from a central vertical line (two such structures are visible in Fig. 16.6A,
which is a cross-correlogram for a two-source mixture). Accordingly, Liu et
al. derive a SCCF by integrating activity in the cross-correlogram over a
template (‘stencil’) for each location, which matches the expected pattern of
peaks. They report enhanced localization of sources in the azimuthal plane
using this method.

A related approach is described by Palomäki et al. [47], who form a ‘skele-
ton’ cross-correlogram by identifying local peaks and replacing each with a
narrower Gaussian. This avoids the problem of very wide peaks, which oc-
cur in low-frequency channels and bias the location estimates in the SCCF
(see Fig. 16.6A). Furthermore, in the process of forming the skeleton cross-
correlogram, peak positions are mapped from ITD to an azimuth axis using
frequency-dependent look-up tables. Again, this overcomes the problems as-
sociated with the frequency dependence of ITD. Palomäki et al.’s system
also includes a mechanism for reducing the effect of echoes on localization
estimates. This consists of a delayed inhibition circuit, which ensures that
location cues at the onset of a sound source have more weight that those
that arrive later. In this respect, it may be regarded as a simple model of
the precedence effect (for a review, see [41]). The authors report that use of
the inhibition mechanism improves the robustness of source localization in
mildly reverberant environments.

Roman et al. [52] describe a binaural speech separation algorithm which is
based on location estimates from skeleton cross-correlograms. They observe
that, within a narrow frequency band, modifying the relative strength of a
target and interfering source leads to systematic changes in the observed ITD
and ILD. For a given location, the deviation of the observed ITD and ILD
from ideal values can therefore be used to determine the relative strength of
the target and interferer, and in turn this can be used to estimate the ideal
binary mask (see (16.1)). Specifically, a supervised learning method is used
for different spatial configurations and frequency bands based on an ITD-ILD
feature space. Given an observation x in the ITD-ILD feature space, two hy-
potheses are tested for each channel; whether the target is dominant (H1) and
whether the interferer is dominant (H2). Based on estimates of the bivariate
densities p(x|H1) and p(x|H2), classification is performed using a maximum
a posteriori (MAP) decision rule, i.e. p(H1)p(x|H1) > p(H2)p(x|H2). Roman
et al.’s system includes a resynthesis pathway, in which the target speech
signal is reconstructed only from those time-frequency regions selected in the
binary mask. They report a performance in anechoic environments which is
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very close to that obtained using the ideal binary mask, as determined us-
ing three different evaluation criteria (signal-to-noise ratio (SNR), automatic
speech recognition accuracy and listening tests).

A limitation of binaural systems is that they generally perform well when
two sources are present, but their performance degrades in the presence of
multiple interferers. Liu et al. [38] describe a multi-band mechanism which
allows this limitation to be overcome to some extent. Their binaural cancel-
lation scheme is based on a subtraction of the two input signals. Essentially,
their system generates a nulling pattern for each point on the lag-axis of
the cross-correlogram, such that the null occurs at the direction of the noise
source and unity gain is maintained in the direction of the target sound.
An innovative aspect of their approach is that the null in each frequency
band can be steered independently, so that at each time instant it cancels
the noise source that emits the most energy in that band. This allows their
system to cancel multiple noise sources, provided that their locations are
known; this information is provided by the author’s system for sound local-
ization, discussed above. Liu et al. show that when four talkers are present
in an anechoic environment, their system is able to cancel each of the three
interfering speakers by 3-11 dB whilst causing little degradation to the target
speaker. Similar results were obtained for a six-talker scenario. However, in a
moderately reverberant room the total noise cancellation fell by about 2 dB;
this raises doubts as to whether the system is sufficiently robust for use in
real-world acoustic environments.

A number of workers have developed systems that combine binaural pro-
cessing with other grouping cues (usually those related to periodicity). An
early example is the system proposed by Kollmeier and Koch [34]. They de-
scribe a speech enhancement algorithm which works in the domain of the
modulation spectrum, i.e. a two-dimensional representation of AM frequency
vs. center frequency. Energy from each sound source tends to form a clus-
ter in the modulation spectrum, allowing sources with different modulation
characteristics to be separated from one another. Binaural information (ITD
and ILD cues) is used to suppress clusters that do not arise from a desired
spatial location.

