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Abstract—This paper investigates robust speaker localization at the
frame level on the basis of complex spectral mapping, which is ca-
pable of learning both the magnitude and phase of the target signal.
Unlike prevailing deep learning methods for speaker localization, we
perform MIMO (multi-input multi-output) based multi-channel speech
enhancement first and then localize the enhanced speaker using weighted
generalized cross correlation. In addition, we propose new multi-channel
loss functions that incorporate phase differences in order to preserve
inter-channel phase relations, which is key to accurate sound localization.
Systematic evaluations using simulated and recorded room impulse
responses demonstrate that the proposed model yields excellent frame-
level speaker localization results in reverberant and noisy environments
and outperforms related methods by a large margin, even surpassing
their utterance-level results.

Index Terms—MIMO speech enhancement, robust speaker localization,
complex spectral mapping, inter-channel phase difference loss.

I. INTRODUCTION

Direction of arrival (DOA) estimation aims to find the azimuth
angle of a target source originating from a specific spatial location
relative to a microphone array. This estimation relies on spatial
features such as inter-channel time differences, inter-channel phase
differences (IPD), inter-channel level differences, and the relative
transfer function (RTF). Standard DOA estimation methods include
generalized cross correlation with phase transform (GCC-PHAT) [1]
and steered response power with phase transform [2]. However, the
performance of these algorithms severely degrades in reverberant and
noisy environments.

Most recent works on robust speaker localization employ a deep
neural network (DNN) to directly estimate DOA [3]. Typically these
methods use spatial features, GCC-PHAT, or spectrograms as inputs.
For instance, the studies in [4] and [5] utilize IPDs, and those in [6]–
[8] use phase spectrograms as input to generate posterior probabilities
for each DOA class. Other studies estimate the spatial features such
as direct path RTF [9] and IPD [10].

An alternative approach involves enhancing reverberant and noisy
signals and subsequently using the enhanced signals for DOA estima-
tion. Typically, these two-stage methods employ a DNN to estimate
a real-valued mask, which is then used in either traditional signal
processing or DNN-based DOA estimation [11]–[13]. Wang et al.
[12] utilize a bi-directional recurrent network to estimate monaural
oracle time-frequency (T-F) masks, such as the ideal ratio mask
(IRM) or phase sensitive mask (PSM), for speech enhancement.
These estimated masks serve as a weighting mechanism to amplify
the T-F units dominated by the target source while utilizing the phase
of mixture signals in GCC-PHAT calculations. Likewise, an estimated
real-valued mask is utilized within a CNN (convolutional neural
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network) as a weighting mechanism for estimating DOA in [13].
However, these algorithms rely on the phase of the mixture signals
in localization, which limits their frame-level DOA performance.

Recently, speech enhancement methods use complex spectral map-
ping (CSM) [14], [15] which can estimate clean phase, a capability
not shared by mask-based methods in the magnitude domain. Utiliz-
ing clean phase estimates overcomes the limitations of using noisy
phases in two-stage approaches for robust localization. Furthermore,
simultaneously estimating a target source in all microphone outputs
is computationally and conceptually more efficient than estimating
the target in each of the microphones individually.

In this context, we propose a two-stage approach for robust frame-
level speaker localization where the first stage employs MIMO
(multi-input multi-output) based complex spectral mapping for speech
enhancement and the second stage applies weighted GCC-PHAT
(WGCC) for localization. MIMO modeling allows us to explore inter-
channel relations in training losses, which is a distinct advantage
over MISO (multi-input single-output) based methods. Motivated by
the use of inter-channel constraints in loss functions [16]–[18], we
propose to train MIMO based speech enhancement with a novel IPD
term in loss functions for accurate localization. The inclusion of the
IPD term ensures that inter-channel phase relations are maintained in
the enhanced speech, and is found to clearly improve the localization
performance in both simulated and real environments.

