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ABSTRACT:
In the presence of room reverberation and background noise, the performance of frame-level speaker localization is

severely limited. To address this challenge, this study performs multi-channel speech enhancement based on complex

spectral mapping (CSM), followed by direction-of-arrival (DOA) estimation using weighted generalized cross-corre-

lation with phase transform (GCC-PHAT). The proposed approach differs from prevailing deep learning methods

that operate on multi-channel inputs directly for speaker localization. This study initially investigates multi-input sin-

gle-output (MISO) based speech enhancement models with two loss functions and then extends to multi-input multi-

output (MIMO) based modeling for conceptual and computational efficiency. The results demonstrate that the phase

estimates obtained from CSM models are reliable for frame-level DOA estimation and MIMO systems outperform

MISO systems. In addition, the study proposes new multi-channel loss functions for MIMO systems that incorporate

phase differences in order to better preserve inter-channel phase relations, which is key to accurate sound localiza-

tion. Systematic evaluations with multiple microphone array geometries using both simulated and recorded room

impulse responses, as well as real recordings, demonstrate that the proposed model yields excellent frame-level

speaker localization results in reverberant and noisy environments and outperforms related methods by a large mar-

gin, even surpassing their utterance-level results.VC 2025 Acoustical Society of America.
https://doi.org/10.1121/10.0038627
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I. INTRODUCTION

Robust speaker localization aims to find the spatial

location of a target source relative to a microphone array.

Localizing sound sources in an acoustic environment has

numerous applications, including auditory scene analysis,

teleconferencing, immersive virtual or augmented reality,

and voice-activated human-machine interaction. Direction-

of-arrival (DOA) information is essential for beamforming,

widely used in signal processing or deep learning based sys-

tems for speech enhancement (Gannot et al., 2017; Vincent
et al., 2018). DOA estimation relies on spatial features such

as inter-channel time differences, inter-channel phase differ-

ences (IPDs), inter-channel level differences, and relative

transfer functions (RTFs). Standard DOA methods include

generalized cross correlation with phase transform (GCC-

PHAT) (Knapp and Carter, 1976), steered response power

with phase transform (SRP-PHAT) (DiBiase et al., 2001),
and multiple signal classification (MUSIC) (Schmidt, 1986).

For example, Kabzinski and Habets proposed a weighted

least-squares optimization solution for DOA estimation by

minimizing the difference between observed and expected

IPDs (Kabzinski and Habets, 2019). However, the DOA per-

formance of these algorithms severely degrades in reverber-

ant and noisy environments.

Recent studies on robust speaker localization employ a

deep neural network (DNN) to directly estimate DOA through

supervised training (Grumiaux et al., 2022). Typically, these
methods use spatial features, GCC-PHAT, or input spectro-

grams and employ convolutional neural networks (CNNs),

convolutional recurrent networks (CRNs), or attention based

networks as model architectures. Chakrabarty and Habets train

a CNN using phase spectrograms as input to generate posterior

probabilities for each DOA class on white noise signals

(Chakrabarty and Habets, 2017). Subsequent studies demon-

strate the benefits of training on speech signals and incorporat-

ing recurrent connections (Vargas et al., 2021; Bohlender

et al., 2021). Some studies utilize IPD (Pang et al., 2019;
Shimada et al., 2021; Phokhinanan et al., 2023), RTF (Baek

et al., 2023), gammatone filter bank (Goli and van de Par,

2023), and GCC-PHAT responses (Varzandeh et al., 2024) as
inputs to estimate the DOA probabilities. Other studies employ

a DNN to estimate spatial features, such as direct-path

RTF (Yang et al., 2021) and IPD (Pak and Shin, 2019;

Wang et al., 2024).
An alternative approach first enhances reverberant and

noisy signals and then uses the enhanced signals for DOA

a)Email: battula.12@osu.edu
b)Email: taherian.1@osu.edu
c)Email: dwang@cse.ohio-state.edu

790 J. Acoust. Soc. Am. 158 (1), July 2025 VC 2025 Acoustical Society of America

ARTICLE...................................

https://orcid.org/0000-0002-7548-3081
https://orcid.org/0000-0002-3027-7567
https://orcid.org/0000-0001-8195-6319
https://doi.org/10.1121/10.0038627
mailto:battula.12@osu.edu
mailto:taherian.1@osu.edu
mailto:dwang@cse.ohio-state.edu
http://crossmark.crossref.org/dialog/?doi=10.1121/10.0038627&domain=pdf&date_stamp=2025-07-28


estimation. It is worth noting that psychoacoustic evidence

suggests that localization depends on source separation,

rather than preceding separation (Hartmann, 1999; Darwin,

2008). Typically, these two-stage methods employ a DNN

to estimate a real-valued mask, which is then used in either

traditional signal processing or DNN based DOA estimation

(Pertil€a and Cakir, 2017; Wang et al., 2019; Zhang et al.,
2019; Mack et al., 2022). Wang et al. (2019) utilize a bi-

directional recurrent network to estimate monaural oracle

time-frequency (T-F) masks, such as the ideal ratio mask

(IRM) or phase sensitive mask (PSM), for speech enhance-

ment. These estimated masks serve as weights to amplify

the T-F units dominated by the target source in subsequent

GCC-PHAT based localization. In Mack et al. (2022), an
estimated real-valued mask from the first DNN is utilized

within a CNN as a weighting mechanism, referred to as fea-

ture masking, for estimating DOA. However, these algo-

rithms rely on the phase of the mixture signals for

localization, which limits their frame-level DOA

performance.

Recent speech enhancement methods use complex

spectral mapping (CSM) (Wang and Wang, 2020; Tan et al.,
2022), which can estimate clean phase, a capability not

shared by mask-based methods operating in the magnitude

domain. Utilizing clean phase estimates overcomes a main

limitation in two-stage approaches that rely on noisy phases

for robust localization. This enables combining the phase

estimation capability of strong speech enhancement to be

leveraged by DOA algorithms to achieve robustness.

