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When a target speech signal is obscured by an interfering speech wave form, comprehension of the
target message depends both on the successful detection of the energy from the target speech wave
form and on the successful extraction and recognition of the spectro-temporal energy pattern of the
target out of a background of acoustically similar masker sounds. This study attempted to isolate the
effects that energetic masking, defined as the loss of detectable target information due to the spectral
overlap of the target and masking signals, has on multitalker speech perception. This was achieved
through the use of ideal time-frequency binary masks that retained those spectro-temporal regions
of the acoustic mixture that were dominated by the target speech but eliminated those regions that
were dominated by the interfering speech. The results suggest that energetic masking plays a
relatively small role in the overall masking that occurs when speech is masked by interfering speech
but a much more significant role when speech is masked by interfering noise. © 2006 Acoustical
Society of America. �DOI: 10.1121/1.2363929�

PACS number�s�: 43.71.Gv, 43.66.Pn, 43.66.Rq �GDK� Pages: 4007–4018
I. INTRODUCTION

When a target speech signal is masked by one or more
interfering voices, two related but distinct processes are re-
quired for the listener to successfully understand the message
spoken by the target talker. First, the listener must be able to
detect the acoustic energy present in the target voice. In gen-
eral, a listener would only be able to reliably detect those
portions of the target voice that occur in time and frequency
regions where the target contains at least as much energy as
the masker. The acoustic elements of the target that occur in
regions that overlap in time and frequency with a more pow-
erful masking sound would be effectively eliminated from
the stimulus and thus are unable to contribute to the percep-
tion of the target utterance. In this paper, the loss of acoustic
information from the target that is caused by this type of
masking will be referred to as energetic masking.

In situations where no interfering sounds are present in
the stimulus, detection alone is generally sufficient to allow
the listener to understand a target utterance. If enough acous-
tic elements of the target talker are detectable in the stimulus,
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the listener should be able to determine the spectro-temporal
energy pattern of the speech and use it to recognize the target
utterance. When an interfering sound is present in the stimu-
lus, however, the task becomes more difficult. The listener
now detects acoustic elements from both the target and the
interferer, and has to find some way to distinguish between
the two in order to extract the spectro-temporal energy pat-
tern of the target talker from the combined stimulus.

Of course, this two-stage model of speech perception is
in many ways an oversimplification. In particular, it ignores
the fact that some spectro-temporal regions of the stimulus
will contain enough masker energy to distort the target sig-
nal, but not enough energy to overwhelm the target signal
and render it undetectable. In such cases, it might be per-
fectly reasonable to expect the distortions caused by the
noise to impair the listener’s ability to identify those regions
as part of the target signal and use them to recognize the
target utterance. This raises the specter of whether the loss of
performance caused by this kind of distortion should be cat-
egorized as energetic masking, because it is caused by direct
spectral overlap of the target and masker, or whether it
should be viewed as nonenergetic masking related to an in-
ability to tease apart the target and masking portions of the
stimulus. Either view may be equally valid, but for the pur-

poses of this paper, we will restrict the use of the term “en-
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ergetic masking” to the loss of information caused by an
overwhelming masker, and exclude confusions caused by
signal distortion from that definition. It is worth noting, how-
ever, that this distinction is a relatively minor one when the
target signal is a spectrally sparse stimulus like speech, be-
cause in such cases the acoustic mixture will tend to be
dominated either by the target or the masker in almost all the
spectro-temporal regions of the stimulus.

Within this conceptual framework, an important ques-
tion in understanding how listeners process complex auditory
stimuli is the extent to which the ability to identify a target
speech signal in the presence of a masker is dependent on the
elimination of acoustic information about the target signal
due to spectral and temporal overlap with the masker �i.e.,
energetic masking�, and the extent to which performance in
these situations is limited by the inability to correctly segre-
gate and recognize the spectro-temporal pattern of the detect-
able acoustic elements of a target signal amid a background
of confusingly similar masking sounds. In order to explore
this issue, a number of researchers have attempted to develop
stimuli that reproduce the potential target-masker confusions
that can occur in a speech-on-speech masking task in a
stimulus with no spectral overlap between the target and
masking speech signals �and thus no significant opportunity
for energetic masking to occur�. For example, Spieth, Curtis,
and Webster �1954� high-pass filtered one talker at 1600 Hz
and low-pass filtered the other talker at 1600 Hz, thus creat-
ing a stimulus containing two independently intelligible
speech signals with no spectral overlap. These stimuli repro-
duced many of the masking effects associated with normal
multitalker stimuli, but presumably generated little or no en-
ergetic masking because there was no spectro-temporal over-
lap in the target and masking signals. This technique was
greatly expanded by Arbogast et al. �2002�, who used co-
chlear implant simulation software to divide the speech sig-
nal into 15 logarithmically spaced envelope-modulated sine
waves, and randomly assigned eight of these bands to the
target speech and six other bands to the masking speech.
Again, this resulted in a stimulus that presumably produced
little or no energetic masking but retained the potential
target-masker confusions that would normally be present in
multitalker speech.

The above studies have attempted to eliminate the ener-
getic masking component that would ordinarily occur in
speech-on-speech masking. An alternative approach is to de-
velop a stimulus that approximates the effects of energetic
masking but eliminates the potential nonenergetic target-
masker confusions that can occur in ordinary multitalker
stimuli. In order to be effective, such a stimulus has to ac-
count for the amplitude fluctuations that normally occur in a
masking speech stimulus, because these fluctuations produce
dips in the masking speech that allow listeners to obtain clear
“glimpses” of the target speech even when the overall signal-
to-noice ratio �SNR� is very unfavorable �Assmann and
Summerfield, 2004; Cooke, 2005; Culling and Darwin, 1994;
Miller and Licklider, 1950�. The simplest approach to this
problem is to amplitude modulate a continuous speech-
spectrum-shaped noise with the overall envelope of a natural

speech masker �Bronkhorst and Plomp, 1992; Brungart et al.,
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2001; Festen and Plomp, 1990; Hawley et al., 2004�. How-
ever, this simplistic approach cannot account for the fact that
a speech masker can fluctuate differently in different fre-
quency bands, thus allowing the listener the opportunity to
hear glimpses of the target in different frequency regions at
different times �Buss et al., 2004�. Of course, it is possible to
amplitude modulate a noise with different envelopes in dif-
ferent frequency bands �Festen and Plomp, 1990�. However,
signals of this type are known to become recognizable as
intelligible speech when they contain more than a few inde-
pendently modulated frequency bands �Shannon et al.,
1995�, and, once this happens, there is a real possibility that
the masking “noise” could include speech-like spectro-
temporal patterns that could be confused with the target
speech and thus result in a significant amount of nonener-
getic masking.

