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Abstract

A neural model is described which uses oscillatory correlation to
segregate speech from interfering sound sources. The core of the model
is a two-layer neural oscillator network. A sound stream is represented
by a synchronized population of oscillators, and different streams are
represented by desynchronized oscillator populations. The model has
been evaluated using a corpus of speech mixed with interfering sounds,
and produces an improvement in signal-to-noise ratio for every mixture.

1 Introduction

Speech is seldom heard in isolation: usually, it is mixed with other environmental sounds.
Hence, the auditory system must parse the acoustic mixture reaching the ears in order to
retrieve a description of each sound source, a process teanmditbry scene analysis
(ASA) [2]. Conceptually, ASA may be regarded as a two-stage process. The first stage
(which we term ‘segmentation’) decomposes the acoustic stimulus into a collection of
sensory elements. In the second stage (‘grouping’), elements that are likely to have arisen
from the same environmental event are combined into a perceptual structure called a
stream Streams may be further interpreted by higher-level cognitive processes.

Recently, there has been a growing interest in the development of computational systems
that mimic ASA [4], [1], [5]. Such computational auditory scene analysis (CASA)
systems are inspired by auditory function but do not model it closely; rather, they employ
symbolic search or high-level inference engines. Although the performance of these
systems is encouraging, they are no match for the abilities of a human listener; also, they
tend to be complex and computationally intensive. In short, CASA currently remains an
unsolved problem for real-time applications such as automatic speech recognition.

Given that human listeners can segregate concurrent sounds with apparent ease,
computational systems that are more closely modelled on the neurobiological mechanisms
of hearing may offer a performance advantage over existing CASA systems. This
observation- together with a desire to understand the neurobiological basis of Alsas

led some investigators to propose neural network models of ASA. Most recently, Brown
and Wang [3] have given an account of concurrent vowel separation basetidatory
correlation In this framework, oscillators that represent a perceptual stream are
synchronized (phase locked with zero phase lag), and are desynchronized from oscillators
that represent different streams [8]. Evidence for the oscillatory correlation theory comes
from neurobiological studies which report synchronised oscillations in the auditory, visual
and olfactory cortices (see [10] for a review).
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In this paper, we propose a neural network model that uses oscillatory correlation as the
underlying neural mechanism for ASA; streams are formed by synchronizing oscillators

in a two-dimensional time-frequency network. The model is evaluated on a task that

involves the separation of two time-varying sounds. It therefore extends our previous

study [3], which only considered the segregation of vowel sounds with static spectra.

2 Model description

The input to the model consists of a mixture of speech and an interfering sound source,
sampled at a rate of 16 kHz with 16 bit resolution. This input signal is processed in four
stages described below (see [10] for a detailed account).

2.1 Peripheral auditory processing

Peripheral auditory frequency selectivity is modelled using a bank of 128 gammatone
filters with center frequencies equally distributed on the equivalent rectangular bandwidth
(ERB) scale between 80 Hz and 5 kHz [1]. Subsequently, the output of each filter is
processed by a model of inner hair cell function. The output of the hair cell model is a
probabilistic representation of auditory nerve firing activity.

2.2 Mid-level auditory representations

Mechanisms similar to those underlying pitch perception can contribute to the perceptual
separation of sounds that have different fundamental frequencies (F0s) [3]. Accordingly,
the second stage of the model extracts periodicity information from the simulated auditory
nerve firing patterns. This is achieved by computing a running autocorrelation of the
auditory nerve activity in each channel, forming a representation knowrt@sedogram
[1], [5]. At time stepj, the autocorrelatioA(i,j,T) for channel with time lagrt is given by:
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Here,r is the output of the hair cell model amdis a rectangular window of widtK time
steps. We usK = 320, corresponding to a window width of 20 ms. The autocorrelation lag
T is computed inL steps of the sampling period between 0 dndl; we uselL = 201,
corresponding to a maximum delay of 12.5 ms. Equation (1) is computelll fome
frames, taken at 10 ms intervals (i.e., at intervals of 160 steps of the timg)index