Furthermore, this approach potentially provides more inter-

pretability for robust frame-level localization in terms of

delineating enhancement and localization errors.

Most of the above methods perform DOA estimation at

the utterance level. Compared to utterance-level speaker

localization, frame-level DOA estimation is required in

moving source scenarios. In addition, utterance-level DOA

is not conducive to real-time applications, which need

frame-level direction estimates. However, frame-level local-

ization presents greater challenges due to the lack of tempo-

ral pooling, which is a proven technique to improve

localization accuracy at the utterance level. Therefore, accu-

rately estimating and weighting IPDs is crucial for achieving

robust frame-level accuracy.

In this context, we propose a two-stage approach for

robust frame-level speaker localization, where the first stage

employs multi-channel CSM for speech enhancement and

the second stage performs weighted generalized cross corre-

lation with phase transform (WGCC) for localization.

Initially, we train multi-input single-output (MISO) based

CSM systems with two loss functions for the first stage. Our

results show that the phase estimates from the trained

MISO-based CSM models are reliable and significantly

improve the DOA estimation of WGCC compared to noisy

phases. To further improve the efficiency of training and

inference, we propose to replace MISO-based CSM by

multi-input multi-output (MIMO) based CSM (Wang and

Wang, 2020; Taherian et al., 2023). We demonstrate that

the phase estimates from the trained MIMO-based CSM

models are more reliable and achieve superior DOA perfor-

mance compared to MISO systems. Additionally, MIMO

modeling allows us to explore inter-channel relations in

training losses, which is a distinct advantage over MISO

modeling.

Prior research on DNN-based localization, as reviewed by

Grumiaux et al. (2022), has incorporated IPDs as input features
or attempted to predict IPDs as the output (Pang et al., 2019;
Pak and Shin, 2019; Shimada et al., 2021; Wang et al., 2024).
Other studies have incorporated an IPD loss term to preserve

inter-channel relations for speech enhancement (Wang and

Wang, 2020; Hwang et al., 2022; Thaleiser and Enzner, 2023;

Olivan et al., 2024; Tokala et al., 2024). Motivated by the

importance of phase differences and different from the previ-

ous methods of utilizing IPDs for localization, we propose to

train MIMO based speech enhancement with a novel IPD term

in loss functions for accurate localization. The inclusion of the

IPD term ensures that inter-channel phase relations are main-

tained in the enhanced speech and is found to clearly improve

the localization performance across microphone arrays and

reverberant-noisy conditions in both simulated and real

environments.

A preliminary conference version has been presented

(Battula et al., 2025), and it performs frame-level speaker

localization using a two-microphone array. The present

study goes far beyond the preliminary study by

systematically investigating frame-level localization and

phase-difference losses using eight-microphone linear and

seven-microphone circular arrays in reverberant and noisy

acoustic environments. The eight-microphone linear array

allows us to investigate the proposed approach on a larger lin-

ear array, and the circular array, free from the front-and-back

ambiguity seen in linear arrays, enables the evaluation across

the full DOA range. This paper also examines MISO modeling

and demonstrates that MIMO outperforms MISO consistently.

Additionally, we examine the impacts of source-to-microphone

distance, reverberation time, and T-F weighting in WGCC on

frame-level localization performance. Finally, the present study

demonstrates the generalization of proposed speaker localiza-

tion to real recordings by evaluating on the LOCATA evalua-

tion dataset (L€ollmann et al., 2018).
The rest of the paper is organized as follows. Section II

presents the problem formulation for DOA, CSM based

speech enhancement and training objectives, and WGCC.

Section III describes the experimental setup. Section IV

presents evaluation results and comparisons, followed by a

conclusion in Sec. V.

II. SYSTEM DESCRIPTION

The signal received by a P-channel microphone array in

a reverberant and noisy environment can be modeled as

Yðt; f Þ ¼ Sðt; f Þ þ Nðt; f Þ; (1)

where S 2 CP�1
denotes the short-time Fourier transform

(STFT) of direct-path speech signal and N 2 CP�1
denotes
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the STFT of all non-target signals, including speech rever-

beration and reverberant noise. Symbols t and f denote the

time frame and frequency bin, respectively. Given the rever-

berant and noisy microphone array observation Y, our goal
is to first estimate the direct-path speech S, i.e., Ŝ ¼ FðYÞ;
where F denotes the estimator, and subsequently its direc-

tion h.

A. Multi-channel CSM

The standard formulation of multi-channel CSM is to

estimate the complex spectrogram of the target speech at a

reference microphone m, Ŝm ¼ FðY;HÞ; where H denotes

the set of all model parameters, from a noisy mixture (Wang

and Wang, 2020). Specifically, the mixture’s real and imagi-

nary spectrograms at all microphones are concatenated and

passed into a DNN as input and the DNN outputs an esti-

mate of the target’s real and imaginary spectrograms at the

reference microphone. To estimate the target source at all

microphones for second-stage localization requires designat-

ing every microphone as the reference microphone, leading

to P enhancement modules, as illustrated in Fig. 1(a). To

simplify training and inference, the DNN can be extended to

simultaneously estimate the target’s real and imaginary

spectrograms at all the microphones, corresponding to the

MIMO system, as shown in Fig. 1(b). In this study, we pro-

pose to use the large version of SpatialNet (Quan and Li,

2024) specifically designed to perform multi-channel CSM

for speech separation. We adapt SpatialNet to a MIMO sys-

tem by adding as many final linear layers as the number of

microphones to estimate multiple target outputs, i.e.,

Ŝ ¼ FðY;HÞ. As illustrated in Fig. 1, after first-stage

speech enhancement, speaker localization is performed for a

P-channel setup as the second stage.