We propose a new signal processing technique called
“ideal time-frequency segregation” �ITFS� that can approxi-
mate the energetic masking effects produced by a natural
speech masker across both time and frequency in a stimulus
with no audible masking signal that could potentially be con-
fused with the target speech. This approach, which is based
on the “ideal binary mask” notion that has been used as a
performance measure in computational auditory scene analy-
sis �CASA�, uses a priori information about the time-
frequency �T-F� composition of the target and masking sig-
nals to eliminate just those spectral and temporal regions of
the target signal that would ordinarily be rendered acousti-
cally undetectable by the presence of a more intense masking
sound. By eliminating these T-F regions, this procedure is
intended to retain the loss of information that would nor-
mally occur due to the effects of energetic masking. At the
same time, this procedure performs what could be viewed as
ideal time-frequency segregation by separating the T-F re-
gions of the stimulus that potentially contain information
about the target speech �and thus would be expected to con-
tribute to listener performance in a speech perception task�
from those regions that would only contain acoustic informa-
tion about the masking voice �and thus could potentially re-
duce performance by distracting the listener’s attention away
from the T-F regions associated with the target speech�.
Thus, the net effect of applying this ITFS procedure is to
create a stimulus that approximates the effect that energetic
masking would have for an “ideal” listener who is able to
successfully identify and utilize all of the detectable target
information in the stimulus.

The remainder of this paper is organized as follows.
Section II describes the technical details of how the ITFS
technique was implemented. Section III describes an experi-
ment that applied this technique to multitalker stimuli. Sec-
tion IV describes an experiment that extended this approach
to speech in the presence of a noise masker. Section V de-
scribes how the ITFS technique can be used as a conceptual
tool in a larger framework for quantifying the roles of ener-
getic and nonenergetic masking in auditory perception. Fi-
nally, Sec. VI summarizes the main conclusions from our

experiments.
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II. IDEAL TIME-FREQUENCY SEGREGATION

A. Relationship to “ideal binary masking”

The concept of ITFS is very closely related to the con-
cept of the ideal binary mask in CASA. Ideal binary masking
is a signal processing method that simply retains those T-F
regions of a mixture where the “target” source is stronger
and eliminates the T-F regions where “interfering” sources
are stronger. Such processing is called ideal because the
mask definition is based on the target and interfering signals
before mixing; also the ideal binary mask is the optimal bi-
nary mask in terms of SNR gain �Hu and Wang, 2004; Ellis,
2006�. In this context, the term “mask” refers not to the
addition of an interfering stimulus, as it does in psycho-
acoustics, but rather to a filter that completely eliminates
certain portions of a signal �those assigned to a “zero” value
in the mask� while allowing others �those assigned to a “one”
value in the mask� to pass through unimpeded. Binary mask-
ing is typically based on a two-dimensional T-F representa-
tion where the time dimension consists of a sequence of time
frames and the frequency dimension consists of a bank of
auditory filters �e.g., gammatone filters�. Thus the basic ele-
ment in the ideal binary mask paradigm is a T-F unit corre-
sponding to a specific filter at a particular time frame, and
the binary mask itself is a two-dimensional matrix where
each element corresponds to a single T-F unit. Those T-F
units where the mixture is dominated by the target are as-
signed a one in the binary mask, and those where the mixture
is dominated by an interfering sound are assigned a zero.

The above discussion makes it clear that the ideal binary
mask is generated by checking whether the SNR in each T-F

unit is greater than 0 dB. We can extend the definition of an
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ideal binary mask by introducing a predefined local SNR
criterion �LC� so that those T-F units where the SNR is
greater than a predefined LC value are assigned one in the
ideal binary mask, and all the other T-F units are assigned
zero. The commonly used ideal binary mask in CASA then
corresponds to a LC value of 0 dB.

Figure 1 illustrates the ideal binary mask using a 0 dB
LC for a mixture of the male utterance “Ready Baron go to
blue one now” and the female utterance “Ready Ringo go to
white four now,” where the male utterance is regarded as the
target. The overall SNR of the mixture �measured from the
rms energy in each utterance� is 0 dB. In the figure, the top
left panel shows the T-F representation of the target utter-
ance, the top right panel the representation of the interfering
utterance, and the bottom left panel the representation of the
mixture. The middle panel shows the ideal mask, where
white and black indicate 1 and 0, respectively. The bottom
right panel shows the masked mixture using the ideal mask.
Note that the masked mixture is much more similar to the
clean target than the original mixture.

Figure 2 illustrates the effect that varying LC value has
on the ideal binary mask for the two-talker speech mixture
shown in Fig. 1. The left and right panels show the ideal
mask and resulting resynthesized mixture with the LC value
set at −12 dB �top row�, 0 dB �middle row�, and +12 dB
�bottom row�. As can be seen from the figure, increasing the
LC value makes the ideal binary mask more conservative by
requiring a higher local SNR in order to retain a particular
T-F unit and hence reduces the total number of T-F units
retained.

FIG. 1. An illustration of the ideal bi-
nary mask for a mixture of two utter-
ances with equal overall rms levels.
Top left: Two-dimensional T-F repre-
sentation of a target male utterance
�“Ready Baron go to blue one now”�.
The figure displays the rectified re-
sponses of the gamma-tone filter bank
with 128 channels, where the energy
value at each T-F unit is scaled to use
the gray scale color map from black to
white and is raised to the 1/4 power
for better display. Top right: Corre-
sponding representation of an interfer-
ing female utterance �“Ready Ringo
go to white four now”�. Middle: Ideal
binary mask generated at 0 dB LC,
where white pixels indicate 1 and
black pixels indicate 0. Bottom left:
Corresponding representation of the
mixture. Bottom right: Masked mix-
ture using the ideal mask.
Although very few psychoacoustic experiments have
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been conducted with ideal binary masks, the binary mask
pardigm has been used extensively in CASA. The notion of
the ideal binary mask was first proposed by Hu and Wang
�2001� as a computational goal of CASA, and was further
developed by Roman et al. �2003� and Hu and Wang �2004�.
Binary masks had been used as an output representation in
the CASA literature �Brown and Cooke, 1994; Wang and
Brown, 1999�. Cooke et al. �2001� used the a priori mask—
defined according to whether the mixture energy is within
3 dB of the target energy—in the context of robust speech
recognition. Roman et al. �2003� conducted speech intelligi-
bility tests and found that estimated masks that are very close
to ideal ones yield substantial speech intelligibility improve-
ments compared to unprocessed mixtures. Wang �2005� gave
an extensive discussion on the use of the ideal binary mask
as the computational goal of CASA.