For periodic sounds, a characteristic ‘spine’ appears in the correlogram which is centered
on the lag corresponding to the stimulus period (Figure 1A). This pitch-related structure
can be emphasized by forming a ‘pooled’ correlogis{jit), which exhibits a prominent
peak at the delay corresponding to perceived pitch:
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It is also possible to extract harmonics and formants from the correlogram, since
frequency channels that are excited by the same acoustic component share a similar
pattern of periodicity. Bands of coherent periodicity can be identified by cross-correlating
adjacent correlogram channels; regions of high correlation indicate a harmonic or formant
[1]. The cross-correlatio@(i,j) between channelsandi+1 at time framg is defined as:
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Here, A(i, j, 1) is the autocorrelation function of (1) which has been normalized to have
zero mean and unity variance. A typical cross-correlation function is shown in Figure 1A.



2.3 Neural oscillator network: overview

Segmentation and grouping take place within a two-layer oscillator network (Figure 1B).
The basic unit of the network is a single oscillator, which is defined as a reciprocally
connected excitatory variabbe and inhibitory variabley [7]. Since each layer of the
network takes the form of a time-frequency grid, we index each oscillator according to its
frequency channel)(and time framej):

Xj = 3Ky =X + 2=+l + S +p )
Yij = €(y(1+ tanh(x;/B)) - Y;;) (4b)

Here, I;; represents external input to the oscillat§y, denotes the coupling from other
oscillators in the networlkg, y andf3 are parameters, amplis the amplitude of a Gaussian
noise term. If coupling and noise are ignored dgdis held constant, (4) defines a
relaxation oscillator with two time scales. Theullcline, i.e.%; = 0 , is a cubic function

and they-nulicline is a sigmoid function. If;, >0 , the two nullclines intersect only at a
point along the middle branch of the cubic wiglthosen small. In this case, the oscillator
exhibits a stable limit cycle for small values gfand is referred to asnabled The limit

cycle alternates betweenilent and active phases of near steady-state behaviour.
Compared to motion within each phase, the alternation between phases takes place
rapidly, and is referred to asmping If 1;; <0, the two nuliclines intersect at a stable fixed
point. In this case, no oscillation occurs. Hence, oscillations in (4) are stimulus-dependent.

2.4 Neural oscillator network: segment layer

In the first layer of the networlsegmentsre formed- blocks of synchronised oscillators
that trace the evolution of an acoustic component through time and frequency. The first
layer is a two-dimensional time-frequency grid of oscillators with a global inhibitor (see
Figure 1B). The coupling ter§; in (4a) is defined as

Sj = W”- ki H (X —6,) —W,H(z-6,) (5)
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whereH is the Heaviside function (i.eH(x) = 1 forx > 0, and zero otherwise}y; | is the
connection weight from an oscillatarjj to an oscillator K,|) andN(i,j) is the four nearest
neighbors of i(j). The threshold, is chosen so that an oscillator has no influence on its
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Figure 1: A. Correlogram of a mixture of speech and trill telephone, taken 450 ms after th
start of the stimulus. The pooled correlogram is shown in the bottom panel, and the cross-
correlation function is shown on the right. B. Structure of the two-layer oscillator network.



neighbors unless it is in the active phase. The weight of neighboring connections along the
time axis is uniformly set to 1. The connection weight between an oscillgipagd its
vertical neighborig-1j) is set to 1 ifC(i,j) exceeds a threshoBy; otherwise it is set to 0.

W, is the weight of inhibition from the global inhibitardefined as

z=0,-2 (6)
whereo,, = 1 if x; = 6, for at least one oscillatoi,), ando,, = 0 otherwise. Henc8, is a
threshold. Ifo, =1, z- 1.