B. Training objectives

For the MISO setup, following earlier studies

(Williamson et al., 2016; Fu et al., 2017; Tan and Wang,

2020; Quan and Li, 2024), the loss function is calculated by

comparing the real and imaginary spectrograms of the sepa-

rated (Ŝp) and target speech (Sp) at reference microphone m:

LRIþMag ¼ LRI þ LMag; (2)

LRI ¼ jjŜ rð Þ
m � S rð Þ

m jj1 þ jjŜ ið Þ
m � S ið Þ

m jj1; (3)

LMag ¼ jj jŜmj � jSmj jj1; (4)

where superscripts ðrÞ and ðiÞ denote real and imaginary

parts, respectively, and jj:jj1 the l1 norm. From now on, we

refer to the monaural output loss functions as LMISO
RI and

LMISO
RIþMag:

For the MIMO setup with multiple outputs, the loss

functions are calculated by averaging the individual loss

functions for each output across all microphones. The corre-

sponding MIMO loss functions are

LRI ¼ 1

P

XP
p¼1

LRIðpÞ; (5)

LRIþMag ¼ 1

P

XP
p¼1

LRIþMagðpÞ; (6)

where p indicates a microphone.

Although training with the aforementioned loss func-

tions implicitly yields phase estimates, guiding speech

enhancement strategically can potentially improve localiza-

tion accuracy. This is conceptually akin to guiding speech

enhancement to improve automatic speech recognition with

a magnitude term in the loss function (Wang and Wang,

2020). The MIMO modeling allows us to enforce IPDs

between the estimated and target spectrograms via a loss

function. To mitigate phase wrapping problems (Kabzinski

and Habets, 2019), the loss function for a microphone pair

considers the distance between the estimated and target

IPDs in a complex plane. We define:

LIPD¼ 1

NX

X
ðp;qÞ2X

WpWqjjexpðjŜp;qÞ�expðjSp;qÞjj1

¼ 1

NX

X
ðp;qÞ2X

WpWq

ðjjcos Ŝp;q�cosSp;qjj1
þjjsin Ŝp;q�sinSp;qjj1Þ;

(7)

where j denotes the imaginary unit and Ŝp;q; Sp;q represent the

IPD between a microphone pair (p, q) of the estimated and tar-

get speech, respectively: Sp;q ¼ /Sp �/Sq. X denotes the set

of all possible microphone pairs with cardinality

NX ¼ PðP� 1Þ=2. The weights Wp and Wq correspond to the

target speech IRM at the respective microphones. This weight-

ing mechanism serves to accentuate the T-F units where the

target speech dominates (Wang et al., 2019).
Incorporating LIPD imposes a penalty on IPD estimation

errors, reflecting the primary role of IPDs in sound

FIG. 1. Block diagram of the proposed system with multi-channel CSM for

speech enhancement followed by speaker localization. (a) A MISO system

with P modules. (b) A MIMO system for speech enhancement. Mic,
microphone.
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localization. Considering different ways of including an IPD

term, we investigate the following two reasonable

alternatives:

LRIþIPD ¼ LRI þ LIPD; (8)

LRIþMagþIPD ¼ LRIþMag þ LIPD: (9)

C. WGCC for localization

For microphone pair p and q, the GCC-PHAT method

(Knapp and Carter, 1976) computes their generalized cross

correlation coefficients with a weighting mechanism based

on phase transform to estimate the time delay,

GCCp;qðt;f ;hÞ¼R Ypðt; f ÞYqðt;f ÞH
jYpðt;f ÞjjYqðt;f ÞHj

e�j2pðf=NÞfssp;qðhÞ
( )

;

(10)

where R �f g extracts the real part, ð�ÞH represents conjugate

transpose, j � j computes the magnitude, N is the number of

discrete Fourier transform frequencies, and fs is the sam-

pling rate in Hz. Term sp;qðhÞ ¼ ðdhq � dhpÞ=cs denotes the
time delay of a candidate direction or location h; where cs is
the speed of sound in the air and dhq and dhp represent the

distance between the hypothesized sound source and micro-

phones p and q, respectively.
The PHAT weighting mechanism, i.e., magnitude nor-

malization in Eq. (10), ensures that each T-F unit has an

equal contribution and prevents the dominance of large

magnitude T-F units. In Wang et al. (2019), mask-weighted

generalized cross correlation with phase transform (MGCC)

was introduced to emphasize the T-F units dominated by tar-

get speech over the T-F units contaminated by noise and

reverberation. This method first calculates the GCC coeffi-

cients using the input noisy spectrogram and then applies a

weighting mask to them. However, our approach relies on

complex spectral mapping and the GCC function in our

study is calculated directly from the enhanced speech sig-

nals (see Fig. 1). For this critical distinction, we introduce

WGCC to improve the performance of GCC-PHAT in the

presence of reverberation and noise,

WGCCp;qðt; f ; hÞ ¼ Wpðt; f ÞWqðt; f ÞGCCp;qðt; f ; hÞ;
(11)

where the weights Wp and Wq are estimated IRMs computed

from the estimated target complex spectrograms at the cor-

responding microphones.

Finally, frame-level DOA is estimated as

ĥt ¼ argmax
h

X
ðp;qÞ2X

XN=2
f¼1

WGCCp;qðt; f ; hÞ: (12)

III. EXPERIMENTAL SETUP

We use the LibriSpeech corpus (Panayotov et al., 2015)
for target speech signals, the DEMAND dataset (Thiemann

et al., 2013) for point-source noise simulations, and the

TIMIT corpus (Garofolo et al., 1993) to create diffuse

noises. Specifically, diffuse noise signals are produced by

convolving 72 randomly chosen TIMIT utterances corre-

sponding to 72 speaker positions at 5� intervals from h to h
þ 355�, where h denotes the angle of the target source, as

described in Zhang and Wang (2017) and Tan et al. (2022).
LibriSpeech train-clean-100, dev-clean, and test-clean utter-

ances are used for training, validation, and testing, respec-

tively. We use the street noise category from the DEMAND

dataset for validation and testing and the remaining catego-

ries for training. We use the TIMIT training utterances to

create diffuse noises for training and validation, and the

TIMIT test utterances for testing. Reverberation time (T60)

and signal-to-noise ratio (SNR) are randomly sampled

between [0, 1] s and [�5, 5] dB, respectively. The length,

width, and height dimensions of a room are randomly sam-

pled between [5, 10] m, [5, 10] m, and [3, 4] m, respectively.