B. Implementation

In applying the “binary mask” technique to auditory per-
ception, we make the assumption that human listeners also
perform a T-F analysis on the stimulus, and that the ideal
listener would employ a segregation strategy similar to the
one implemented in the ideal binary mask technique. In or-
der to evaluate how real listeners might be able to perform a
speech segregation task with such an “ideally segregated”
signal, the technique described in the previous section was
used to generate ITFS stimuli containing only those T-F re-
gions of the stimulus that were locally dominated by the
target speech. The procedures used to generate these stimuli
were very similar to those used in previous studies that em-
ployed binary masks �e.g., Hu and Wang, 2004�. For each
stimulus presentation, the ITFS processing was based on a

total of three input signals: a target signal, an interfering
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signal, and a mixture signal of the target and the interference.
Each of these was first processed through a bank of 128
fourth-order gammatone filters with overlapping passbands
�Patterson et al., 1988� and with center frequencies ranging
from 80 to 5000 Hz on an approximately logarithmic scale.
The gammatone filter bank effectively decomposed the sig-
nals into arrays of 128 narrowband signals, which were fur-
ther divided into 20 ms time frames with 10 ms overlap in
order to produce a matrix of T-F units for each of the input
signals. This choice of the filterbank and time windowing is
commonly used in speech analysis but it is by no means
optimal—other choices are certainly possible. For example, a
bank of 64 or even 32 gammatone filters covering the same
frequency range has been previously used. Once T-F decom-
position is done, within each of the T-F units, a comparison
was made between the energy of the target and that of the
interference. The resulting local SNR for each T-F unit was
then compared to a predefined LC value to determine
whether to retain the unit.

Once this binary mask was defined, the output was re-
synthesized from the mixture using the same method that
was described by Weintraub �1985� �see also Brown and
Cooke, 1994; Wang and Brown, 1999�, which accounts for
across-filter phase shifts introduced by the gammatone filter
bank. In resynthesis, the binary mask was used to weight the
filter outputs in individual frames and the weighted outputs
were summed across all frequency channels to yield the re-
synthesized ITFS wave form.

III. EXPERIMENT 1: EFFECTS OF IDEAL
TIME-FREQUENCY SEGREGATION „ITFS…
ON SPEECH INTELLIGIBILITY WITH THE CRM TASK

The basic premise of the ITFS technique is that it ap-

FIG. 2. An illustration of ideal binary
masking at different LC values, using
the same speech mixture of two utter-
ances from Fig. 1. The three rows
show representations for three differ-
ent LC values �−12 dB, 0 dB, and
+12 dB from top to bottom�. The left
column shows the ideal binary mask in
each condition. The right column
shows the corresponding masked mix-
tures using these ideal masks. Note
that increasing the LC value makes the
binary masking procedure more con-
servative and thus decreases the num-
ber of retained T-F units.
proximates the signal that would be available to a “perfectly
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segregating” listener who could correctly extract all of the
T-F units containing useful information about the target
speech and completely ignore all of the other extraneous T-F
units in the stimulus. Thus, one would expect ITFS process-
ing to produce a large improvement in performance in listen-
ing situations where the masker is qualitatively similar to,
and thus potentially easily confused with, the target signal.
Experiment 1 was designed to examine the effect of ITFS
processing on the intelligibility of a stimulus that has been
shown to be highly susceptible to these types of target-
masker confusions; namely, a target speech signal from the
coordinate response measure �CRM� �Brungart et al., 2001�
masked by one, two, or three CRM phrases spoken by iden-
tical masking talkers and presented at the same level as the
target speech. In order to examine the impact of the LC value
on performance with ITFS signals, the stimuli were pro-
cessed with LC values ranging from −60 dB to +30 dB.

A. Methods

1. Listeners

Nine paid listeners participated in the experiment. All
had normal hearing and their ages ranged from 18 to 54.
Most had participated in previous auditory experiments, and
all were familiarized with the CRM task prior to conducting
this experiment.

2. Speech stimuli

The speech materials used in the experiment were de-
rived from the publicly available CRM speech corpus for
multitalker communications research �Bolia et al., 2000�.
This corpus, which is based on a speech intelligibility test
first developed by Moore �1981�, consists of phrases of the
form “Ready �call sign� go to �color� �number� now” spoken
with all possible combinations of eight call signs �“Arrow,”
“Baron,” “Charlie,” “Eagle,” “Hopper,” “Laker,” “Ringo,”
“Tiger”�; four colors �“blue,” “green,” “red,” “white”�; and
eight numbers �1–8�. Thus, a typical utterance in the corpus
would be “Ready Baron go to blue five now.” Eight talkers—
four males and four females—were used to record each of
the 256 possible phrases, so a total of 2048 phrases are avail-
able in the corpus.

For each trial in the experiment, a total of three audio
signals were randomly generated and stored for offline ITFS
processing prior to their presentation to the listeners. The
first audio signal �the “target” signal� consisted of a CRM
phrase randomly selected from all the phrases in the corpus
containing the target call sign “Baron.” The second audio
signal �the “interfering” signal� consisted of one, two, or
three different phrases randomly selected from the CRM cor-
pus that were spoken by the same talker used in the target
phrase but contained call signs, color coordinates, and num-
ber coordinates that were different from the target phrase and
different from each other. Each of these interfering phrases
was scaled to have the same overall rms power as the target
phrase, and then all of the interfering phrases were summed

together to generate the overall interfering signal used for the
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binary mask processing. The third audio signal �the “mix-
ture”� was simply the sum of the target and interfering sig-
nals for that particular stimulus presentation.

Note that, although all of the individual masking talkers
in the mixture were scaled to have the same rms power, the
overall SNR was less than 0 dB in the conditions with more
than one interfering talker. In previous papers, we have clari-
fied this distinction by referring to the ratio of the target
speech to each individual interfering talker as the target-to-
masker ratio �TMR�, and by referring to the ratio of the
target talker to the combined interfering talkers as the overall
SNR �Brungart et al., 2001�. Under this terminology, the
mixture with two equal-level interfering talkers would have a
TMR value of 0 dB and an SNR value of approximately
−3 dB.