Related speech separation systems which use F0 and binaural cues are
described by Denbigh and colleagues [18], [56]. In the latter approach, the
cross-correlation between two microphones is continuously monitored in or-
der to determine the azimuth of the most intense sound in each time frame.
If the most intense sound lies close to the median plane, it is assumed to be
speech and an initial estimate is made of the speech spectrum. An estimate of
the total interference (noise and reverberation) is also obtained by cancelling
the dominant target signal. Subsequent processing stages refine the estimate
of the speech spectrum, by subtracting energy from it that is likely to be
contributed by the interference. Finally, F0 analysis is performed on the ex-
tracted target signal, and cross-referenced against F0 tracks from the left and
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right microphones. A continuity constraint is then applied to ensure that the
F0 of the estimated target speech varies smoothly. The target speech signal
is reconstructed using the overlap-add technique and passed to an automatic
speech recogniser. The authors report a large gain in ASR accuracy for an
isolated word recognition task in the presence of a speech masker and mild
reverberation; accuracy increased from 30% to 95% after processing by the
system, for a SNR of 12 dB.

Okuno et al. [45] also describe a system which combines binaural and
F0 cues, and they assess its ability to segregate mixtures of two spatially
separated speakers. Harmonic fragments are found in each of the left and right
input channels, and then a direction is computed for pairs of fragments using
ITD and ILD cues. The authors evaluate their system on a speech recognition
task, but focus on the ability of the system to recognize both utterances
rather than a single target utterance. They find that ASR error rates are
substantially reduced by using their system, compared to performance on
the unprocessed speech mixtures. They also report that binaural cues play
an important role in this result; the ASR accuracy of a system which only
used harmonic fragments was about half that of a system which used both
harmonic and binaural cues.

16.3.4 Frameworks for cue integration

So far, we have focused on the cues that are pertinent to CASA, but a key
issue remains – how can cues be combined in order to find organisation within
an acoustic signal, and hence retrieve a description of a target sound source
from a mixture?

The earliest approaches to CASA were motivated by classical artificial
intelligence techniques, in that they emphasised representation and search.
For example, Cooke’s system [11] employs a synchrony strand representa-
tion, in which the acoustic scene is encoded as a collection of symbols that
extend through time and frequency. A search algorithm is employed to iden-
tify groups of strands that are likely to have arisen from the same source. This
is mainly achieved on the basis of harmonicity; search proceeds from a ‘seed’
strand, and other strands that are harmonically related to the seed strand are
added to its group. In a second grouping stage a pitch contour is derived for
each group, using the frequency of resolved harmonics in low-frequency re-
gions, and using AM frequency in high-frequency regions. Groups that share
a common pitch contour are then combined. In addition, a subsumption stage
removes groups whose strands are contained in a larger grouping. Brown [6,7]
describes a similar approach, but substantially expands the palette of acous-
tic representations by including time-frequency ‘maps’ of onset activity, offset
activity, frequency transition and periodicity. These are combined to form a
symbolic representation of the acoustic scene, which is searched in a similar
manner to Cooke’s.
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Fig. 16.7. Flow of processing in the prediction-driven architecture of Ellis [21].
Redrawn from [23].

Neither of the systems described above constitute a generic architecture
for cue integration. Rather, Cooke’s system combines groups of strands using
a single derived property (pitch contour) and Brown’s system performs cue
integration during the formation of time-frequency objects. Hence, it is not
clear how other cues (such as those relating to spatial location) could be in-
cluded in these systems. Also, both are essentially data-driven architectures,
as shown in Fig. 16.2. In general, solution of the CASA problem requires
the application of top-down knowledge as well as bottom-up processing. Fi-
nally, both systems run in ‘batch’ mode; they process the acoustic signal in
its entirety in order to derive an intermediate representation, which is then
searched. Clearly, an architecture that allows real-time processing is neces-
sary for most applications (such as hearing prostheses and automatic speech
recognition).