As shown in Fig. 2, we use an eight-microphone linear array

with 8 cm inter-microphone distance and a seven-

microphone circular array with a 4.25 cm radius. We pick

the center two microphones from the linear array for two-

microphone experiments. The microphone array is placed

around the room center; more specifically, the array is ran-

domly displaced between [�0.5, 0.5] m along the length and

width dimensions and rotated between [�60, 60]� relative to
the room center.

Target and noise signals are sampled at 16 kHz and are

placed around the microphone array on a circle of radius

sampled between [1, 3] m. Room impulse responses (RIRs)

are generated using the image source method (Allen and

Berkley, 1979). Speech and noise are convolved with the

simulated multi-channel RIRs, and SNR is computed with

respect to reverberant speech and reverberant noise. The

detailed simulation procedure is provided in Algorithm 1.

We normalize the mixture signals such that the root mean

square of the mixture waveform is 1. The same scaling fac-

tor is applied to the target speech signal. Train and valida-

tion dataset sizes are 100 000 and 10 000, respectively.

For the diffuse noise test setup with simulated

RIRs, room size is picked from three rooms: [6, 6, 2.4] m3,FIG. 2. Illustration of two microphone arrays.

J. Acoust. Soc. Am. 158 (1), July 2025 Battula et al. 793

https://doi.org/10.1121/10.0038627

https://doi.org/10.1121/10.0038627


[8, 8, 3] m3, and [10, 10, 4] m3. A microphone array is placed

at the room center. Target and noise signals are placed around

the microphone array on a circle with a radius chosen from {1,

2, 3} m. The DOA grid is sampled between [0, 180]� and

[0, 360]� in 5� intervals, resulting in totals of 37 and 72 possi-

ble DOA directions for the linear and circular array respec-

tively. T60 and SNR are picked from {0.2, 0.4, 0.6, 0.8, 1.0} s

and {�5, 0, 5} dB, respectively. All possible speaker DOAs

are considered for every T60, SNR, and source-to-

microphone distance resulting in 37� 5� 3� 3¼ 1665 and

72� 5� 3� 3¼ 3240 configurations, respectively, for the lin-

ear and circular array in each room.

For the point-source noise test setup with simulated RIRs,

room size is fixed to [6, 6, 2.4] m3. A microphone array is

placed at the room center. Target and noise signals are placed

around the microphone array on a circle with a radius chosen

from {1, 2} m. We use the same DOA grid, T60, and SNR val-

ues as in the diffuse noise test setup. All possible DOA pairs

of speaker and noise (not from the same direction) are

considered for every T60, SNR, and source-to-microphone

distance, resulting in 37� 36� 5� 3� 2¼ 39960 and

72� 71� 5� 3� 2¼ 153 360 configurations, respectively, for

the linear array and circular array.

For the test setup with recorded RIRs, we pick the

eight-microphone linear array with 8 cm inter-microphone

distance from Hadad et al. (2014) to match our training con-

figuration. We pick the center two microphones for a two-

microphone evaluation. The recorded RIRs are provided for

1m and 2m distances sampled from a DOA grid between

[0, 180]� in 15� intervals, resulting in a total of 13 RIRs for

each distance. Diffuse noises for real recordings are gener-

ated using TIMIT utterances convolved with 26 recorded

RIRs from all possible directions and distances. Note that

recorded diffuse noises are generated differently from simu-

lated diffuse noises used in training. SNR, T60, and source-

to-microphone distance are picked from {�5, 0, 5} dB,

{0.16, 0.36, 0.61} s, and {1, 2} m, respectively.

For the STFT analysis, frame length and frame shift are

32ms and 16ms, respectively. For model training, we use

the mini-batch size of 8 and an initial learning rate of 0.001,

which decays by 0.98 for every 2 epochs. The maximum

number of training epochs is set to 50, and mixed precision

is used for training and testing. Note that the models are

trained separately on 4-s segments for each experiment. We

train our models for each loss function, noise type, and

microphone array, resulting in 4� 2� 3¼ 24 MIMO mod-

els. For MISO systems, we train a model for each micro-

phone designated as the reference microphone separately,

resulting in 2� 2� 8¼ 32 and 2� 2� 2¼ 8 models for the

linear arrays with eight and two microphones, respectively.

To improve computational efficiency, we use the trained

MISO model parameters from reference microphone 0 (see

Fig. 2) to initialize the parameters for other microphones

and fine-tune them for three epochs. We train 2� 2¼ 4

MISO models for the circular array, where a single MISO

model is trained with reference microphone 1 and then the

circular shift trick is applied to get the estimates for the

other microphones on the circle (Wang and Wang, 2020).

IV. EVALUATIONS AND COMPARISONS

For DOA evaluation metrics, we consider frame-level

accuracy (ACC) and mean absolute error (MAE) as defined

below:

ACC ð%Þ ¼
X

t
DtCtX
t
Dt

� 100; (13)

MAE ðoÞ ¼
X

t
Dtjht � ĥtjX

t
Dt

; (14)

where ht represents the ground truth DOA at frame t. Dt is a

binary number indicating whether frame t has speech signal,

as determined by a voice activity detector (Wiseman, 2019).

Ct ¼ 1 if and only jht � ĥtj � hth; where hth ¼ 5o is com-

monly chosen as the tolerance threshold (Mack et al., 2022).
For speaker localization in reverberant and noisy envi-

ronments, we compare with standard GCC-PHAT, oracle

MGCC-PHAT, and three DNN-based methods. The oracle

MGCC method uses the IRM, not its estimate, for comput-

ing weights, and it serves as an upper bound for the two-

stage systems that combine real-valued masks and MGCC.