Section II describes the problem formulation for DOA, MIMO
based CSM for speech enhancement, training objectives, and
weighted GCC-PHAT for localization. Section III provides the experi-
mental setup. Section IV presents evaluation results and comparisons,
followed by a conclusion in Section V.

II. SYSTEM DESCRIPTION

The signal received by a P-channel microphone array in a rever-
berant and noisy environment can be modeled as

Y(t, f) = S(t, f) + N(t, f) (1)

where S ∈ CP×1 denotes the short-time Fourier transform (STFT) of
direct-path speech signal and N ∈ CP×1 denotes the STFT of all non-
target signals, including speech reverberation and reverberant noise.
Symbols t and f denote the time frame and frequency bin respectively.
Given the reverberant and noisy microphone array observation Y, our
goal is to estimate the anechoic speech S, i.e., Ŝ = F(Y), where F
denotes the estimator, and consequently its direction θ.

A. Multi-Channel Complex Spectral Mapping

The standard formulation of multi-channel complex spectral map-
ping is to estimate the complex spectrogram of the target speech at a
reference microphone m, Ŝm = F(Y; Θ), where Θ denotes the set
of all model parameters, from the noisy mixture [14]. Specifically,IC
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Fig. 1. Block diagram of the proposed two-stage system using MIMO-based
speech enhancement and speaker localization with a P-channel microphone
array.

the mixture’s real and imaginary spectrograms at all microphones
are concatenated and passed into a DNN as input and the DNN
outputs an estimate of the target’s real and imaginary spectrograms
at the reference microphone. In this study, we propose to use the
large version of SpatialNet described in [19] for multi-channel speech
enhancement. We extend SpatialNet to a MIMO system by adding
as many final linear layers as the number of microphones to estimate
multiple target outputs, i.e., Ŝ = F(Y; Θ). Fig. 1 illustrates a P-
channel setup.

B. Training Objectives

Following earlier studies [19]–[22], the multi-output loss function
is calculated by comparing the real and imaginary spectrograms of
the separated (Ŝ) and target speech (S) at each microphone p:

LRI+Mag = LRI + LMag (2)

LRI =
1

P

P∑
p=1

(∥Ŝ(r)
p − S(r)

p ∥1 + ∥Ŝ(i)
p − S(i)

p ∥1) (3)

LMag =
1

P

P∑
p=1

∥|Ŝp| − |Sp|∥1 (4)

where superscripts (r) and (i) denote real and imaginary parts
respectively, and ∥.∥1 the l1 norm.

The MIMO modeling allows us to compare inter-channel phase
differences between the estimated and target spectrograms via a loss
function. We define:

LIPD =
1

NΩ

∑
(p,q)∈Ω

Wp,q

(∥cos Ŝ(p,q)
IPD − cosS

(p,q)
IPD ∥1+

∥sin Ŝ(p,q)
IPD − sinS

(p,q)
IPD ∥1)

(5)

where Ŝ
(p,q)
IPD , S

(p,q)
IPD represent the IPD between a microphone pair

(p, q) of the estimated and target speech respectively. Ω is the set of
all possible microphone pairs with cardinality NΩ = P (P−1)

2
. The

weighting, Wp,q , is chosen to be a product of the corresponding target
speech IRM values. This weighting mechanism serves to accentuate
the T-F units where the target speech dominates.

Incorporating LIPD imposes a penalty on IPD estimation errors,
reflecting the primary role of IPD in sound localization. Considering
different ways of including an IPD term, we investigate the following
two reasonable alternatives:

LRI+IPD = LRI + LIPD (6)

LRI+Mag+IPD = LRI+Mag + LIPD (7)

C. Weighted GCC-PHAT for Localization

For a microphone pair (p, q), the GCC-PHAT algorithm [1] com-
putes their generalized cross-correlation coefficients with a weighting
mechanism based on phase transform to estimate the time delay:

GCCp,q(t, f, θ) = R

{
Yp(t, f)Yq(t, f)

H

|Yp(t, f)||Yq(t, f)H |e
−j2π f

N
fsτp,q(θ)

}
(8)

where R{·} extracts the real part, (·)H represents conjugate trans-
pose, | · | computes the magnitude, j denotes the imaginary unit,
N the number of discrete Fourier transform frequencies, and fs the
sampling rate in Hz. Term τp,q(θ) = (dθq−dθp)/cs denotes the time
delay of a candidate direction or location θ, where cs is the speed of
sound in the air, and dθq and dθp represent the distance between the
hypothesized sound source to microphone p and q, respectively.