A more generic architecture for cue integration is the blackboard, as ad-
vocated by Cooke et al. [12] and Godsmark and Brown [24]. In this scheme,
grouping principles such as harmonicity are cast as knowledge sources (‘ex-
perts’) that communicate through a globally accessible data structure (the
blackboard). Experts indicate when they are able to perform an action, and
place their results back on the blackboard. For example, a harmonicity expert
might be initiated because harmonically related partials are available on the
blackboard, and would compute a pitch contour from them. In turn, another
expert might combine groups that have the same pitch contour. Centralised
control is provided by a scheduler, which determines the order in which ex-
perts perform their actions. Blackboard architectures are well suited to CASA
because they were developed to deal with problems that have a large solution
space, involve noisy and unreliable data, and require many semi-independent
sources of knowledge to form a solution.

Godsmark and Brown’s system [24] is specialised for musical signals,
rather than speech, but is interesting because it suggests a mechanism for
resolving competition between grouping principles. Such competition might
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arise if, for example, two acoustic components were sufficiently distant in
frequency to be regarded as separate, but sufficiently close in time to be re-
garded as grouped. They adopt a ‘wait and see’ approach to this problem;
many possible organisations are maintained within a sliding time window.
Within the sliding window, alternate organisations of synchrony strands are
scored by grouping experts. An organisation is only imposed on a section of
the acoustic signal after the window has passed over it, thus allowing con-
textual information to influence the organisation of strands into groups. The
authors also show how top-down and bottom-up processing can be combined
in a multi-layered blackboard architecture. For example, predictions about
anticipated events, based on a previously observed temporal pattern, can be
used to influence the formation and grouping of synchrony strands.

A similar emphasis on the role of top-down processing is found in the
study by Ellis [21], who describes a prediction-driven architecture for CASA.
By way of contrast with the Cooke and Brown systems, in which the flow
of information is linear and data-driven, Ellis’s approach involves a feed-
back loop so that predictions derived from a ‘world model’ can be compared
against the input (see Fig. 16.7). The front-end processing of Ellis’ system
forms two representations, a time-frequency energy envelope and correlogram.
These representations are reconciled with predictions based on world-model
hypotheses by a comparison block. The world model itself consists of a hi-
erarchy of increasingly specific sound source descriptions, the lowest level of
which is couched in terms of three sound elements; wefts (which represent
pitched sounds), noise clouds and transient clicks. A reconciliation engine,
which is based on a blackboard system, updates the world model according
to differences detected between the observed and predicted signals.

Okuno et al. [44] describe a residue-driven architecture for CASA which
is closely related to Ellis’ approach, in that it compares the acoustic input
against predictions from a world model. However, Ellis’ system makes this
comparison at the level of intermediate acoustic representations (such as the
smoothed spectral envelope). In contrast, the residue-driven architecture re-
constructs a time-domain waveform for the modelled signal components, and
subtracts this from the acoustic input to leave a residue which is then fur-
ther analysed. Okuno et al. implement the residue-driven approach within
a multi-agent system, in which three kinds of agent (event-detectors, tracer-
generators and tracers) initiate and track harmonic fragments. The multi-
agent framework is similar in concept to the blackboard – ‘experts’ and
‘agents’ are roughly equivalent – except that agents communicate directly
rather than through a global data structure.

Some recent approaches to cue integration in CASA have been motivated
by the development of powerful algorithms in the machine learning commu-
nity, rather than classical artificial intelligence techniques. For example, Nix
et al. [43] describe a statistical approach to CASA which is based on a state-
space approach. Specifically, they consider the problem of separating three
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speakers using two microphones. The problem is formulated as a Markov
state-space of the form

xk = fk(xk−1,vk−1) (16.8)

zk = gk(xk,nk) (16.9)

Here, xk represents the azimuth, elevation and short-time magnitude spec-
trum of each speaker at time k (which are unknown), and zk is the power spec-
tral density observed at the two microphones. The function fk(xk−1,vk−1)
corresponds to the probability density function p(xk|xk−1), i.e. the proba-
bility that one pair of directions and magnitude spectra at time k succeed
another pair of directions and magnitude spectra at time k− 1. The function
gk(xk,nk) corresponds to p(zk|xk), which is the probability that an obser-
vation zk is made when the state of the system is xk. The random variables
vk and nk are termed the ‘process noise’ and ‘observation noise’ respectively,
and have known statistics. The task is to estimate xk from the values of
zi, 1 ≤ i ≤ k, in an optimal manner. This estimation task is performed
by a sequential Monte Carlo method (also known as the ‘particle filter’ or
‘condensation’ algorithm).