MaskBLSTM (Wang et al., 2019) uses a two layer recurrent

network with bi-directional long short-term memory

(BLSTM) to estimate the real-valued PSM using a log

power spectrogram across all microphones and then per-

forms MGCC for utterance-level localization. This model

has 13.1 � 106 (M) parameters. To obtain frame-level

results for MaskBLSTM, we adapt MGCC, similar to Eq. (12).

SADOA (Mack et al., 2022) employs cascaded DNNs with

12.5M parameters, and is trained end-to-end, for utterance-

level DOA estimation. The first DNN estimates a

ALGORITHM 1. Dataset simulation process.

For each sample in training and validation do

1. Randomly sample acoustic scene parameters

1.1 Room length, width, and height dimensions from

[5, 5, 3] to [10, 10, 4] m;

1.2 Microphone array displacement from the room

center in length and width dimensions from

[�0.5, 0.5] m;

1.3 Microphone array rotation from [�60, 60]�;
1.4 Source-to-microphone distance from [1, 3] m;

1.5 Source DOA from [0, 180]� for linear array and
[0, 360]� for circular array;
1.6 Reverberation T60 from [0, 1.0] s;

1.7 SNR from [�5, 5] dB;

2. Generate multi-channel room impulse responses using the image

source method and convolve with source signals to obtain reverberant

sources;

3. Generate multi-channel diffuse noise or point-source noise signals and

scale them to target SNR levels;

4. Add the scaled diffuse noise or point-source noise to the reverberant

speech to obtain a reverberant and noisy multi-channel mixture;
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real-valued mask, which is then utilized within the second

DNN. We modify the first DNN to BLSTM for a fair com-

parison. Although the model is trained at the utterance level,

it inherently outputs DOA estimates at the frame level. For

frame-level results, we pick the DOA as the angle with the

highest value. PhaseCNN (Vargas et al., 2021) uses a CNN

with 8.7M parameters for DOA classification with frame-

level mixture phase spectrograms as inputs.

A. DOA results with simulated RIRs

In Table I, we evaluate the frame-level DOA of the pro-

posed model with different loss functions and the compari-

son methods using simulated RIRs in the presence of diffuse

noise for three microphone array geometries. The arrays

comprise two linear ones with two and eight microphones,

denoted as linear-2 and linear-8, respectively, and a circular

array with 7 microphones (circular-7). The DOA perfor-

mance of GCC-PHAT directly applied on microphone sig-

nals is very poor across microphone arrays, reflecting the

challenging nature of noisy and reverberant test conditions.

Incorporating the ideal weighting mechanism in oracle

MGCC improves localization results compared to GCC-

PHAT. This represents the upper bound of DOA perfor-

mance achievable with masking-based enhancement and

MGCC. MaskBLSTM uses estimated PSMs from a DNN as a

weighting mechanism, and its frame-level DOA perfor-

mance is better than that of GCC-PHAT but worse than that

of the oracle MGCC. SADOA employs a DNN for localiza-

tion along with a weighting mechanism and outperforms

GCC-PHAT and MaskBLSTM. PhaseCNN employs a DNN for

localization using noisy phases without a weighting mecha-

nism and has better performance than GCC-PHAT and

MaskBLSTM. The utterance-level DOA results, provided in

parentheses, of MaskBLSTM and SADOA are improved, but

their frame-level performance is poor. For instance, even at

the high SNR of 5 dB with eight-microphone linear and

seven-microphone circular arrays, the oracle MGCC method

yields only approximately 70% and 60% of frames with

DOA estimates within the acceptable tolerance across utter-

ances. Relying on noisy phases significantly limits the

frame-level performance of the baseline methods.

The proposed approach utilizes the clean phase esti-

mated from CSM-based speech enhancement in the WGCC

for speaker localization. As demonstrated by the results in

Table I, the phase estimates from the enhancement models

are reliable and the DOA performance of our systems sur-

passes the oracle MGCC and is much better than the DNN

baselines of MaskBLSTM, SADOA, and PhaseCNN. The

frame-level results of our model exceed even the utterance-

level results of MaskBLSTM and SADOA.

We now compare the DOA performance of our systems

with different loss functions and varying numbers of out-

puts. From Table I, we observe that the MISO systems

trained with LMISO
RI and LMISO

RIþMag already achieve significant

improvements in DOA performance over the baselines.

Among the two MISO systems, LMISO
RIþMag yields better DOA

performance. The proposed MIMO based model with

WGCC outperforms the corresponding MISO systems. The

results demonstrate that extending MISO to MIMO systems,

i.e., turning LMISO
RI to LRI, and LMISO

RIþMag to LRIþMag; elevates
the DOA performance. Similar to the MISO results, LRIþMag

TABLE I. DOA results with simulated RIRs under diffuse noise conditions at three SNR levels. The second column indicates whether T-F weighting is

used. Utterance-level DOA results are presented in parentheses, and bold type indicates the best result.

Method/Loss T-F Weighting

Linear-2 Linear-8 Circular-7

�5 dB 0 dB 5 dB �5 dB 0 dB 5 dB �5 dB 0 dB 5 dB

ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE

GCC-PHAT � 12.0 48.2 15.4 44.7 20.1 40.2 20.9 45.8 28.4 39.7 37.6 33.1 14.6 71.2 21.5 61.8 30.4 51.3

Oracle MGCC � 24.1 37.8 30.5 32.7 38.1 27.6 52.9 23.3 61.7 18.5 69.8 14.3 40.6 39.1 50.9 30.9 60.8 24.2

MaskBLSTM � 15.1 43.2 19.9 38.6 25.4 34.3 29.3 34.2 38.3 28.5 46.5 23.9 22.5 58.4 32.5 47.6 42.7 38.7

� (55.0) (11.2) (62.5) (7.8) (68.2) (6.0) (75.8) (6.7) (82.9) (4.4) (85.9) (3.3) (90.8) (4.2) (98.6) (1.1) (99.5) (1.5)