3. Ideal time-frequency segregation

Prior to the start of data collection, each set of three
audio signals �“target,” “interferer,” and “mixture”� was used
to generate a single ITFS stimulus at a single predetermined
LC value. A total of 29 different LC values, ranging from
−60 dB to +30 dB in 3 dB increments, were tested in the
experiment. In addition, an “unsegregated” condition was in-
cluded where the stimuli were simply processed using the
ITFS technique with a LC value of negative infinity �thus
including all T-F units in the resynthesized mixture�. This
control condition was essentially equivalent to simply pre-
senting the mixture to the listener, but it also captured any
distortions that might have occurred during the analysis and
resynthesis portions of the ITFS processing.

4. Procedure

The listeners participated in the experiment while seated
at a control computer in one of three quiet listening rooms.
On each trial, the speech stimulus was generated by a sound
card in the control computer �Soundblaster Audigy� and pre-
sented to the listener diotically over headphones �Sennheiser
HD-520�. Then an eight-column, four-row array of colored
digits corresponding to the response set of the CRM was
displayed on the CRT, and the listener was instructed to use
the mouse to select the colored digit corresponding to the
color and number used in the target phrase containing the
call sign Baron.

The trials were divided into blocks of 50, each taking
approximately 5 min to complete. Each subject participated
in 90 blocks for a total of 4500 trials per subject. These
included 150 trial combinations for each of the 30 LC values
�including the unsegregated condition� evenly divided
among three talker conditions �two-talker, three-talker, and
four-talker, corresponding to one-interferer, two-interferer,
and three-interferer, respectively�. The trials were also bal-
anced to divide the eight target speakers as evenly as pos-
sible across the trials collected in each condition for each
subject.

B. Results and discussion

Figure 3 shows the percentage of trials where the listen-

ers correctly identified both the color and the number in the
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target phrase as a function of LC for each of two, three, and
four simultaneous talker configurations in the experiment.
The data were averaged across the listeners used in the ex-
periment, and the error bars in the figure represent the 95%
confidence interval of each data point. The points at the far
left of the figure �labeled unsegregated� represent the control
conditions where all of the T-F units were retained in the
resynthesized signal. These points indicate that the listeners
were able to correctly identify the color and number coordi-
nates in the stimulus in approximately 50% of the trials with
two simultaneous talkers, 25% of the trials with three simul-
taneous talkers, and 12% of the trials with four simultaneous
talkers. These results are consistent with previous experi-
ments that have examined performance in the CRM task with
two, three, or four identical talkers �Brungart et al., 2001�.

Although the overall number of correct color and num-
ber identifications clearly decreased as the number of talkers
in the stimulus increased, the general pattern of performance
was similar for all three of the talker conditions tested. For
purposes of discussion, it is easiest to divide these perfor-
mance curves into three distinct regions that are clearly de-
fined in all three of these performance curves shown in Fig.
3 and have very different interpretations with respect to the
effect of LC. Before discussing each of these regions in de-
tail, we describe the performance for the LC value of 0 dB,
which corresponds the standard definition of the ideal binary

FIG. 3. Percentage of trials in Experiment 1 in which the listeners correctly
identified both the color and number coordinates in the target phrase as a
function of the LC values. The legend indicates the number of simultaneous
talkers tested in the experiment. The error bars represent 95% confidence
intervals �±1.96 standard errors� in each condition, calculated from the
pooled data collected from all the subjects in the experiment. Because of the
discontinuity in the performance curve at 0 dB, two different logistic curves
were used to fit the positive and negative LC values in each talker condition
�Cavallini, 1993�. At negative LC values, this logistic curve was set to
asymptote at the performance value achieved in the unsegregated control
condition. Note that the target and maskers always were presented at the
same overall rms level �i.e., 0 dB TMR� prior to the application of the ITFS
procedure.
mask discussed in Sec. II.
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1. LC Value of 0 dB: Effects of energetic masking at a
TMR value of 0 dB

As discussed earlier, the basic premise of the ITFS tech-
nique is that its application with a LC value at or near 0 dB
preserves the effects of energetic masking in the stimulus but
eliminates errors due to target-masker confusions. Under this
premise, the point with 0 dB LC in Fig. 3 can be roughly
interpreted as the theoretical maximum level of performance
that could be achieved if the listener were able to success-
fully segregate and identify all of the detectable acoustic el-
ements of the target talker in the stimulus.

An examination of the results in Fig. 3 shows that the
listeners in the 0 dB LC condition correctly identified the
color and number in the target phrase nearly 100% of the
time even in the most difficult four-talker condition. This
represents a dramatic improvement in performance over the
unsegregated conditions, where performance ranged from
12% correct responses in the four-talker condition to 50%
correct responses in the two-talker condition. Since the
elimination of the T-F regions with negative local SNR val-
ues would not provide additional information about the tar-
get, our explanation for the large improvement in perfor-
mance in the ITFS condition is that performance in the
unsegregated condition was primarily dominated by nonen-
ergetic masking effects due to the listener confusing the tar-
get and masking voices.

2. Region I: Energetic masking effects
at LC values greater than 0 dB

The curves in Region I of Fig. 3 show that performance
in the ITFS condition systematically decreased as the LC
value increased above 0 dB. The fact that performance was
near 100% when LC=0 dB and that it began to decrease
almost immediately when LC increased above 0 dB is infor-
mative, because it implies that the listeners were able to ob-
tain a significant amount of information from T-F regions of
the stimulus that had local SNR values between 0 and
+3 dB. This clearly shows that listeners can �and do� extract
information from T-F regions of the stimulus with local SNR
values as low as 0 dB, thus supporting the somewhat arbi-
trary choice of 0 dB as the nominal local SNR point differ-
entiating between those T-F units which provide the listener
with useful information about the target and those that only
provide useful information about the masker.