The performance of the system reported in [43] is somewhat disappointing;
although the system reliably tracks the direction and short-time magnitude
spectrum of a single source, it is unable to estimate the spectra of two concur-
rent voices with any accuracy. Additionally, the computational requirement
of the algorithm is high and training is time consuming; the authors report
that it took several weeks to estimate p(xk|xk−1) from a large database of
recorded speech.

Finally, we note that the problem of cue integration in CASA is closely
related to the binding problem. This term refers to the fact that information
about a single sensory event is distributed across many areas of the brain
– how is this information bound together to form a coherent whole? One
possibility is that the grouping of neural responses is performed by oscilla-
tory correlation. In this scheme, neurons that represent features of the same
sensory event have synchronised responses, and are desynchronised from neu-
rons that represent different events. Wang and colleagues [64,66] have used
the principle of oscillatory correlation to build a neurobiologically-motivated
architecture for CASA. In the first stage of their scheme, the correlogram is
employed to detect the periodicities present in local time-frequency regions.
Subsequently, processing is performed by a two-layer oscillator network which
mirrors the two conceptual stages of ASA. In the first (segmentation) layer,
periodicity information is used to derive segments, each of which encodes a
significant feature in the time-frequency plane. Oscillators belonging to the
same segment are synchronised by local connections. In the second (grouping)
layer, links are formed between segments that have compatible periodicity in-
formation along their length (i.e., those that are likely to belong to the same
F0). As a result, groups of segments form in the second layer which corre-
spond to sources that have been separated by their F0.
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Frameworks for CASA based on neural oscillators have two attractive fea-
tures. Firstly, they are based on a parallel and distributed architecture which
is suitable for implementation in hardware. Secondly, because the oscillator in
each time-frequency region may be regarded as ‘on’ or ‘off’ at any particular
time instant, the output of an oscillator array may be interpreted as a binary
time-frequency mask. This makes them eminently suitable as a front-end to
ASR systems that employ missing feature techniques (see below).

16.4 Integrating CASA with Speech Recognition

Conventional ASR systems are constructed on the assumption that the input
to them will be speech. In practice this is usually not the case, because
speech is uttered in acoustic environments in which other sound sources may
be present. As a result, the performance of conventional ASR system declines
sharply in the presence of noise.

ASR is a pattern recognition problem in which observed acoustic features
X must be assigned to some class of speech sound. This is achieved by select-
ing the word sequence W which maximises the posterior probability P (W |X),
which can be expressed using Bayes theorem as

Ŵ = argmax
W

P (X|W )P (W )

P (X)
(16.10)

where P (W ) is the language model and the likelihood P (X|W ) is the acoustic
model. One approach to improving the noise-robustness of ASR is to enhance
the speech in the acoustic mixture, so that the observed features resemble the
acoustic model as closely as possible. This provides the most straightforward
approach to integrating CASA and ASR; the CASA system segregates the
speech from the acoustic mixture, and then a ‘clean’ signal is resynthesized
and passed to the recogniser. A number of CASA systems have included such
a resynthesis pathway by inverting a time-frequency representation (e.g., see
[67], [11], [6]). Other representations can also be inverted. For example, Slaney
et al. [58] describe an approach for inverting the correlogram, which allows
sounds to be segregated according to their F0s and then reconstructed.