SADOA � 17.9 47.7 23.2 42.4 28.3 38.4 35.0 33.4 44.4 27.3 52.3 22.9 33.7 49.3 44.9 40.8 53.6 35.1

� (58.9) (11.5) (69.2) (8.1) (75.2) (6.3) (88.0) (4.4) (90.4) (3.7) (92.0) (3.3) (95.8) (5.3) (98.6) (5.4) (99.0) (5.0)

PhaseCNN � 16.6 44.7 21.3 40.1 27.1 35.4 32.6 34.7 43.0 27.7 52.5 22.1 32 50.9 45.2 39.0 56.8 30.0

LMISO
RI � 37.5 25.4 48.8 19.9 58.3 15.8 79.3 9.3 87.2 6.0 91.8 3.9 73.3 11.0 83.1 6.2 88.7 3.9

� 52.0 18.5 66.3 12.5 73.7 9.4 85.1 4.9 90.5 3.3 93.6 2.7 79.8 10.5 87.6 6.9 91.6 4.7

LMISO
RIþMag � 53.3 17.1 60.8 14.0 68.0 11.3 83.5 7.2 89.5 4.9 93.2 3.3 83.2 4.3 89.8 2.6 93.4 1.8

� 61.1 12.4 71.5 8.8 77.5 6.9 91.7 2.7 95.4 1.7 97.2 1.2 87.7 5.8 93.2 3.4 95.3 2.4

LRI � 40.7 22.9 49.9 18.7 58.7 15.2 74.9 11.8 83.5 8.0 89.0 5.4 70.5 10.8 80.9 6.4 86.3 4.5

� 63.7 9.8 72.7 7.7 77.4 6.7 87.0 4.0 92.0 2.6 94.8 1.8 83.2 7.9 88.6 5.2 91.2 4.0

LRIþMag � 52.5 17.1 60.8 14.0 68.0 11.3 83.8 6.8 89.4 4.8 92.5 3.4 76.3 6.1 85.1 3.8 90.1 2.6

� 67.8 8.6 77.1 6.5 81.4 5.6 92.7 2.2 95.7 1.4 96.8 1.1 89.4 3.8 93.7 2.4 95.5 1.7

LRIþIPD � 75.7 5.6 82.2 4.6 86.0 3.8 87.4 5.3 92.5 3.5 95.2 2.3 93.2 1.9 95.5 1.4 96.6 1.0

� 79.7 3.9 86.4 2.9 89.3 2.5 92.8 2.1 96.1 1.2 97.9 0.8 96.1 1.7 97.4 1.2 97.8 1.0

LRIþMagþIPD � 74.9 6.7 81.7 5.3 86.1 4.1 90.7 3.6 94.1 2.6 96.1 1.8 88.3 2.6 93.7 1.6 95.9 1.1

� 80.9 3.9 87.5 2.9 90.4 2.4 95.1 1.5 97.4 0.9 98.3 0.7 94.8 1.8 97.2 1.1 98.0 0.8
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yields better DOA performance compared to LRI. Although

LRI and LRIþMag achieve high DOA performance, incorpo-

rating IPDs into the loss functions, i.e., turning LRI to

LRIþIPD, and LRIþMag to LRIþMagþIPD; further increases DOA
accuracy and lowers MAE. In addition, incorporating the

weighting mechanism in WGCC [see Eq. (11)] further

improves localization results, especially at lower SNRs.

Figure 3 presents the DOA results of the proposed

approach with different losses and the oracle MGCC for dif-

ferent arrays. It plots the average DOA accuracies of the

oracle MGCC and the proposed system across all SNR, T60,

and source-to-microphone distance values for different

microphone arrays. It is evident from the figure that utilizing

clean phase estimates consistently leads to large improve-

ments compared to the oracle MGCC. The bar plots in Fig.

3 show that the MIMO systems outperform the MISO sys-

tem, and among the loss functions, LRIþMagþIPD consistently

performs the best.

Figure 4 presents the DOA results of the proposed

approach and the oracle MGCC for the two-microphone

array with respect to different source-to-microphone distan-

ces and T60 values. It is worth noting that LRIþMagþIPD

achieves better or comparable results at the longest distance

of 3m and highest T60 of 1 s compared to other loss

functions at the shortest distance of 1m and lowest T60

of 0.2 s.

Table II evaluates the frame-level DOA of the proposed

approach with different losses and the baseline methods

using simulated RIRs in the presence of point-source noises

for different microphone arrays. Similar to the findings

under diffuse noise conditions, the results in Table II dem-

onstrate the superior performance of the proposed method

over all the baselines across microphone arrays. We observe

the same trend that MIMO models outperform MISO mod-

els. A comparison between the last two rows clearly shows

that incorporating the LIPD loss further enhances the locali-

zation performance, demonstrating its utility across different

array geometries. Among notable differences between

Tables I and II, the frame-level DOA performance of the

proposed method in point-source noise conditions is better

at lower SNRs, likely because a diffuse noise is more

difficult to separate than a point-source noise. In addition,

the magnitude loss [see Eq. (4)] is not helpful, particularly

for the circular array.

Figure 5 illustrates the DOA results of the different loss

functions for both diffuse and point-source noise conditions

for the two-microphone array. As clear from the figure, the

frame-level localization results from LRIþMagþIPD have a

higher number of DOA estimates within the tolerance range

and fluctuate less compared to LRIþMag. The same observa-

tion holds when comparing LRIþIPD and LRI:

B. DOA results with recorded RIRs and real
recordings

Table III provides the DOA results, averaged over all

SNR, T60, and source-to-microphone distance values (see

Sect. III), with the recorded RIRs from Hadad et al. (2014)
that match the training array geometry for the eight-

microphone linear array. We pick the center two micro-

phones for the two-microphone evaluation. Our analysis for

each speaker direction indicates that the endfire directions,

i.e., 0o and 180o, contribute to the majority of errors and are

excluded from the evaluation, as done in Wang et al.
(2019). In line with the simulated RIR results in Tables I

and II, the results in Table III demonstrate that our approach

works well on recorded RIRs and produces strong frame-

level DOA results. Our systems yield much higher localiza-

tion accuracies and lower MAEs than the baselines for both

diffuse and point-source noise conditions using two- and

eight-microphone linear arrays.