Small segments may form which do not correspond to perceptually significant acoustic
components. In order to remove these noisy fragments, we introduce a lateral pgtential

for oscillator (,j), defined as [11]:
5. = (1-p;)H H(x,—0,)-06_|—¢ep; 7
P = (1-py) [klﬂg(ij) (X =6y pJ ep; (7)

Here, 6, is a thresholdNy(i j) is called the potential neighborhood &f), which is chosen
to be (,j 1) and (,j+1). IFboth neighbors ofi()) are activep; approaches 1 on a fast time
scale; otherwisgy; relaxes to 0 on a slow time scale determlned by

The lateral potential plays its role by gating the input to an oscillator. More specifically,
we replace (4a) with

% = 3% =% + 2y, + 1 H(py —0) +S; +p (4a)

W|th pj initialized to 1, it follows thatp; will drop below the threshold® unless the
oscillator (,j) receives excitation from |ts entire potential neighborhood. Given our choice
of neighborhood in (5), this implies that a segment must extend for at least three
consecutive time frames. Oscillators that are stimulated but cannot maintain a high
potential are relegated to a discontiguous ‘background’ of noisy activity.

An oscillator (,)) is stimulated if its corresponding inpuyf >0 . Oscillators are stimulated
only if the energy in their corresponding correlogram channel exceeds a thré€ghtil
evident from (1) that the energy in a correlogram charinat time j corresponds to
A(i,},0); thus we selfy = 0.2 ifA(i,j,0) >6,, andlj = -5 otherwise.

Figure 2A shows the segmentation of a mixture of speech and trill telephone. The network
was simulated by the LEGION algorithm [8], producing 94 segments (each represented by
a distinct gray level) plus the background (shown in black). For convenience we show all
segments together in Figure 2A, but each actually arises during a unigue time interval.
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Figure 2: A. Segments formed by the first layer of the network for a mixture of speech and
trill telephone. B. Categorization of segments according to FO. Gray pixels represent the set
P, and white pixels represent regions that do not agree with the FO.



2.5 Neural oscillator network: grouping layer

The second layer is a two-dimensional network of laterally coupled oscillators without
global inhibition. Oscillators in this layer are stimulated if the corresponding oscillator in
the first layer is stimulated and does not form part of the background. Initially, all
oscillators have the same phase, implying that all segments from the first layer are
allocated to the same stream. This initialization is consistent with psychophysical
evidence suggesting that perceptual fusion is the default state of auditory organisation [2].
In the second layer, an oscillator has the same form as in (4), excegtitheftanged to:

. 3 .
Xj = 3% =X+ 2=y + 1[1+uH(p; —0)] +§; +p (4a")

Here,p is a small positive parameter; this implies that an oscillator with a high lateral
potential gets a slightly higher external input. We cholNsg,j) and8, so that oscillators
which correspond to the longest segment from the first layer are the first to jump to the
active phase. The longest segment is identified by using the mechanism described in [9].

The coupling term in (4a") consists of two types of coupling:

S = S+ S (®)

Here S represents mutual excitation between oscillators within each segment. We set
3- =4 |f the active oscillators from the same segment occupy more than half of the

Iength of the segment; othermﬁ = 0.1 ifthereis at least one active oscillator from the
same segment.

The coupling terma denotes vertical connections between oscillators corresponding to
different frequency channels and different segments, but within the same time frame. At
each time frame, an FO is estimated from the pooled correlogram (2) and this is used to
classify frequency channels into two categories: a set of charfhelsat are consistent

with the FO, and a set of channels that are not (Figure 2B). Given the dgktywhich the
largest peak occurs in the pooled correlogram, for each chaartihe frame, i O P if

A, , )/ A, , 0) > B4 ©
SinceA(i,j,0) is the energy in correlogram channet timej, (9) amounts to classification

on the basis of an energy threshold. We 8ge 0.95. The delay,,, can be found by using
a winner-take-all network, although for simplicity we currently apply a maximum selector.
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Figure 3: A. Snapshot showing the activity of the second layer shortly after the Btart o
simulation. Active oscillators (white pixels) correspond to the speech stream. B. Another
snapshot, taken shortly after A. Active oscillators correspond to the telephone stream.