The drop off in performance when LC�0 dB is also
informative in another way. By the definition of ITFS, each
1 dB increase in the LC value produces a 1 dB increase in
the minimum local SNR value required for a given T-F unit
to be retained. This means that each 1 dB increase in LC
above 0 dB eliminates exactly the same T-F units from the
stimulus that would be eliminated if LC remained unchanged
but the level of the masker increased by 1 dB. Thus, to a first
approximation, the level of performance achieved for an
ITFS stimulus with a LC value of +L dB is approximately
equivalent to the level of performance that could be achieved
with just the energetic component of speech on speech mask-
ing in the corresponding stimulus with the overall SNR re-
duced by L dB �this assumption will be tested in the next

experiment�. The Region I performance with positive LC

Brungart et al.: Ideal time-frequency segregation



values could therefore be interpreted as an indicator of the
effect of purely energetic masking on multitalker speech per-
ception with the corresponding reduction of overall SNR.
These results would then suggest that energetic masking has
a remarkably small impact on the performance with the mul-
titalker CRM task. At a TMR of 0 dB, performance was near
100% even for a stimulus containing four simultaneous
same-talker speech signals, which corresponds to an overall
SNR of approximately −4.8 dB. Even when the effective
SNR value was reduced by 30 dB �LC=30 dB�, performance
was near 35%correct in the two-talker condition and better
than chance �3%� even in the four-talker condition.

3. Region II: Plateau in performance at LC values from
−12 to 0 dB

In the range of LC values between −12 and 0 dB, the
listeners consistently exhibited near-perfect identification
performance �100% correct responses� in all three of the
talker configurations tested. In this region, the stimulus con-
tained all of the available speech information about the tar-
get, but only those T-F regions of the masker that were
slightly more intense than the target. These units with stron-
ger masking energy did not significantly interfere with the
recognition of the target speech, presumably either because
there were not enough of them to be perceived as a compet-
ing speech signal or because they only occurred in T-F re-
gions that already contained a significant amount of energy
in the target signal.

4. Region III: Target-masker confusion at LC values
less than −12 dB

When the LC values used to generate the ITFS stimuli
fell below −12 dB, the stimulus started to include progres-
sively more T-F units in places where relatively little or no
energy was present in the target. These units produced a
rapid decrease in performance, from near 100% at LC value
of −12 dB to approximately the same level of performance
achieved in the unsegregated condition when LC=−40 dB.
Decreasing the LC value below −40 dB caused no further
degradation in performance, presumably because all of the
relevant phonetic information in the interferer was already
present in the stimulus when the LC value was −40 dB.

Decreasing the LC value below 0 dB has essentially no
impact on the total amount of phonetic information in the
target that is available to the listener. All of the T-F units that
include usable information about the target are presumably
included in the stimulus at a LC value of 0 dB. What hap-
pens when LC is reduced below 0 dB is that some of the T-F
regions that primarily include phonetic information about the
interferer are added back into the stimulus. Thus, the de-
crease in performance that occurs at negative LC could only
be attributed to the listener becoming confused about which
acoustic elements belong to the target and which acoustic

elements belong to the interferer.
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5. Error analysis

Although the error rates shown in Fig. 3 provide an
overall picture of the effect that the LC value of the binary
mask had on performance in the CRM task, additional in-
sights can be obtained by further analyzing the types of er-
rors the listeners made in the experiment. The area graphs in
Fig. 4 divide the listeners’ color and number responses in the
two-talker condition of the experiment into three categories:
correct responses that matched the color or number word in
the target phrase �black region in the graph�, incorrect re-
sponses that matched the color or number word in the inter-
fering phrases �meshed region in the graph�, and incorrect
responses that did not match either of the color or number
words present in the stimulus �white region in the graph�.
Again, the results are somewhat different in the three regions
of the figure. In Region II, where the LC value was between
−12 and 0 dB, the listeners responded correctly nearly 100%
of the time and no meaningful error analysis is possible. In
Region I, where the LC value was greater than 0 dB, the
incorrect responses were essentially random: the incorrect
number responses matched the number in the masking
phrase roughly 1/7 of the time, and the incorrect color re-
sponses matched the color in the masking phrase roughly 1/3
of the time. Again, this is consistent with the effects of en-
ergetic masking: the elimination of phonetic information
from the target due to energetic masking has no particular
tendency to bias the listener towards any alternative response
word, so the incorrect responses are randomly distributed
across all the possible alternatives available in the response
set.

In Region III, where the LC value was less than −12 dB,

FIG. 4. Distribution of listener color and number responses in the two-talker
condition of Experiment 1. The top panel shows the distribution of listener
number responses in the experiment: the black area indicates correct re-
sponses that matched the number word in the target phrase; the mesh area
indicates incorrect responses that matched the number word in the masking
phrase; the white area indicates responses that did not match either of the
number words contained in the stimulus. The bottom panel shows the same
information for the color responses in Experiment 1.
the distribution of incorrect responses was much different. In
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that region, virtually 100% of the incorrect responses
matched the color or number contained in the masking
phrase, and almost none contained a color or number word
that was not present in the stimulus. This is consistent with
the assumption that target-masker confusions are responsible
for the decrease in performance in that condition: the addi-
tion of the acoustic elements dominated by the masking
phrase at negative LC values introduced a second intelligible
voice into the stimulus that confused the listener about which
voice to respond to.

It is worth noting that there is never any point at any
negative LC value where the listeners exhibited a significant
number of incorrect responses that did not match the inter-
fering phrase in the stimulus. At modestly negative LC val-
ues, one might expect that some point could occur where
there would be enough low-level phonetic interferer ele-
ments in the stimulus to confuse the listener about the con-
tents of the target phrase, but not enough to allow the listener
to understand the contents of the interfering phrase. Such a
point would be expected to produce an increase in overall
error rate with a random distribution of errors similar to that
seen in Region I of the figure. However, no such region
exists at negative LC values in Fig. 3. This implies that the
acoustic elements of the interferer that are added to the
stimulus at negative LC values have no effect on the recog-
nition of the target phrase until they themselves become in-
telligible and present the listener with an alternative interpre-
tation of key words spoken by the target talker.

IV. EXPERIMENT 2: EFFECTS OF IDEAL TIME-
FREQUENCY SEGREGATION ON SPEECH
PERCEPTION IN NOISE

The results of Experiment 1 clearly show that applica-
tion of the ITFS technique produces a dramatic improvement
in performance in a multitalker listening task where the con-
fusability of the target and masking signals plays a dominant
role in determining overall performance. However, as a com-
parison it is also helpful to examine what effect the technique
might have on the intelligibility of speech in noise, where
confusability of the target and masking signals has a much
smaller impact on performance than the spectral overlap of
the target and masking signals. Also, there was a desire to
test the validity of the assumption, outlined in Sec. III B 2,
that there was a rough equivalence in terms of energetic
masking between the information lost by a 1 dB increase in
the LC value of the stimulus at a fixed SNR and a 1 dB
decrease in the SNR of the stimulus at a fixed LC value.
Thus a second experiment was conducted to examine the
effect of ITFS processing on the perception of speech in
noise.