FIG. 3. Frame-level DOA accuracies of the oracle MGCC and the proposed

method with different loss functions under diffuse noise conditions across

different array geometries.

FIG. 4. Frame-level DOA accuracies of the oracle MGCC and the proposed

method for the two-microphone array with different loss functions under

diffuse noise conditions. (a) DOA accuracies with different source-to-

microphone distances. (b) DOA accuracies with different T60 values.
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We further evaluate on the real recordings from Task 1

of the LOCATA evaluation dataset (L€ollmann et al., 2018),
and the results are provided in Table III. This task involves

localizing a single static speaker using static microphone

arrays in a room with the dimensions [7.1, 9.8, 3] m3. The

dataset uses speech sentences from the CSTR VCTK1

(Veaux et al., 2017) database and provides the ground truth

positional data of all microphones and sources. The acoustic

environment contains reverberation with T60¼ 0.55 s, and

the source-to-microphone distance varies between 1 and

3.5m. We have picked microphones 6 and 9 from the

DICIT array to match the trained two-channel array geome-

try. Note that the microphone array and the source are not

on the same horizontal plane. Consistent with the findings

using simulated and recorded RIRs, the results in the

LOCATA column in Table III demonstrate that our

approach generalizes well to real recordings. The results

clearly show that our proposed systems outperforms base-

lines, with significantly higher localization accuracies and

lower MAEs, although the amounts of improvement are not

as high as for frame-level DOA estimation using simulated

and recorded RIRs. In this evaluation, the inclusion of the

IPD loss term yields slightly better performance compared

to the counterparts without the term. This is probably due to

the large differences between training and test conditions in

both array geometries and acoustic environments.

TABLE II. DOA results with simulated RIRs under point-source noise conditions at three SNR levels. Utterance-level DOA results are presented in paren-

theses, and bold type indicates the best result.

Method/Loss

Linear-2 Linear-8 Circular-7

�5 dB 0 dB 5 dB �5 dB 0 dB 5 dB �5 dB 0 dB 5 dB

ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE

GCC-PHAT 11.6 49.9 15.1 46.4 19.1 42.2 16.7 51.4 24.4 45.4 33.0 38.7 13.5 76.7 21.8 67.4 30.0 56.1

Oracle MGCC 28.2 35.1 34.1 30.7 39.6 27.0 57.7 22.3 65.3 18.0 71.4 14.6 47.0 37.2 57.8 29.6 64.1 23.9

MaskBLSTM 15.7 44.7 19.9 40.4 24.1 36.5 28.6 39.9 36.7 33.6 43.8 28.4 23.3 63.8 32.7 53.1 41.7 43.9

(48.7) (19.0) (57.9) (11.4) (61.9) (8.4) (68.3) (13.6) (78.8) (6.1) (83.7) (3.9) (75.7) (26.0) (92.5) (7.8) (98.1) (2.9)

SADOA 16.8 63.4 21.1 57.4 25.5 51.7 35.5 39.2 43.4 33.4 50.0 28.8 30.0 59.5 38.9 51.2 46.5 44.7

(59.4) (16.5) (68.5) (9.8) (73.0) (7.4) (80.6) (10.5) (89.4) (4.9) (93.0) (3.0) (88.5) (13.9) (96.9) (5.1) (99.1) (2.6)

PhaseCNN 15.7 51.0 20.1 46.6 24.8 42.0 30.7 41.4 37.4 36.4 43.6 32.3 29.7 57.4 38.1 49.3 45.1 43.2

LMISO
RI 79.1 6.6 84.1 5.1 86.7 4.4 97.1 1.4 97.9 1.0 98.3 0.9 93.5 4.0 95.2 3.0 96.1 2.4

LMISO
RIþMag 79.1 6.0 84.2 4.4 87.0 3.8 97.1 1.3 98.1 0.9 98.5 0.8 95.4 2.3 96.8 1.7 97.4 1.4

LRI 82.8 5.1 86.5 4.0 88.4 3.5 95.6 1.9 97.2 1.3 97.8 1.1 97.1 1.7 97.9 1.2 98.2 1.1

LRIþMag 83.2 4.7 86.9 3.7 89.0 3.2 96.6 1.4 97.9 0.9 98.4 0.8 96.0 2.2 97.4 1.5 97.6 1.4

LRIþIPD 86.5 3.7 89.4 3.0 90.7 2.5 96.9 1.3 98.3 0.8 98.8 0.6 97.4 1.6 98.3 1.1 98.7 0.9

LRIþMagþIPD 86.5 3.4 90.0 2.6 91.7 2.2 95.6 1.9 97.2 1.3 97.8 1.1 96.3 2.0 97.6 1.3 97.9 1.1

FIG. 5. Frame-level DOA estimation comparisons of different loss functions in a simulated environment with SNR¼�5 dB and T60¼ 1 s. (a) Diffuse noise

conditions. (b) Point-source noise conditions. The red solid and blue dotted lines represent the ground truth DOA and tolerance range, respectively. The cor-

responding ACC and MAE results are shown in each case. Non-speech frames are excluded from the plot.
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C. Speech enhancement results

As the localization results in the tables are based on

multi-channel speech enhancement, their corresponding

enhancement results are given in Table IV to provide

insights into relative advantages of different loss functions.

In the table, scores are averaged across the three SNR levels.