We introduce WGCC to improve the performance of GCC-PHAT
in the presence of reverberation and noise:

WGCCp,q(t, f, θ) = Wp,q(t, f)GCCp,q(t, f, θ) (9)

Wp,q(t, f) = Wp(t, f)Wq(t, f) (10)

Equations (9) and (10) bear similarities to the mask-weighted
GCC-PHAT method introduced in [12]. However, there are two key
differences. Firstly, in the mask-weighted method the GCC function
is calculated from noisy observations as defined in (8), whereas the
WGCC function in our study is calculated from the enhanced speech
signals (see Fig. 1). Secondly, the mask-weighted method employs a
ratio mask as the weight per T-F unit, whereas WGCC uses the mask
value computed from the estimated target complex spectrogram.

Finally, frame-level DOA is estimated as

θ̂t = argmax
θ

∑
(p,q)∈Ω

N/2∑
f=1

WGCCp,q(t, f, θ) (11)

III. EXPERIMENTAL SETUP

We used the LibriSpeech corpus [23] for target speech signals,
DEMAND dataset [24] for point-source noise simulations, and the
TIMIT corpus [25] to create diffuse noises as described in [15].
Reverberation time (T60) and signal-to-noise ratio (SNR) are ran-
domly sampled between [0, 1] s and [-5, 5] dB, respectively. The
length, width, and height dimensions of a room are randomly sampled
between [5, 10] m, [5, 10] m, and [3, 4] m, respectively. We use a 2-
microphone linear array with an 8 cm inter-microphone distance and
a 7-microphone circular array with a 4.25 cm radius. A microphone
array is placed around the room center; more specifically, the array
is randomly placed between [-0.5, 0.5] m along length, width, and
height dimensions and rotated between [-60, 60]o. Target and noise
signals are sampled at 16 kHz and are placed around the microphone
array on a circle of radius sampled between [1, 3] m. Room impulse
responses (RIRs) are generated using the image source method [26].
Speech and noise are convolved with the simulated multi-channel
RIRs and SNR is computed with respect to reverberant speech and
reverberant noise. We normalize the mixture signals such that the root
mean square of the mixture waveform is 1. The same scaling factor
is applied to the target speech signal. Train and validation dataset
sizes are 100k and 10k respectively.

For the test setup with simulated RIRs, room size is picked from
three rooms: [6, 6, 2.4], [8, 8, 3], and [10, 10, 4] m3. The microphone
array is placed at the room center. Target and noise signals are placed
around the microphone array on a circle with a radius chosen from {1,
2, 3} m. The DOA grid is sampled between [0, 180]o and [0, 360]o in
5o intervals, resulting in a total of 37 and 72 possible DOA directions,
for linear and circular array respectively. T60 and SNR are picked
from {0.2, 0.4, 0.6, 0.8, 1.0} s and {-5, 0, 5} dB respectively. For
diffuse noise simulations, all possible speaker DOAs are considered
for every T60, SNR, and source-to-microphone distance resulting in
37×5×3×3 = 1665 and 72×5×3×3 = 3240 configurations for linear
and circular array in each room. For point-source noise simulations,
room size and source-to-microphone distance are fixed to [6, 6, 2.4]
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TABLE I
DOA RESULTS WITH SIMULATED RIRS IN DIFFUSE NOISE AND POINT-SOURCE NOISE CONDITIONS AT THREE SNR LEVELS USING A LINEAR ARRAY

WITH TWO MICROPHONES. UTTERANCE-LEVEL DOA RESULTS ARE PRESENTED IN PARENTHESES. BOLD TYPE INDICATES THE BEST RESULT.