A. Methods

1. Listeners

A total of nine paid listeners participated in Experiment
2. All had normal hearing and their ages ranged from 21 to
55. Most had participated in previous auditory experiments,
and all were familiarized with the CRM task prior to con-

ducting this experiment.
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2. Stimulus generation

The target phrases used in the experiment were derived
from the same CRM corpus used in Experiment 1. However,
in Experiment 2 these phrases were masked by noise rather
than speech. Two different types of Gaussian noise interfer-
ers were used to generate the stimuli used in the experiment.
The first was a continuous speech-shaped noise masker that
was spectrally shaped to match the average long-term spec-
trum of all of the phrases in the CRM Corpus �Brungart,
2001�. The second was a speech-shaped masker that was
modulated to match the overall envelope of a speech phrase
that was randomly selected from all the nontarget phrases in
the CRM corpus. This envelope was extracted by convolving
the absolute value of the CRM phrase with a 7.2 ms rectan-
gular window. The resulting envelope was then multiplied
with a continuous speech-spectrum-shaped Gaussian noise to
generate a modulated noise that simulated the amplitude
fluctuations that typically occur in the overall envelope of a
natural speech utterance �Brungart, 2001�.

3. Ideal time-frequency segregation

Prior to the start of data collection, each of the 256
phrases that contained the call sign Baron was used to con-
struct a total of 60 different stimulus wave forms for eventual
presentation in the experiment. These stimulus wave forms
consisted of all combinations of two different types of noise
�continuous and modulated�, ten different effective SNR con-
ditions �ranging from −27 to 0 dB in 3 dB steps�, and three
different types of ITFS processing. These three types of pro-
cessing were:

(a) Method 1 ITFS: Fixed mixture SNR, variable LC
values. Method 1 used the same procedure for generating the
ideal mask that was used in Experiment 1, where the LC
value used to calculate the binary mask was varied and the
resulting mask was applied to a stimulus with a fixed SNR
value of 0 dB. Each Method 1 stimulus was generated by
scaling the interfering noise wave form to have the same
overall rms power as the target speech �i.e., an SNR of
0 dB�, calculating the ideal mask for this mixture with LC
set to one of ten values ranging from 0 to 27 dB, and using
this ideal mask to resynthesize the speech from the 0 dB
SNR mixture.

(b) Method 2 ITFS: Variable mixture SNR values, fixed
LC value. Method 2 was designed to test the assumption,
outlined in Section III B 2, that each 1 dB increase in LC
value was roughly equivalent in terms of the effects of ener-
getic masking to a 1 dB decrease in the overall SNR of the
stimulus. Each Method 2 stimulus was generated by scaling
the rms power of the interfering noise wave form to one of
10 SNR values relative to the target speech �ranging from 0
to −27 dB in 3 dB steps�, calculating the ideal mask for this
mixture with LC set to 0 dB, and using this ideal mask to
resynthesize the speech from the same SNR mixture used to
generate the binary mask. Note that this processing resulted
in a stimulus with the same binary mask as the correspond-
ing stimulus generated by Method 1 �i.e., the same set of T-F
units retained� but a lower local SNR value within each re-

tained T-F unit.
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(c) Unsegregated. Each unsegregated stimulus was gen-
erated by scaling the rms power of the interfering speech
wave form to the appropriate SNR value relative to the target
speech and resynthesizing the resulting mixed speech with a
binary mask set to a value of 1 in every T-F unit. This pro-
cessing was used to ensure that any artifacts introduced by
the ideal mask processing software were also included in the
unsegregated control condition.

4. Procedure

We used the same procedure as in Experiment 1 except
for the following. In stimuli with SNR less than 18 dB, these
stimuli were scaled to present the target at the same overall
sound level �roughly 60 dB sound pressure level �SPL��. In
those stimuli with a SNR value greater than 18 dB, the
stimuli were scaled to ensure that the overall level of the
unsegregated stimulus �noise plus speech� would not exceed
80 dB SPL. The trials were divided into blocks of 50–100
trials, with each trial taking approximately 5 min to com-
plete. Preliminary testing revealed that target speech was
completely inaudible in the unsegregated continuous noise
conditions with SNR lower than −15 dB and in the ITFS
continuous noise conditions with SNR values lower than
−21 dB �or equivalently those with LC values greater than
15 or 21 dB in Method 1�. These eight conditions were
eliminated from subsequent data collection. Thus, each lis-
tener participated in a total of 48 trials in each of 52 remain-
ing stimulus conditions, for a grand total of 2496 trials for
each of the nine listeners in the experiment.

B. Results and discussion

Figure 5 shows the percentage of correct color and num-
ber identifications in each condition of Experiment 2. The
left panel shows performance in the continuous noise condi-
tions, and the right panel shows performance in the modu-
lated noise conditions. The circles show performance in the
Method 1 ITFS condition as a function of the negative of the

FIG. 5. Percentage of correct identifications of both color and number in eac
noise conditions, and the right panel shows performance in the modulated no
a function of the negative of the LC value used to generate the stimulus. T
a function of the SNR value of the auditory mixture used to generate the stim
as a function of the SNR of the target speech. The error bars represent 95% c
pooled data collected from all the subjects in the experiment.
LC value used to generate the stimulus. The diamonds show
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performance in the Method 2 ITFS condition as a function of
the overall SNR value of the mixture used to generate the
stimulus. The open triangles show performance in the unseg-
regated control condition as a function of SNR.

Overall, the results in the unsegregated control condition
were consistent with earlier experiments that have examined
CRM performance with similar types of masking noise
�Brungart, 2001�. In both the continuous and modulated
noise conditions, performance was near 100% when the SNR
was near 0 dB. At lower SNR values, both conditions exhib-
ited a decrease in performance with the ogive-shaped curve
that typically occurs in speech-in-noise intelligibility tests.
However, this decrease in performance was much more rapid
in the continuous noise condition than in the modulated noise
condition. In fact, performance in the unsegregated modu-
lated noise condition was significantly better than chance
�3%� even at the lowest SNR value tested. This result clearly
illustrates the intelligibility advantages that can be obtained
by listening to target speech “in the gaps” of a fluctuating
masking sound.