Enhancement performance is measured in terms of the com-

monly used metrics of short-time objective intelligibility

(STOI) (Taal et al., 2011), perceptual evaluation of speech

quality (PESQ) (Rix et al., 2001), and scale-invariant sig-

nal-to-distortion ratio (SI-SDR) (LeRoux et al., 2019). We

compute the enhancement scores based on reference micro-

phone 0. From Table IV, we observe that the inclusion of

the IPD term in a loss function yields small amounts of

PESQ improvement in speech enhancement results across

microphone arrays and noise conditions and comparable

STOI and SI-SDR scores. For instance, LRIþIPD shows

approximately a 0.1 improvement in PESQ for both the lin-

ear 2-microphone and circular 7-microphone arrays under

diffuse noise conditions compared to LRI:
Figure 6 illustrates the role of IPD loss in the MIMO

systems. As evident in the figure, the inclusion of the IPD

term results in lower phase-difference loss values for

LRIþMagþIPD and LRIþIPD than the counterparts of LRIþMag

and LRI. The improvement seems to be magnified in the

DOA results in Table I. This demonstrates that enhancement

and localization are distinct tasks. Overall, LRIþMagþIPD

yields the best localization and speech enhancement

performance.

V. CONCLUSION

In this study, we have systematically investigated the

proposed two-stage approach that combines multi-channel

CSM for speech enhancement and WGCC for robust frame-

level speaker localization. Our approach leverages the

intrinsic ability of CSM to estimate phase and improves by a

large margin the frame-level localization accuracy com-

pared to conventional DOA techniques, magnitude-domain

masking, and other DNN methods in reverberant and noisy

environments. Our study shows that phase estimates from

CSM models are reliable, and two-stage modeling provides

a measure of explainability for frame-level localization.

Additionally, we show that MIMO based systems consis-

tently outperform MISO based systems. In the MIMO

TABLE III. DOA results with recorded RIRs in diffuse and point-source

noise conditions and on LOCATA task 1. Most of the Linear-2 results are

already given in Battula et al. (2025), and included here for completeness.

Bold type indicates the best result.

Method/Loss

Diffuse noise Point-source noise LOCATA

Linear-2 Linear-8 Linear-2 Linear-8 Linear-2

ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE

GCC-PHAT 23.7 40.8 38.1 40.8 11.9 54.6 14.7 55.3 46.9 13.3

MaskBLSTM 27.6 36.6 48.3 30.0 20.6 44.5 33.6 41.9 58.4 10.6

SADOA 23.8 49.6 43.2 36.7 21.9 60.6 49.6 29.8 51.9 27

PhaseCNN 20.1 59.1 41.6 38.0 18.2 49.9 42.5 34.8 51.7 14.5

LMISO
RI 45.6 26.8 86.5 6.2 83.4 4.1 99.1 1.5 70.3 5.3

LMISO
RIþMag 59.2 19.5 92.3 3.5 84.7 3.6 99.0 1.4 73.8 4.6

LRI 42.6 30.4 84.9 8.0 86.1 3.2 99.0 1.4 72.1 5.0

LRIþMag 59.0 17.1 91.9 3.9 86.1 3.1 99.5 1.2 72.3 4.7

LRIþIPD 60.5 18.8 86.0 8.6 85.5 3.2 99.8 1.2 73.5 4.5

LRIþMagþIPD 64.9 16.6 92.3 4.8 86.2 3.0 98.8 1.5 72.4 4.8

TABLE IV. Speech enhancement results in diffuse and point-source noise conditions. Most of the Linear-2 results are already given in Battula et al. (2025)
and are included here for completeness. Bold type indicates the best result.

Loss

Diffuse noise Point-source noise

Linear-2 Linear-8 Circular-7 Linear-2 Linear-8 Circular-7

STOI PESQ SI-SDR STOI PESQ SI-SDR STOI PESQ SI-SDR STOI PESQ SI-SDR STOI PESQ SI-SDR STOI PESQ SI-SDR

Unprocessed 54.1 1.31 �9.1 54.1 1.31 �9.1 54.1 1.31 �9.1 55.4 1.36 �11.3 55.8 1.36 �11.3 55.4 1.36 �11.3

LMISO
RI 87.9 2.24 10.2 92.5 2.66 12.9 92.7 2.71 13.5 96.6 3.46 14.0 97.6 3.78 14.7 97.6 3.77 15.5

LMISO
RIþMag 88.9 2.61 10.1 93.0 3.05 13.0 93.3 3.07 13.5 96.7 3.70 13.2 97.4 3.87 14.0 97.7 3.90 15.4

LRI 88.9 2.23 10.6 92.4 2.66 12.8 93 2.72 13.9 96.9 3.60 14.7 97.2 3.70 13.9 97.6 3.79 15.6

LRIþMag 89.6 2.68 10.3 93.0 3.05 12.9 93.6 3.10 13.8 97.0 3.75 14.4 97.4 3.85 13.4 97.6 3.91 15.5

LRIþIPD 88.9 2.33 10.7 92.5 2.68 13.0 93.4 2.81 13.9 96.0 3.53 13.5 97.2 3.71 13.7 97.7 3.80 15.7

LRIþMagþIPD 89.8 2.70 10.7 93.1 3.10 12.8 93.7 3.16 13.8 97.0 3.76 14.4 97.4 3.86 13.9 97.6 3.91 15.4

FIG. 6. Comparison of phase-difference loss term for different loss func-

tions on the validation dataset for the two-microphone array in diffuse noise

condition.
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training framework, the proposed loss functions incorporat-

ing IPDs further enhance DOA performance. As a result, the

proposed approach yields accurate speaker localization

across microphone arrays and reverberant-noisy conditions

in simulated and real environments.

In future research, we plan to extend the proposed

approach to address moving speaker scenarios and multi-

talker environments, as well as binaural sound localization

[see, e.g., Phokhinanan et al. (2023)]. Additionally, we plan
to incorporate a DNN in the second, DOA estimation, stage

to further enhance frame-level localization performance. We

will also assess whether performing enhancement and local-

ization as multi-task learning can lead to better DOA esti-

mation than the two-stage approach investigated in this

paper.
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