An advantage of the resynthesis approach is that it allows the use of un-
modified ASR systems; this is preferable, because the front-end processing
used by CASA systems does not usually provide acoustic features that are
suitable for training a conventional ASR system. However, the approach has
met with limited success. For example, the system described by Weintraub
paired CASA with a speaker-independent continuous-digit-recognition sys-
tem, and attempted to recognise utterances simultaneously spoken by a male
and female speaker. A modest improvement in recognition accuracy was ob-
tained for the (dominant) male voice, but performance for the female speaker
actually fell as a result of CASA processing.
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A further criticism of the resynthesis approach is that it embodies a very
weak link between the CASA and ASR systems; given the important role of
schema-driven grouping, one would expect that a tighter integration of CASA
and speech models would be beneficial. Ellis [23] has addressed this issue by
integrating a speech recogniser into his prediction-driven CASA architecture.
When presented with an acoustic mixture, his system attempts to interpret it
as speech. Following decoding by the ASR system, an estimate of the speech
component of the mixture is used to determine the characteristics of the re-
maining (nonspeech) signal features. In turn, the estimate of the nonspeech
components can be used to re-estimate the speech. Hence, an iterative cy-
cle of estimation and re-estimation develops, which finally converges on an
explanation of the acoustic mixture in terms of the speech and nonspeech
components present.

Techniques such as correlogram inversion [58] attempt to reconstruct ar-
eas of the speech spectrum that have been obliterated by an interfering noise.
An alternative approach is to identify those time-frequency regions that are
missing or considered unreliable, and treat them differently during the de-
coding stage of ASR. Specifically, Cooke et al. [13] have proposed a missing
feature approach to ASR which links closely with CASA. In their approach,
the observed acoustic features X are partitioned into two sets, Xr and Xu,
which correspond to reliable and unreliable features respectively. Using a
modified continuous-density HMM (CDHMM), the authors show that it is
possible to impute the values of the missing features Xr. Alternatively, the
maximum a posteriori estimate of the speech class can be found as given in
(16.10), by replacing the likelihood P (X|W ) with the marginal distribution
P (Xr|W ). Furthermore, a ‘bounded marginalisation’ approach may be used
in which the values of the missing features are constrained to lie within a
certain range. For example, the value of a spectral feature must lie between
zero and the observed spectral energy.

In practice, a missing feature recogniser is provided with a set of acoustic
features and a time-frequency mask, which is typically obtained from a CASA
system. The mask may be binary (in which case each time-frequency region
is regarded as either reliable or unreliable) or real-valued. In the latter case,
each mask value may be interpreted as the probability that the corresponding
time-frequency region is reliable.

A number of workers have described ASR systems that combine a missing
feature speech recogniser with CASA-based mask estimation. For example,
Roman et al. [52] employ binaural cues to estimate the ideal binary mask
for a target speaker which is spatially separated from an interfering sound
source. A large improvement in recognition accuracy was obtained compared
to a conventional ASR system, for a connected digit recognition task. Similar
results were obtained by Palomäki et al. [47], also using a binaural model and
missing feature ASR system. Their system computes a binary mask by ex-
amining the cross-correlation functions in each time-frequency region. Their
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system has been evaluated in the presence of moderate reverberation and
obtains substantial ASR improvements.

Neural oscillator frameworks for CASA represent an ideal front-end for
missing feature ASR systems, because the activity of oscillators arranged in
a time-frequency grid can be directly interpreted as a mask. Brown et al. [8]
describe an oscillator-based CASA system which segregates speech from inter-
fering noise using F0 information (derived from a correlogram). Additionally,
unpitched interference is removed by noise estimation and cancellation; os-
cillators are deactivated (and hence give rise to a mask value of zero) if they
correspond to acoustic components that lie below the noise floor. The authors
report good performance on a digit recognition task at low SNRs, but note
that unvoiced regions of speech are not represented in the oscillator array; as
a result, the performance of their system falls below that of a conventional
ASR system at high SNRs.

We also note that mask estimation can be achieved in a purely top-down
manner. Roweis [54] describes a technique for estimating binary masks using
an unsupervised learning method. Specifically, speaker-dependent HMMs are
trained on the speech of isolated talkers, and then combined into a factorial
HMM (FHMM). The latter consists of two Markov chains which evolve inde-
pendently. Given an mixture of two utterances, the underlying state sequence
in the FHMM is inferred and the output predictions for each Markov chain
are computed. A binary mask is then determined by comparing the relative
values of these output predictions.