Comparing the results from the unsegregated conditions
of the experiment to those from the ITFS conditions, it is
apparent that performance curves for the Method 1 and
Method 2 stimuli were very similar to one another, and that
they were almost identical in shape to those obtained in the
unsegregated condition. This suggests that the application of
an ideal binary mask with an LC value of 0 dB improved the
intelligibility of a speech stimulus masked by noise by
roughly 2–5 dB. While not inconsiderable, this improvement
appears small relative to the dramatic 50 to 90 percentage
point improvements obtained by applying the same binary
mask to the 2, 3, and 4-Talker stimuli tested in Experiment 1.
Thus it seems that the application of the ideal binary mask
had less effect when the target speech signal was masked by
noise than when it was masked by speech. These results also
have two additional major implications.

The first implication is that there is a very strong �nearly
one-to-one� relationship between the amount of masking

dition of Experiment 2. The left panel shows performance in the continuous
onditions. The circles show performance in the Method 1 ITFS condition as
monds in the figure show performance in the Method 2 ITFS condition as
The open triangles show performance in the unsegregated control condition
ence intervals �±1.96 standard errors� in each condition, calculated from the
h con
ise c

he dia
ulus.
onfid
caused by a 1 dB decrease in the SNR of a noise-masked
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speech signal and the loss of acoustic information caused by
a 1 dB increase in the LC value used to create an ITFS
stimulus.

The second major implication of Experiment 2 is that
the pattern of the T-F units preserved by the application of
ITFS has a much greater impact on performance than the
underlying local SNR values of these T-F units. In this ex-
periment, the Method 1 and Method 2 stimuli were designed
to produce exactly the same ideal masks, and thus to retain
exactly the same T-F units, at each stimulus SNR. The only
difference between the two methods was that the local SNR
value within each retained T-F unit of the Method 2 stimulus
was substantially lower than in the corresponding T-F unit of
the Method 1 condition. Yet, despite these substantially
higher local SNR values in the Method 1 condition, the re-
sults in Fig. 5 show that performance was nearly identical for
the two methods at all SNR values tested. This result sug-
gests that speech perception is much more limited by the
listener’s ability to determine where the energy in the target
speech is located in the T-F domain than by the ability to
extract specific target information within individual T-F
units.

V. GENERAL DISCUSSION

A. Relationship between ITFS, speech segregation,
and informational masking

Speech segregation is an extremely complicated process
that depends on many variables. In the introduction, we sug-
gested that a possible way to approximate speech segregation
at a basic level is to view it as a relatively simple two-stage
analysis of the T-F representation of the auditory mixture.
The input to this analysis is provided by the auditory periph-
ery, which can be viewed as a T-F analyzer with resolution
that is limited in frequency by the bandwidths �critical
bands� of the cochlear filters and in time by the occurrence of
forward and backward masking within each critical band.
Thus, the output from the auditory periphery could be
viewed as an array of individual T-F units, with each unit
representing the auditory signal that occurs at a particular
time and frequency in the acoustic stimulus, and with the
size �i.e., bandwidth and length� of each unit representing the
smallest auditory event capable of being individually re-
solved by the auditory periphery.

Given this array of T-F units, the goal of speech segre-
gation is to find a way to extract target speech from an acous-
tic mixture containing competing sounds. This can be viewed
as consisting of two distinct, but interrelated, stages. The first
stage is performed at the level of individual T-F units. Be-
cause each T-F unit is, by definition, too small to allow the
resolution of individual sounds within the same unit, there
are really only a few possible outcomes for a given unit
within a complex acoustic mixture. When the unit contains
substantially more energy from the target than from the
masker, the characteristics of the T-F unit are essentially
identical to those of the target alone, and there should be
little loss of information due to the presence of the masker.
When the unit contains substantially more energy from the

masker, information from the target is expected to be lost,
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and the characteristics of the T-F unit should approximate
those of the masker. When the unit contains comparable
amounts of energy from the target and masker, the properties
of the T-F unit would be corrupted, matching neither the
target nor the masker. In the last two cases, where the masker
energy in an individual T-F unit is comparable to or greater
than the target energy in that unit, the resulting corruption or
elimination of the target information would be an example of
energetic masking.

In the second stage of the two-stage speech segregation
process, the listener examines all of the T-F units in the mix-
ture and uses the acoustic characteristics of each unit deter-
mined in the first stage, along with any available a priori
information about the characteristics of the target, to deter-
mine which T-F units should be associated with the target
and integrated into the single acoustic image of the target.
This is a classic auditory grouping task, and it presumably
makes use of a variety of grouping cues such as common
onsets or offsets, amplitude or frequency co-modulations,
common periodicity across frequency, and a priori templates
for complex spectro-temporal patterns in speech or non-
speech sounds �Bregman, 1990�.

Ideally, the output of the second stage would be a com-
posite signal that includes all of the T-F units containing
useful information about the target speech, and excludes all
the other units. In reality, however, this segregation process
is unlikely to be perfect, as suggested by the performance
differences between an unsegregated mixture and the corre-
sponding ITFS processed version shown in Fig. 3. Two kinds
of errors could be made in this segregation process. Listeners
could inadvertently exclude some T-F units that contain use-
ful information about the target, resulting in a loss of rel-
evant information from the target. They could also inadvert-
ently include some T-F units that only contain acoustic
energy from the masker, resulting in a garbled signal that
might not be completely intelligible. We contend that these
two types of segregation errors represent the very core of the
nonenergetic form of masking, often referred to as informa-
tional masking, that occurs when the listener is unable to
segregate the acoustically detectable portions of the target
speech from the similar-sounding acoustically detectable
portions of the interfering speech �Brungart, 2001; Cahart
and Tillman, 1969; Freyman et al., 1999; Kidd et al., 1998;
Pollack, 1975�.

Because the underlying processes involved in speech
segregation are extremely complicated, it is very difficult �or
perhaps impossible� to completely isolate the contributions
that energetic and informational masking make to overall
segregation performance in realistic stimuli. However, if we
are willing to make some simplifying assumptions, we could
use a tool such as the ITFS technique to get a rough estimate
of the effects that energetic and informational masking have
on the perception of an arbitrary stimulus. The first approxi-
mation is that the application of the ITFS technique with a
LC value of 0 dB provides a rough estimate of the effect that
purely energetic masking has on the perception of a mixture.
The second approximation is that the relative effect of infor-
mational masking on an arbitrary acoustic stimulus can be

approximated by the smallest positive LC value required to
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bring ITFS-processed recognition performance down to the
level obtained in the unsegregated condition. This opera-
tional metric of informational masking is based on the first
approximation plus the assumption that each 1 dB increase
in the LC value eliminates the same T-F units �and thus
produces approximately the same loss of information� as the
energetic masking caused by each 1 dB decrease in the over-
all SNR value of the stimulus. By this metric, the amount of
informational masking produced by the speech maskers in
Experiment 1 ranges from 22 to 25 dB, while that produced
by the noise maskers in Experiment 2 is from 3 to 5 dB.
While this result is clearly consistent with the general notion
that speech-on-speech masking produces far more informa-
tional masking than speech-in-noise masking, much more
data will be needed to determine if this crude metric will
prove to be a viable way to compare the effects of informa-
tional masking across different types of complex stimuli.