The FO classification process operates on channels, rather than segments. As a result,
channels within the same segment at a particular time frame may be allocated to different
FO categories. Since segments cannot be decomposed, we enforce a rule that all channels
of the same frame within each segment must belong to the same FO category as that of the
majority of channels. After this conformational step, vertical connections are formed such
that, at each time frame, two oscillators of different segments have mutual excitatory links

if the two corresponding channels belong to the same FO category; otherwise they have
mutual inhibitory links.S; is set to -0.5 ifi {) receives an input from its inhibitory links;
similarly, 3‘] is set to 0.5 ifi(j) receives an input from its vertical excitatory links.

At present, our model has no mechanism for grouping segments that do not overlap in
time. Accordingly, we limit operation of the second layer to the time span of the longest

segment. After forming lateral connections and trimming by the longest segment, the
network is numerically solved using the singular limit method [6].

Figure 3 shows the response of the second layer to the mixture of speech and trill
telephone. The figure shows two snapshots of the second layer, where a white pixel
indicates an active oscillator and a black pixel indicates a silent oscillator. The network
quickly forms two synchronous blocks, which desynchronize from each other. Figure 3A
shows a snapshot taken when the oscillator block (stream) corresponding to the segregated
speech is in the active phase; Figure 3B shows a subsequent snapshot when the oscillator
block corresponding to the trill telephone is in the active phase. Hence, the activity in this
layer of the network embodies the result of ASA; the components of an acoustic mixture
have been separated using FO information and represented by oscillatory correlation.

2.6 Resynthesis

The last stage of the model is a resynthesis path. Phase-corrected output from the
gammatone filterbank is divided into 20 ms sections, overlapping by 10 ms and windowed
with a raised cosine. A weighting is then applied to each section, which is unity if the
corresponding oscillator is in its active phase, and zero otherwise. The weighted filter
outputs are summed across all channels to yield a resynthesized waveform.
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Figure 4: A. SNR before (black bar) and after (grey bar) separation by the model. Results
are shown for voiced speech mixed with ten intrusion® €N1 kHz tone; N1 = random
noise; N2 = noise bursts; N3 = ‘cocktail party’ noise; N4 = rock music; N5 = siren; N6 =
trill telephone; N7 = female speech; N8 = male speech; N9 = female speech). B.
Percentage of speech energy recovered from each mixture after separation by the model.



3 Evaluation

The model has been evaluated using 100 mixtures of speech and noise [4]. The mixtures
are obtained by adding the waveforms of ten voiced utterances to each of ten intrusive
sounds. Since separate speech and noise waveforms are available, a signal-to-noise ratio
(SNR) can be computed for each mixture. Also, the SNR can be estimated after processing
by the model using separated speech and noise waveforms from the resynthesis path [10].

The SNR before and after separation by the model is shown in Figure 4A, averaged across
the ten utterances for each noise condition. Dramatic improvements in SNR are obtained
when the interfering noise is narrowband (1 kHz tone and siren); such intrusions tend to be
represented as a single segment, which can be segregated very effectively from the speech
source. Informal listening tests suggest that the intelligibility of the resynthesized speech
is good. Also, we have quantified the percentage of speech energy that is recovered by the
segregation process: typically, this is between 55% and 80% (Figure 4B).

4 Discussion

A significant feature of the model proposed here is that each stage has a neurobiological
foundation. The peripheral auditory model is based upon the gammatone filter, which is

derived from physiological measurement of auditory nerve impulse responses. Similarly,

our mid-level auditory representations are consistent with the physiology of the higher

auditory system [1]. Overall, the model is based on a framewaskcillatory correlation

— which is supported by recent neurophysiological findings.

The neural oscillator network performs ASA in a distributed manner; each oscillator
behaves autonomously and in parallel with the other oscillators. Although there are issues
regarding real-time implementation of the model that must be resolved [10], there is a real
possibility that the oscillator network can be implemented in analog VLSI. This feature is
very attractive, since the high speed and compact size of analog VLSI will be needed if
CASA is to provide an effective front-end for automatic speech recognition systems.
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