Diffuse noise Point-source noise
Method/Loss Params -5 dB 0 dB 5 dB -5 dB 0 dB 5 dB

(M) ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE
GCC-PHAT - 12.0 48.2 15.4 44.7 20.1 40.2 14.0 49.8 18.9 45.2 24.6 39.8
Oracle MGCC - 24.1 37.8 30.5 32.7 38.1 27.6 35.9 29.9 43.2 25.3 49.6 21.6
MaskBLSTM [12] 13.1 15.1 (55.0) 43.2 (11.2) 19.9 (62.5) 38.6 (7.8) 25.4 (68.2) 34.3 (6.0) 20.1 (70.6) 42.4 (11.2) 26.0 (83.3) 37.2 (13.8) 31.9 (88.9) 32.7 (2.8)
SADOA [13] 12.5 17.9 (58.9) 47.7 (11.5) 23.2 (69.2) 42.4 (8.1) 28.3 (75.2) 38.4 (6.3) 20.4 (76.2) 59.3 (10.6) 25.9 (86.3) 52.4 (5.2) 31.3 (91.1) 46.0 (3.6)
PhaseCNN [7] 8.7 16.6 44.7 21.3 40.1 27.1 35.4 18.4 49.4 24.0 44.1 30.0 38.6
LRI 7.3 63.7 9.8 72.7 7.7 77.4 6.7 92.1 2.9 93.5 2.4 93.9 2.3
LRI+Mag 7.3 67.8 8.6 77.1 6.5 81.4 5.6 92.6 2.6 93.8 2.2 94.2 2.1
LRI+IPD 7.3 79.7 3.9 86.4 2.9 89.3 2.5 92.7 2.3 93.7 1.9 94.0 1.8
LRI+Mag+IPD 7.3 80.9 3.9 87.5 2.9 90.4 2.4 94.0 1.8 94.9 1.5 95.2 1.5

m3 and 1 m respectively. All possible DOA pairs of speaker and
noise (not from the same direction) are considered for every T60 and
SNR resulting in 37×36×5×3 = 19980 configurations.

For the test setup with recorded RIRs, we pick the center two
microphones from [27] to match our training geometry. Diffuse noises
for real recordings are generated with the TIMIT speech convolved
with RIRs from all possible directions, i.e. 26 including 1 m and
2 m distances. Note that real recorded diffuse noises are generated
differently from our training simulations. SNR, T60 and source-to-
microphone distance are picked from {-5, 0, 5} dB, {0.16, 0.36,
0.61} s and {1, 2} m respectively.

For the STFT analysis, frame length and frame shift are 32 ms
and 16 ms respectively. The hyperparameters include the mini-batch
size of 8 and an initial learning rate of 0.001 which decays by 0.98
for every two epochs. The maximum number of training epochs is
set to 50, and mixed precision is used for training and testing. Note
that the models are trained separately on 4-second segments for each
experiment.

IV. EVALUATIONS AND COMPARISONS

For DOA, we consider frame-level accuracy (ACC) and mean
absolute error (MAE) as defined below:

ACC (%) =

∑
t DtCt∑
t Dt

× 100 (12)

MAE (o) =

∑
t Dt|θt − θ̂t|∑

t Dt
(13)

where θt represents the ground truth DOA at frame t. Dt is a binary
number indicating whether frame t has speech signal, as determined
by a voice activity detector [28]. Ct = 1 if and only |θt − θ̂t| ≤ θth,
where θth = 5o is commonly chosen as the tolerance threshold.