The missing feature approach achieves a tighter integration between CASA
and ASR, but still embodies a unidirectional flow of information from the
front-end to the recogniser. However, Barker et al. [1] report a further de-
velopment of the missing feature technique which accommodates data-driven
and schema-driven processing within a common framework; the so-called mul-
tisource decoder. In this approach, it is assumed that the observed features
Y represent a mixture of speech and interfering sound sources. The goal is
therefore to find the word sequence W and segregation mask S which jointly
maximise the posterior probability,

Ŵ , Ŝ = argmax P (W, S|Y)
W,S

(16.11)

Barker et al. show that P (W, S|Y) can be written in terms of the speech
features X (which are now considered to be unobserved) by integrating over
their possible values, giving

P (W, S|Y) = P (W )

(
∫

P (X|W )
P (X|S,Y)

P (X)
dX

)

P (S|Y) (16.12)

As before, P (W ) and P (X|W ) in (16.12) represent the language model and
acoustic model respectively. However, two new terms are introduced. P (S|Y)
is a segregation model, which describes the probability of a particular mask
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S given the observed features Y, but independent of the word hypothesis
W. Such information can be obtained from a data-driven CASA system. The
remaining term P (X|S,Y)/P (X) is a likelihood weighting factor. Most im-
portantly, the maximisation in (16.11) occurs over both W and S so that both
schema-driven and data-driven information are incorporated in the search.

Barker et al. derive an efficient search technique for evaluating (16.12)
within a CDHMM system, and test the decoder on a noise-corrupted con-
nected digit task. Segregation masks were obtained using a simple spectral
subtraction approach. A reduction in word error rate of about 25% was ob-
tained, relative to a conventional ASR system. The authors predict that fur-
ther performance gains can be achieved by using CASA processing to estimate
the masks.

Yet another way of integrating CASA and speech recognition is to use
speech schemas triggered by recognition to restore speech which has been
masked by noise. Specifically, Srinivasan and Wang propose a schema-based
model for phonemic restoration [60]. Their model estimates reliable time-
frequency regions and feeds them to a missing feature recogniser. Successful
recognition activates a word template, which is then dynamically time warped
to the noisy word so as to restore the speech frames corresponding to the noisy
portion of the word. Unlike earlier data-driven efforts, their model can restore
both voiced and unvoiced phonemes with a high degree of naturalness.

16.5 CASA Compared to ICA

CASA and ICA differ somewhat in their approaches to speech separation;
here, we consider some of the differences and also comment on the possibility
of harmonising the two approaches.

Broadly, CASA and ICA differ in a number of respects. For example,
CASA emphasises the role of intermediate signal representations such as the
correlogram, whereas ICA usually operates directly on the sampled acoustic
signal. Likewise, CASA algorithms exploit continuity in time and frequency,
whereas ICA does not. The performance profile of ICA also differs substan-
tially from that of human listeners. For instance, ICA typically aims to seg-
regate every source signal from a mixture, whereas human listeners perform
figure/ground segregation. Similarly, CASA systems – which are motivated
by human performance – often aim to separate a target speaker from the
acoustic background rather than completely demix the input (e.g., [66], [40],
[8]).

A direct comparison of CASA and ICA was reported by van der Kouwe
et al. [63]. They compared the performance of Wang and Brown’s CASA
system [66] with two schemes for ICA, one of which was the fourth-order
JADE method [9]. The algorithms were evaluated on Cooke’s [11] corpus of
speech and noise mixtures, and performance was expressed in terms of the
gain in SNR obtained. It was found that the CASA and ICA algorithms
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performed well under very different conditions. In general, CASA techniques
require that the acoustic mixture exhibits well-defined regions in the time-
frequency plane which correspond to one or more sound sources. Hence, the
performance of the CASA system was best in conditions in which the inter-
ferer was tonal or locally narrowband. The JADE algorithm did not perform
as well in these conditions, presumably because the narrowband interferers
yielded poor higher-order statistics. On the other hand, the CASA system
performed poorly in conditions where there was substantial spectral overlap
between the speech and interferer. Again the situation for JADE was the
opposite; it performed particularly well with broadband interferers (such as
speech and random noise), which contain rich higher order joint statistics.