B. Caveats

We believe the ITFS technique can be a valuable tool for
assessing the effects of energetic masking in complex speech
perception tasks. Because it makes no assumptions about the
characteristics of the underlying stimulus, the technique has
the potential to be applied to other complex listening tasks
that tend to produce informational masking. However, a
number of caveats should be kept in mind when applying
this technique.

The first is that the technique is much better suited for
tasks that require the identification or recognition of acoustic
stimuli than for those that require the detection of acoustic
stimuli. What we have measured is the intelligibility �or rec-
ognition� of target speech in the presence of interfering
speech or noise, not the detection of the target signal. In a
detection task, there would of course never be any retained
T-F unit in the target-absent stimuli, so the use of the ITFS
technique would essentially be meaningless �that is to say
that the detection level of the stimulus would be determined
artificially by the LC value and not by the performance of the
subject�. Since we have not directly measured target detec-
tion, which is closely tied to energetic masking, one should
keep in mind that our analysis on energetic masking is based
on assumptions and approximations. The ITFS technique is
intended to largely remove the effects of informational mask-
ing, and our data clearly show that such processing leads to
dramatic improvement in target intelligibility despite energy
overlap between target and interfering voices. Although we
have argued that the technique should introduce minimal im-
pact on energetic masking, future experiments are needed to
test whether, or to what extent, our argument holds.

The second important caveat about ITFS technique is
that it is intended only as tool to evaluate the relative impor-
tance of spectral overlap in the identification or recognition
of complex stimuli. It makes assumptions about the segrega-
tion of speech stimuli that are clearly not true for human
listeners, and it should not be taken as a plausible model of
human speech segregation.

The third point of caution about the ITFS technique is

that its utility very much depends on how accurately the
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bandwidths of the auditory filters and the lengths of the tem-
poral windows used to decompose the stimulus into T-F units
correspond to the spectral and temporal resolution of the hu-
man auditory system. The T-F units used in this experiment
are believed to be reasonable estimates of the effective spec-
tral and temporal resolution of human listeners for speech
stimuli, but they may not be appropriate for other types of
stimuli, particularly those involving transients. Even for
speech stimuli, our ITFS processing uses a common but
fixed way of decomposing a signal into T-F units and we
have not evaluated the effects different T-F resolutions may
have on intelligibility performance. In addition, our ITFS
processing does not take any nonlinear effects of masking
into account, so it will almost certainly provide incorrect
results for stimuli involving very high-level masking sounds.
Also not incorporated is nonsimultaneous energetic masking
which can occur either due to the upward or downward
spread of masking in the frequency domain or due to forward
or backward temporal masking. In theory, it should be pos-
sible to develop a more sophisticated ITFS technique that
would take these factors into account and produce a more
accurate estimate of the effects of energetic masking in a
wider range of listening environments.

Finally, it is important to note that the relatively insig-
nificant role of energetic masking that seemed to occur in
this set of experiments was probably related to the relatively
small response set used in the CRM corpus. Because they are
restricted to four phonetically distinct color alternatives and
eight phonetically distinct number alternatives, the key
words in the CRM phrases are relatively easy to understand
even in extremely noisy environments �Brungart et al.,
2001�. Presumably, the effects of energetic masking would
be substantially greater for other speech perception tests
based on speech materials with phonetically similar response
alternatives, such as the Modified Rhyme Test �House et al.,
1965�, or with larger response sets of phonetically balanced
words or nonsense syllables. However, a recent study by
Roman et al. �2003� used unrestricted and semantically pre-
dictable sentences from the Bamford-Kowal-Bench corpus
�Bench and Bamford, 1979� and found that the binary masks
that are very close to ideal binary masks with 0 dB LC are
very effective in removing interfering sounds �competing
speech or babble noise� and improving speech intelligibility
in low SNR conditions. Further research is needed to empiri-
cally quantify how much greater the impact of energetic
masking is in multitalker listening tasks based on these more
difficult speech perception tests.

VI. CONCLUSIONS

This paper has introduced “Ideal Time-Frequency Seg-
regation” as a tool for evaluating the relative contributions
that informational and energetic masking make to the overall
perception of complex speech stimuli. In general, the results
of the experiment are consistent with those of earlier experi-
ments that have examined informational masking in multi-
talker speech perception. Specifically, they show that infor-
mational masking dominates multitalker perception with the

Coordinate Response Measure corpus, and that energetic
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masking has a relatively much greater impact on speech-in-
noise masking than on speech-on-speech masking. Indeed,
the effects of energetic masking caused by the speech
maskers tested in this experiment were so small relative to
those produced by equivalently powerful noise maskers that
they suggest that spectral overlap may play only a relatively
small role in most speech recognition tasks involving more
than one simultaneous talker. Further ITFS tests with differ-
ent types of speech materials will be needed to determine if
this conclusion generalizes beyond the limited CRM corpus
tested in this experiment.

Our results also have strong implications for CASA re-
search, where, as discussed in Sec. II, the notion of ideal
binary masking was first introduced as a computational goal
of CASA. First, the results from our experiments confirm
that the ideal binary mask is a very effective technique to
improve human speech intelligibility performance in the
presence of competing voices. Second, while the commonly
used 0 dB LC corresponds to a particularly simple and intui-
tive comparison, its validity has not been systematically veri-
fied in speech intelligibility tests. Our results show that this
is indeed a good choice to achieve intelligibility scores near
100%. On the other hand, the 0 dB LC is near the borderline
of a performance plateau that centers at −6 dB for the con-
ditions of one, two, and three competing talkers. Since
CASA systems must estimate the ideal binary mask, errors in
estimation have to be considered. This suggests that the LC
value of −6 dB is actually a better criterion to aim for than
the 0 dB LC, at least for improving human speech perception
in multitalker environments.
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