For speaker localization in reverberant and noisy environments,
we compare with three DNN-based methods, GCC-PHAT and oracle
mask-weighted GCC-PHAT (MGCC). The oracle MGCC method
uses the IRM, not its estimate, for computing weights and it serves as
an upper bound for the two-stage systems that combine real-valued
masks and mask-weighted GCC-PHAT. MaskBLSTM [12] is a two-
layer BLSTM (bidirectional long short-term memory) network that
is trained on all individual microphones to estimate the PSM, and then
performs mask-weighted GCC-PHAT for utterance-level localization.
To generate frame-level results of MaskBLSTM, we modify mask-
weighted GCC-PHAT similar to (11). SADOA [13] employs cascaded
DNNs for enhancement and localization. We modify the first DNN
to BLSTM for a fair comparison. The model is trained end-to-end
for 100 epochs at the utterance level with a cross entropy loss. The
enhanced mask is used to weigh the features internally within the

localization module referred to as feature masking [13]. Note that,
even though the model is trained at the utterance level, it outputs DOA
intrinsically at the frame level. For frame-level results, we pick the
DOA as the angle with the highest value. PhaseCNN [7] uses a CNN
for DOA classification with frame-level mixture phase spectrograms
as input.

Table I provides the frame-level DOA results of the proposed
model with different loss functions and the comparison methods on
the two-microphone linear array with simulated RIRs in the presence
of diffuse and point-source noise. From Table I, we observe that
the DOA performance of GCC-PHAT directly applied on micro-
phone signals is very poor, reflecting reverberant and noisy test
conditions. By incorporating the weighting mechanism in MaskBLSTM,
the utterance-level DOA performance is improved significantly but
its frame-level DOA performance is poor. The SADOA results are
slightly better than those of MaskBLSTM. PhaseCNN relies solely on
phase spectrograms, and it performs better than GCC-PHAT and
shows comparable performance with other baselines. Despite using
the IRM, oracle MGCC’s frame-level performance remains limited.

The proposed approach utilizes the clean phase estimated from
MIMO based speech enhancement along with a weighting mechanism
for speaker localization. As demonstrated by the results in Table I,
the DOA performance of our systems surpasses oracle MGCC and is
much better than the DNN baselines of MaskBLSTM, SADOA and
PhaseCNN. The frame-level results of our model exceed even the
utterance-level results of MaskBLSTM and SADOA.

We now compare the DOA performance of different loss functions
in our proposed MIMO approach for multi-channel speech enhance-
ment. Although, LRI and LRI+Mag achieve high DOA performance,
incorporating inter-channel phase differences into the loss functions,
i.e., turning LRI to LRI+IPD and LRI+Mag to LRI+Mag+IPD, further
increases DOA accuracy and lowers MAE, especially in the diffuse
noise case and in terms of mean absolute error. Among the loss
functions, LRI+Mag+IPD performs the best. Fig. 2 illustrates the DOA
results of the different loss functions for the diffuse and point-source
noise conditions. As clear from the figure, the frame-level localization
results from LRI+Mag+IPD have a higher number of DOA estimates
within the tolerant range and fluctuate less compared to LRI+Mag. The
same observation holds when comparing LRI+IPD and LRI.

Table II provides the DOA results, averaged over all SNRs, T60
values, and source-to-microphone distances (see Sect. 3), with the
recorded RIRs from [27] that match the trained two-channel array
geometry. Our analysis for each speaker direction indicates that the
endfire directions, i.e. {0, 180}o, contribute to the majority of errors
and are excluded from the evaluation as done in [12]. The results
in Table II demonstrate that our approach generalizes well to real
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(b) Point-source noise(a) Diffuse noise 

Fig. 2. Frame-level DOA estimation comparisons of different loss functions in a simulated environment with SNR = -5 dB and T60 = 1 s. The red solid
and blue dotted lines represent the ground truth DOA and tolerance range respectively. The corresponding ACC and MAE results are shown in each case.
Non-speech frames are excluded from the plot.

TABLE II
DOA RESULTS WITH RECORDED RIRS IN DIFFUSE NOISE AND

POINT-SOURCE NOISE CONDITIONS.