It should be noted that comparison of CASA and ICA is frustrated by
the lack of a suitable corpus. The speech and noise mixtures employed by van
der Kouwe et al. were not ideal, because the mixing process was constant
and linear, the mixing matrix was far from singular, there were two mix-
tures and two sources, and source signals were perfectly temporally aligned
in both mixtures. Such conditions meet all of the requirements for ICA (ex-
cept for statistical independence of the sources), but are not representative
of mixtures recorded in real acoustic environments. On the other hand, the
corpus was designed to present a challenging test for CASA systems [11],
which do not have such requirements. Clearly, further comparison of CASA
and ICA techniques would be facilitated by the availabiliy of a corpus that
was designed for evaluating both approaches.

Although CASA and ICA differ in their approaches, there are some sim-
ilarities between them. For example, de Cheveigné [14] notes the similarity
between frequency-domain ICA and equalisation-cancellation models of bin-
aural signal detection. Also, there are possibilities for combining the two
approaches [59]. Yilmaz and Rickard [71] describe an approach for separat-
ing speech mixtures via the blind estimation of time-frequency masks, which
is closely related to the system of Roman et al. [52]. Such an approach could
be integrated with CASA systems that use a similar time-frequency repre-
sentation (e.g., [7], [66], [29]). Another example of the combination of ICA
and CASA technique is provided by Rutkowski et al. [55], who describe a sys-
tem in which ICA is applied to each frequency channel of a correlogram. The
extracted signals in each channel that have a periodic structure are used to re-
construct a time-domain waveform using correlogram inversion [58], whereas
the remaining noisy signals are discarded. The authors report good perfor-
mance for the separation of two sources recorded in a reverberant room, which
exceeds the performance expected using CASA or ICA alone.

16.6 Challenges for CASA

In this penultimate section, we briefly review some of the challenges that
remain for CASA, and make suggestions for further work.
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Evaluation is an important issue for CASA that requires further thought.
Research in ASR has undoubtedly benefitted from the adoption of standard
metrics and evaluation tasks for comparing performance, such as those in-
troduced by the US National Institute of Standards and Technology (NIST).
The situation in CASA is very different; workers rarely compare their work
on the same corpus and use a variety of performance metrics. The latter
include comparisons of intermediate auditory representations [11], various
metrics related to SNR [7], [66] and ASR performance using conventional
or ‘missing feature’ speech recognisers [67,52,47]. Ellis [22] argues that the
CASA research community should standardise on an evaluation domain that
is relevant to a real-world problem (such as acoustic analysis of multi-party
meetings), and that the performance of CASA systems should be judged
against human performance on the same task.

On a related point, CASA is informed and motivated by the psychophys-
ical literature on ASA (and to a lesser extent, the physiological literature).
However, if CASA systems are ‘models’ of human function in a true sense,
then they should be able to generate hypotheses that can be tested by further
psychophysical experimentation. In fact, there is currently little evidence of
such synergy occurring. A notable exception is the work of Cooke [10], who
has proposed a ‘glimpsing’ model of human speech perception based on in-
sights gained from his missing feature approach to ASR.

Most work in CASA assumes that sound sources remain in fixed positions
for the duration of an input signal. This is not representative of real-world
environments, and dealing with moving sound sources remains a challenging
research issue. Early work on this problem is reported by Roman and Wang
[51], who describe a binaural model based on the same principles as the
multi-pitch tracking algorithm of Wu et al. [69]. Following auditory filtering
and cross-correlation, an HMM is used to form continuous location tracks
and estimate the number of sound sources present. Their approach performs
well; for example, it is able to simultaneously track two sound sources whose
trajectories cross in space.

Another interesting area for further study is the combination of CASA
algorithms with established signal processing techniques. For example, Drake
et al. [19] describes a two-stage algorithm for CASA-enhanced beamforming
(CASA-EB). In the first stage of her system, the output from each channel
of an auditory model is processed by a beamformer and mapped to a three
dimensional space with dimensions of frequency, time and arrival angle. In the
second stage, acoustic components are grouped according to F0 and estimated
location. Drake et al. demonstrate that in most conditions, the performance
of CASA-EB is superior to that of monaural CASA or beamforming alone.