Method/Loss Diffuse noise Point-source noise
ACC MAE ACC MAE

GCC-PHAT 23.7 40.8 11.9 54.6
MaskBLSTM [12] 27.6 (74.2) 36.6 (8.3) 20.6 (54.0) 44.5 (21.5)
SADOA [13] 23.8 (63.6) 49.6 (19.3) 21.9 (58.0) 60.6 (20.7)
PhaseCNN [7] 20.1 59.1 18.2 49.9
LRI 42.6 30.4 86.1 3.2
LRI+Mag 59.0 17.1 86.1 3.1
LRI+IPD 60.5 18.8 85.5 3.2
LRI+Mag+IPD 64.9 16.6 86.2 3.0

recordings and achieves much higher localization accuracy and lower
MAE than the comparison baselines for both diffuse noise and point-
source noise conditions. Like in Table I, the frame-level results of our
model are better than the utterance-level results of the comparison
baselines.

TABLE III
DOA RESULTS WITH SIMULATED RIRS IN DIFFUSE NOISE USING A

CIRCULAR ARRAY.

Method/Loss -5 dB 0 dB 5 dB
ACC MAE ACC MAE ACC MAE

GCC-PHAT 14.6 71.2 21.5 61.8 30.4 51.3
Oracle MGCC 40.6 39.1 50.9 30.9 60.8 24.2
MaskBLSTM [12] 22.5 58.4 32.5 47.6 42.7 38.7
SADOA [13] 33.7 49.3 44.9 40.8 53.6 35.1
PhaseCNN [7] 32 50.9 45.2 39.0 56.8 30.0
LRI 83.2 7.9 88.6 5.2 91.2 4.0
LRI+Mag 89.4 3.8 93.7 2.4 95.5 1.7
LRI+IPD 96.1 1.7 97.4 1.2 97.8 1.0
LRI+Mag+IPD 94.8 1.8 97.2 1.1 98.0 0.8

We further evaluate on the 7-microphone circular array our pro-
posed method and the LIPD loss for DOA and compare with other
baselines in the simulated diffuse noise condition. The evaluation

results are given in Table III. Consistent with the results on the
2-microphone linear array, the results in Table III demonstrate the
superior performance of the proposed method over all the baselines.
A comparison between the last two rows clearly shows that incorpo-
rating the LIPD loss significantly enhances localization performance,
demonstrating its utility across different array geometries.

As the localization results in Table 1 are based on multi-channel
speech enhancement, their corresponding enhancement results are
provided in Table IV where scores are averaged across the three
SNR levels. Enhancement performance is measured in terms of
the commonly used metrics of short-time objective intelligibility
(STOI) [29], perceptual evaluation of speech quality (PESQ) [30],
and scale-invariant signal-to-distortion ratio (SI-SDR) [31]. From
Table IV, we notice that the inclusion of the IPD term in a loss
function produces close speech enhancement results. However, the
term clearly leads to better DOA results. This demonstrates that
enhancement and localization are different tasks, justifying our two-
stage approach. Overall, LRI+Mag+IPD yields the best localization and
speech enhancement performance.

TABLE IV
SPEECH ENHANCEMENT RESULTS IN DIFFUSE NOISE AND POINT-SOURCE

NOISE CONDITIONS.

Diffuse noise Point-source noise
Loss STOI (%) PESQ SI-SDR STOI (%) PESQ SI-SDR
Unprocessed 54.1 1.31 -9.1 58.4 1.39 -8.9
LRI 88.9 2.23 10.6 97.3 3.65 16.2
LRI+Mag 89.6 2.68 10.3 97.3 3.79 15.9
LRI+IPD 88.9 2.33 10.7 96.3 3.57 15.0
LRI+Mag+IPD 89.8 2.70 10.7 97.3 3.80 16.0

V. CONCLUSION

We have proposed novel MIMO complex spectral mapping models
that are trained with the inclusion of inter-channel phase difference
in loss functions. These models are then combined with a weighted
GCC-PHAT method for frame-level speaker localization. The pro-
posed approach yields accurate speaker localization in reverberant
and noisy conditions and performs much better than related DNN
based methods.
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