The role of attention in CASA has largely been overlooked in computa-
tional studies, and merits further work. A model of auditory attention might
allow a single source to be tracked in a changing acoustic environment, or
allow the most salient source to be extracted from a mixture. Preliminary
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work in this regard has been reported by Wrigley and Brown [70]. In their
model, a network of neural oscillators performs stream segregation using a
principle of oscillatory correlation. A weighting is given to specific frequency
regions using a Gaussian-shaped function, which determines the connection
weights between oscillators and an attentional unit. When the activity of the
attentional unit is synchronised with a group of oscillators, the corresponding
acoustic features are held to be in the attentional foreground. The authors
have demonstrated the ability of their model to explain psychophysical find-
ings related to the perception of tonal stimuli, but the model remains to be
tested with complex stimuli such as speech.

Another challenge for CASA is the monaural separation of unvoiced speech;
this issue has received much less attention than the problem of segregating
voiced speech using pitch cues. Recently, Hu and Wang [28] have described
a system for separating stop consonants from background interference. Stops
generally consist of a weak closure and a subsequent burst, which is usually
unvoiced and cannot therefore be separated from interference on the basis
of pitch. Instead, Hu and Wang’s system identifies stops by detecting onsets
in the average rate response at the output of each channel of an auditory
filterbank. If a significant onset has occurred, it is classified by a Bayesian
decision rule on the basis of its spectral shape, intensity and decay time in
order to determine whether it corresponds to a stop consonant (as opposed to
another impulsive non-speech sound). The authors evaluate their algorithm
on a task involving the detection of stop consonants mixed with several types
of environmental noise. The system performs respectably when the SNR is
high (20 dB or above) but detection performance falls rapidly at lower SNRs.
However, the number of confusions (interfering signals which are erroneously
identified as stops) remains relatively low, even at 0 dB SNR.

Finally, relatively few workers have evaluated their CASA systems in re-
verberant conditions, and still fewer have included mechanisms that deal
specifically with reverberated input. Exceptions include the binaural model
of Palomäki et al. [47], which employs a simple model of the ‘precedence effect’
to remove echoes due to room reverberation. Evaluation of sound separation
systems in reverberant conditions has also been undertaken by Kollmeier
and Koch [34], Shamsoddini and Denbigh [56] and Roman and Wang [53].
Dealing with reverberation in single-microphone recordings is a particularly
challenging issue. Recently, Wu and Wang [68] have proposed an approach
to this problem which is based on a two-stage algorithm. In the first stage, a
pitch-based metric is used to estimate the reveberation time; this is based on
the author’s previous multipitch tracking algorithm [69]. In the second stage,
an enhancement method estimates and subtracts the acoustic energy due to
echoes. An novel approach to the problem is also proposed by Palomäki et
al. [48]. They describe a system for recognition of reverberated speech in
which a time-frequency ‘reverberation mask’ is estimated for use with a miss-
ing feature ASR system. Elements that are selected in the mask correspond
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to time-frequency regions that are relatively uncontaminated by reverbera-
tion. Because their system is based on a mask representation, it would be
relatively straightforward to combine it with other CASA algorithms.

16.7 Conclusions

In summary, CASA aims to replicate the perceptual processes by which hu-
man listeners segregate simultaneous sounds. It is a growing research area,
which is attracting the interest of workers in the machine learning community
as well as those in the signal processing and computational modelling com-
munities. Much progress has been made in CASA-based speech separation in
the last few years.

Given the topic of this volume, we conclude with some further comments
on the differences between CASA and ICA. Firstly, we note that speech
segregation need not require the resynthesis of a high-quality speech signal,
as is assumed in most ICA studies. If the goal is robust ASR, then only a time-
frequency mask and its corresponding acoustic features are needed. Secondly,
we have indicated that there are some prospects for marrying the CASA
and ICA approaches. For example, ICA can be used to find the independent
components in each channel of an auditory filterbank, or in mid-level auditory
representations such as the correlogram.

CASA is motivated by an account of auditory perception; indeed, the
term ‘model’ is frequently used to describe CASA systems. We believe that
adherence to the general principles of auditory processing is likely to give rise
to CASA systems that make fewer assumptions than those based on ICA, and
we are hopeful that this will translate into superior performance in real-world
acoustic environments.
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